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Abstract.   When the periodic cellular structure is loaded or swelling beyond the critical value, the structure 
may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural 
collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we 
have proposed the novel composite gel materials. This designed material is a type of architectural material 
possessing special mechanical properties. In this study, the mechanical behavior of the composite gel 
periodic structure with various gel inclusions is studied further through numerical simulations. When pattern 
transformation occurs, it results in a different elastic relationship compared with the material at 
untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson‟s ratio 
and corresponding deformed structure patterns, we investigate the performance of designed composite 
materials and the effects of the uniformly distributed gel inclusions on composite materials.  A better 
understanding of the characteristics of these composite gel materials is a key to develop its potential 
applications on new soft machines. 
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1. Introduction 

 

Periodic cellular structure has been widely investigated for generating novel pattern 

transformation and special mechanical properties. When it is loaded or swelling beyond the critical 

value, this type of periodic structure exhibits structural instabilities (Ding et al. 2013, Hong et al. 

2009, Kang et al. 2013, Li et al. 2011, Mullin et al. 2007, Shim et al. 2012), thus leading to 

structural collapse and the transformation to a new configuration. The structure with the new 

configuration displays certain special mechanical properties, such as negative Poisson‟s ratio 

(Barnes et al. 2012, Bertoldi et al. 2010, Theocaris et al. 1997). So it is imperative to study the 

influence of instabilities on global material properties. Many researchers show their interests in 

designing the structures of materials to achieve or expand the special functionality of materials. 
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Evans group (Alderson et al. 2010) had modeled chiral and anti-chiral honeycomb material 

structures, and considered the deformation mechanisms responsible for auxetic functionality of the 

two structures. Besides the honeycomb structures, the other shapes of re-entrant structures (Barnes 

et al. 2012, Gaspar et al. 2011, Miller et al. 2011) or buckliball structures (Shim et al. 2012) have 

also attracted large numbers of researchers to study the pattern transformation of those structural 

materials, especially for studying the critical value of applied load for different pattern. 

Meanwhile, several researchers have studied mechanical properties of two and three-dimensional 

soft cellular structures through theory, simulations and experiments (Bertoldi et al. 2008, Bertoldi 

et al. 2010, Geus 2011, Mullin et al. 2007, Willshaw and Mullin 2012). In the application of 

structural materials, Jang et al. (2009), Li et al. (2012) combined pattern instability and shape-

memory hysteresis for photonic switching. Several studies on the collapse of a void or hole in an 

elastomer under swelling and de-swelling were also carried out (Cai et al. 2010, Ding et al. 2013, 

Hong et al. 2009). The similar novel composite material is experimentally studied by combining 

the silicone rubber samples with jelly filling each of the holes (Mullin et al. 2013). Based on the 

novel deformation-triggered pattern, we have developed the novel composite gel structure 

material. The arrays of shuriken (or four-pointed star) gel inclusions, quadrate gel inclusions, 

convex octagonal gel inclusions and circular gel inclusions are filled into the periodic cellular 

structures. This designed material is a type of architecture material which can achieve special 

mechanical properties and display a new mechanical behavior.  

In our earlier study (Hu et al. 2013), we have investigated how the shapes of voids affect the 

mechanical properties of porous material through numerical simulations. While in this study, from 

the obtained nominal stress versus nominal strain curves and corresponding deformed structure 

patterns, we try to expound the effect of uniformly distributed gel inclusions with various shapes 

on the characteristics of the novel composite materials. Meanwhile, the influence of the gel 

behavior on the mechanical properties of composite gel periodic structure with pattern 

transformation is also studied. 

 
 
2. Modeling of the composite material 

 

The composite soft material composed of two components has already been manufactured by 

Mullin et al. (2013). In their experiment, the square arrays of circular holes in silicone rubber sheet 

are filled with jelly. At same time, we have independently carried out modeling and simulation 

study on mechanical behavior of hydrogel inclusion composite materials (Hu et al. 2013). 

According to the previous study, we understand that if the holes are filled with a more rigid 

material than that of the matrix, the cellular structure will not lead to any pattern switch (Michel et 

al. 2007). Therefore, a much softer material needs to be placed in the holes to achieve pattern 

switch for composite material. Mullin et al. (2013) has discovered that the inclusion which has a 

Young‟s modulus of >1% the bulk would suppress the pattern switch. Based on the work on the 

incremental modulus of gel (Liu et al. 2011), we plug the gel materials into the porous elastomers 

and discuss how the gel material effects on the critical strain. In this study, the numerical 

simulations of composite material under compressed load are carried out to study the deformation 

behavior of the novel material. In the modeling, the specific combinations of two materials are 

modeled as illustrated in Fig. 1 (a), (b), (c), (d). The size of the model as shown in Fig. 1(a) is 40  

mm×40 mm, comprising a microstructure of a 10×10 mm
2
 square arrays of shuriken gel of 3.635 

mm length with 10mm center-to-center spacing both vertically and horizontally; The size of model  
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(a) Shuriken gel inclusions (b) Square gel inclusions 

 
 

(c) Convex octagonal gel inclusions (d) Circular gel inclusions 

Fig. 1 Composite material structures with arrays of various gel inclusions. The gel fraction in four 

models shares the same value of 0.59 

 

 

in Fig. 1(b) is 40 mm×40 mm with 10×10 mm
2
 square arrays of square gel inclusions of 7.7 mm 

length with 10mm center-to-center spacing; The size of model in Fig. 1(c) is 40 mm×40 mm with 

10×10 mm
2
 square arrays of 3.703 mm length of convex octagonal gel with 10 mm center-to-

center spacing; The size of Fig. 1(d) is 40 mm×40 mm, comprising a microstructure of a 10×10 

mm
2
 square arrays of circular gel inclusions of 8.67 mm diameter with 10mm center-to-center 

spacing. The volume fractions of gel in the four types of composite materials share the same value 

of 0.59.  

 

2.1 Material properties 
 

In the composite gel structural material, two different hyperelastic materials are used here, i.e., 

PSM-4 (Photoelastic Elastomer) for matrix and hydrogel for inclusions (Hu et al. 2013). Their 

energy densities are given in terms of the following two invariants I and J associated with 

deformation gradient F 
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 , det ij ij ijI F F J F                                                         (1) 

For matrix material, a compressible neo-Hookean model (Lopez-Pamies and Castaneda 2004) 

is assumed. The strain energy W(F) form for neo-Hookean material in plane strain is 

 ( )  
 

 
[(   )      ]  

 

 
(   )                                      (2) 

where G and   denote the standard Lame moduli of the solid at zero strain. The material PSM-4 

was modeled as  nearly  incompressible,  characterized  by    ⁄                   ⁄ . 

From the early studies (Bertoldi et al. 2008, Mullin et al. 2007, Willshaw and Mullin 2012), the 

initial Young's modulus was given as                 , so that   
 

[ (   )]
       . 

The inclusion is assumed as gel material (Hong et al. 2009; Hong et al. 2008), with a strain 

energy W(F) given by 

 
1

3 2log ( 1) log ,
2 1

 
       

kT J
W NkT I J J

v J J
                         (3) 

where N is the number of polymeric chains per reference volume, and χ is a dimensionless 

measure of the enthalpy of mixing, kT is the temperature in the unit of energy and when at room 

temperature, kT=4×10
−21

J. A representative value of the volume per molecule is ν=10
−28

 m
3
. The 

two dimensionless material parameters Nν and χ
 
are chosen appropriately, adopting the following 

2 values, Nν=10
−2 

and χ=0.1. 

 
2.2 Boundary condition 
 

Just following our previous study, the composite material can be represented as a periodic array 

of representative volume elements (RVEs) with the aim of eliminating the boundary condition 

effects. Thus the numerical investigations are performed on periodic structures. Through extensive 

study for different models and compared with analysis of the full finite structure model, we also 

found that the RVEs results can exhibit an earlier switch (Mullin et al. 2007), i.e., boundary effects 

delay the structure transformation. The general form of periodic boundary condition can be 

expressed as (Berger et al. 2005, Xia et al. 2003) 

*, i ij j iu S x u                                                                (4) 

where 
ijS are the average strain, *

iu
 
is the periodic part of the displacement components (local  

fluctuation) on the boundary surfaces, which is dependent on the applied global loads. The indices 

i and j denote the two-dimensional coordinate directions in the range of 1 to 2. A more explicit 

form of periodic boundary conditions, suitable for square RVE models can be derived from the 

above general expression. For a 2-D square RVE as shown in Fig. 2, the displacements on a pair of 

opposite boundary surfaces (with their normal along the xj axis) are 

* ,   R R R

i ij j iu S x u
                                                          (5) 

          

* ,   R R R

i ij j iu S x u
                                                         (6) 
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Fig. 2 Schematic diagram of a periodic composite RVE 

 

 

where index “R+” means along the xj positive direction and „R-‟ means along the direction on the 

corresponding surfaces A+/A-, B+/B- (see Fig. 2 ). The local fluctuations 
R

iu and 
R

iu
 
around the 

average macroscopic value are identical on two opposing faces due to periodic conditions of RVE. 

So, the difference between the above two equations is 

  .       R R R R R

i i ij j j ij ju u S x x S x                                            (7)
 

For any RVE model  R

ix  is constant and this form of boundary conditions meets the requirement 

of displacement periodicity and continuity. 

 

 
3. Pattern switching in composite material 

 

When periodic elastomeric cellular solid is compressed, the array of pores undergoes an 

unstable transformation at a critical point (Bertoldi and Boyce 2008, Bertoldi and Boyce 2007, 

Bertoldi et al. 2008, Bertoldi and Gei 2011, Bertoldi et al. 2010, Jang et al. 2009, Kang et al. 

2013, Mullin et al. 2007, Singamaneni et al. 2009a, Singamaneni et al. 2009b). Similar 

instabilities also trigger the transformation to the new configuration in the novel composite gel 

material (Hu et al. 2013). The numerical approach captures the mechanical behavior of composite 

material for exploring the effect of gel inclusions in various shapes. The property of gel material 

also greatly influences the pattern transformation of the composite materials. 

 
3.1 Stress versus strain behavior 

 

The numerical results for the nominal stress versus nominal strain behavior of the four types of 

composite materials are displayed in Fig. 3. As we predicted, the behavior of the composite 
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material goes along the initial almost linear elastic behavior with a sudden change to a different 

elastic relationship. Fig. 3 also provides a direct comparison among the matrix materials with 

various gel inclusions. The transition point response to the pattern transformation in the composite 

materials and the patterns at the nominal strain of 0.2 are shown in Fig. 4. The gel inclusions of the 

novel composite material break their initial shapes and bifurcate into new shapes of vertical and 

horizontal directions alternatively.  

Despite sharing the same value of gel fraction, the pattern transformation works differently in 

composite materials with gel inclusions of different geometric shapes. Fig. 5(a) depicts the 20×20 

mm
2
 microstructures for the four composite materials. The novel composite material is 

characterized by the length between center and re-entrant corner. The characteristic length 

gradually varies from 3.6 mm, 3.85 mm, 4.0 mm and 4.33 mm to describe the composite material 

with shuriken gel inclusions, square gel inclusions, convex octagonal gel inclusions and circular 

gel inclusions, respectively. Images of a square lattice of circular holes prior to loading and post-

buckling are shown in Fig. 5(b) and (c). Emphasis is placed on the interstitial connectors which are 

considered as diamond-shaped units (light blue in Fig. 5(a); impassive yellow in Fig. 5(b) and (c)]. 

At the turning point to the new configuration, much of the macroscopic deformation is observed to 

be accommodated by the rotation of the four matrix domains diagonally bridging neighboring 

inclusions (diamond-shaped units); these domains experience negligible strain but undergo large 

rotations. Neighboring diamond-shaped connectors rotate in opposite senses as a result of the 

buckling of the ligaments (non diamond-shaped domains in matrix material) and give rise to the 

pattern transformation for the composite material, the same as that of porous soft material in the 

experimental results of Willshaw and Mullin (2012). Then after transformation, due to that gel 

inclusion suppress the motivation of the matrix domains, the rotation leads to a different composite 

structure from the initial state. Obviously, the larger area of the diamond-shaped domains leads to 

the faster pattern switching. It can be inferred that the characteristic length has positive effect both 

on the modulus of elasticity before the buckling and the pattern transformation of composite 

material, thus reasonably explaining the curves in Fig. 3. 
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Fig. 3 The nominal stress versus nominal strain behavior of the four types of structures with 

various gel inclusions 
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(a) Shuriken gel inclusions (b) Square gel inclusions 

  
(c) Convex octagonal gel inclusions (d) Circular gel inclusions 

Fig. 4 The von-Mises stress distribution on transformed deformation pattern of the composite gel 

material structures at the nominal strain of 0.2 

 

 
(a) 

Fig. 5 A schematic diagram of microstructures for the composite materials with four geometrical gel 

shapes is given in (a). Figs. (b) and (C) show the Images of a square lattice of circular gel inclusions 

prior to loading and post-buckling case. Emphasis is placed on the interstitial connectors which are 

considered as diamond-shaped units (impassive yellow in (a) (b) and (c)) 
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(b) (c) 

Fig. 5 Continued 

  

 
Fig. 6 Incremental modulus of gel varying with nominal strain for various initial chemical potentials 

 

 

Besides the different shapes of gel inclusions, the property of gel inclusion also affects the 

properties of the composite material. As discussed in Section 2.2, we use gel mono-phase theory to 

simulate the gel inclusions. The initial state of gel inclusions in these novel composite materials is 

characterized by the free-swelling stretch λ0, which is equilibrated in a solvent of chemical 

potential μ as follows (Hong et al. 2009) 

0

3 3 3 6

0 0 0 0 0

1 1 1 1
log 1



    

   
        

   
Nv

kT
                                    (8) 

When the composite material is compressed, gel inclusions are subjected to constraint de-

swelling, which is similar to the example case of a 1-D rod of a gel equilibrated in a solvent of 

chemical potential μ, and subjected to a uniaxial stress S1 along the longitudinal direction. From 

the theoretical calculation of Liu et al. (2011), the reduced incremental modulus or tangent  
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Fig. 7 Stress vs. strain behavior using the RVE model with array of square gel inclusions in an 

elastomeric matrix various for initial chemical potentials 

 

 

stiffness of gel is a function of current deformation and stretch (current chemical potential), as 

illustrated in Fig. 6. According to the definition of incremental modulus of hydrogel, the value of 

the incremental modulus of gel increases as the stretch value decreases or the initial chemical 

potential increases.  

We exploit gel subjected to different chemical potential, to fill the holes of porous elastic 

material to develop this novel composite material. Fig. 7 shows stress versus strain behavior using 

the RVE models with array of square gel inclusions in an elastomeric matrix various for initial 

chemical potentials. 

We have observed several interesting properties of the new composite materials depicted in 

Fig. 7. Firstly, instead of perfectly linear elastic before the pattern switching, the material shows 

the increasing modulus because the gel inclusions becomes harder as the water in gel inclusions is 

squeezed out due to the applied load as shown in Fig.6; so does the material after transformation. 

Secondly, the larger the initial chemical potential, the much more difficult the pattern 

transformation. It can be explained that the modulus of the gel increases as the initial chemical 

potential increases as illustrated in Fig. 6.  

 
3.2 Poisson’s ratio 
 

Numerical and experimental studies show that the cellular structures with arrays of holes has 

negative Poisson‟s ratio when taking pattern switching (Bertoldi et al. 2010, Hu et al. 2013, 

Theocaris et al. 1997). Compared with the negative Poisson's ratio of structure with no gel inside 

(Hu et al. 2013), the pattern switching state exhibits a positive value of the Poisson's ratio in the 

composite material with square gel inclusions. Although the Poisson's ratio is positive for the gel 

composite materials, the tendency and shape of Poisson's ratio are the same as those of the porous 

materials studied by Bertoldi et al (2010). 

The difference may be attributed to the existence of gel inclusions. Without the gel inclusions, 

the volume of hole, or the area of the section of the hole, decreases under compression.  While the 

gel inclusions is modeled as nearly incompressible material, the volume fraction of gel inclusions 

can not easily compressed just like the holes. That‟s the reason why the Poisson‟s ratio decreases  
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Fig. 8 Poisson‟s ratio as a function of nominal strain using the RVE model with array of square 

gel inclusions in an elastomeric matrix for various initial chemical potentials 

 

 

but not reaches the negative value under compression. 

The numerical results of Poisson‟s ratio are plotted as a function of nominal strain in Fig. 8 

(data points) for slightly different values of chemical potential. A strong dependency on this 

parameter is evident. We find out that the Poisson‟s ratio of the composite material,  , decreases 

when the pattern transformation induced by the instability occurs. It is also striking that by simply 

decreasing the solvent chemical potential of the gel, composite material can be more easily 

reconstructed and the Poisson‟s ratio has a more sharp decline after switching point,   . Unlike the 

numerical results that lowest value of the asymptotic Poisson‟s ratio of the cellular porous 

structure was a constant (Bertoldi et al. 2010), the asymptote    that lowest value of the Poisson‟s 

ratio of composite material infinitely reaches numerically has the same slope as the fitted line of 

the Poisson's ratio before the pattern transformation. We observe that the results from the RVE 

simulations (data points) in Fig. 8 can be accurately regressed depicted as solid lines by 

exponentials of the form (Bertoldi et al. 2010) 
 

     (     )    [ 
    
  

] 

 

where,   , is the asymptote of Poisson‟s ratio values, the slope of which is the same as the fitted 

line prior to switching;    is the value of Poisson‟s ratio at the onset of the instability which occurs 

at a nominal strain;   , and the characteristic strain of decay;   , measures the speed of reaching 

the asymptotic value.  

 

 

4. Conclusions 
 

We proposed the construction of novel composite materials by filling the gel inclusions into the 

periodic elastomeric cellular structures. This paper continues investigating the mechanical 

properties of the designed composite material. We hope that the mechanical properties of the novel 
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composite materials can meet its potential applications on future soft machines. 

Numerical simulations of novel composite materials with various gel inclusions are carried out. 

The composite materials can be characterized by the length between center and re-entrant corner. 

The characteristic length has positive effect both on the modulus of elasticity before the buckling 

and the pattern transformation of composite materials, which may provide future perspectives for 

optimal design or serve as a fabrication guideline of the new gel composite materials.  

It is observed that the internal microstructure of composite material greatly affects mechanical 

characteristics, so does the property of gel inclusions in composite material. The larger the initial 

chemical potential, the more difficult the pattern transformation. Meanwhile, the asymptote that 

lowest value of the Poisson‟s ratio infinitely reaches numerically has the same slope as the 

regressed line of the Poisson‟s ratio before the pattern transformation. The exponential forms are 

particularly well correlated. 
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