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Abstract.  In this article, the force method and Charged System Search (CSS) algorithm are used for the 
analysis and optimal design of truss structures. The CSS algorithm is employed as the optimization tool and 
the force method is utilized for analysis. In this paper in addition to member’s cross sections, redundant 
forces, geometry and topology variables are considered as the optimization variables. Minimum 
complementary energy principle is used directly to analyze the structure. In the presented method, redundant 
forces are calculated by the CSS in order to minimize the energy function. Combination of the CSS and 
force method leads to an efficient algorithm in comparison to some of the optimization algorithms. 
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1. Introduction 

 

Developing methods with higher computational efficiency is a crucial subject in advanced 

engineering problems of multi-physics nature. For instance, analyzing structures with larger 

number of members requires larger memory size and longer computation time. In addition, this 

costly computation has to be repeated many times, typically over 10,000 times, because the cross 

section size of the members is not determined in the early stages of designing such structures. 

Therefore, reducing the size of structural matrices and eliminating the unduly repetitions in the 

design and analysis procedures can lead to a considerable reduction in the computation efficiency. 

In this paper, this goal is achieved utilizing meta-heuristics algorithms which minimize the energy 

function indirectly. Besides, design procedure and minimizing the weight of the structure and 

improving the geometry and topology of the structures are added to the analysis procedure. One of 

the most reliable meta-heuristic methods recently developed is Charged System Search (CSS) 

(Kaveh and Talatahari 2010, 2011) that is used in here. The SCSS is an improved version of the 

CSS that uses a kind of agents that are called supervisor agent to increase the exploration ability of 

the CSS (Kaveh and Ahmadi 2013). 

Analysis of structures by the force method is well established by Argyris and Kelsey (1960). 

Further developments are due to Henderson (1960), Henderson and Maunder (1969), Cassell et al.  
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(1974), Felippa (1975), Kaveh (1974) among many others. A comprehensive list of references can 

be found in the review paper of Kaveh (1992). 

Topology and geometry of structures can play an important role in reducing the weight of the 

structures. Optimum nodal coordinates lead to a better behavior of structure. Besides an optimum 

topology leads to the use of the just necessary members and has a great effect on the weight and 

behavior of the structure. Methods are available for topology optimization of trusses using the 

displacement method as the analyzer (Ohsaki and Katoh 2005, Lee et al. 2012, Martinez et al. 

2007, Xie et al. 2009, Tohlu et al. 2013). 

Designing structures with minimum weight and optimum topology need to analyze the 

structure and this can be achieved by simultaneous minimization of the energy function and weight 

function of the structure. Minimizing the energy function by a meta-heuristic algorithm instead of 

the direct solution of classic equations leads to avoid not only the repetitive computations in the 

design and analysis but also avoiding the computation of the inverse of the large matrices. 

Naturally, one needs to formulate the equations based on the minimum energy principle, and 

employ these in an efficient optimization algorithm. Combining the SCSS algorithm and the force 

method that is preferred to the displacement method due to the less number of the unknowns 

provides a suitable means for this purpose, since the former provides the optimization algorithm 

and the latter can be used to derive the energy equations. 

A brief introduction to SCSS is presented in the first part of this article and energy principle is 

presented in the next part. Energy formulation based on the force method is derived in the fourth 

part. In the last part, using the SCSS, structures are analyzed and designed, topology and geometry 

of structures are considered as optimization variables in this part. In recent years, the CSS has been 

successfully applied to many engineering optimization problems. For these problems, CSS has 

performed very well and improved most of the resulted design parameters, nodal coordinate and 

topology of structures leading to smaller weight. In the simultaneous analysis and design of 

structures using energy function, force method and SCSS algorithm, nodal coordinate is 

considered variable to improve the geometry of the structure and presence or absence of a member 

is considered as a variable to improve the topology of the structure. 

 

 

2. Supervised CSS algorithm 

 

In the CSS algorithm, each vector of variables is an agent that moves through the search space 

and finds the minimal solutions (Kaveh and Talatahari 2010, 2011). Throughout the search 

process, an agent might go to a coordinate in the search space that already has been searched by 

the same agent or another. If this coordinates, have a good fitness, it will be saved in the Charged 

Memory (Kaveh and Talatahari 2010) but if this coordinates, does not have a good fitness, it will 

be saved nowhere. Therefore, this step of the search process becomes redundant. This unnecessary 

step adversely affects the exploration ability of the algorithm. In this paper, the supervisor agents 

are introduced to improve the exploration ability of the CSS algorithm. The supervisor agent is an 

independent agent of constant values that repels the agent if its coordinate has a bad fitness or 

attracts the agents if its coordinate has a good fitness. This procedure is repeated in all of the 

iterations and gives an overall view of the search space. The number of supervisor agents is 

selected at the beginning of the algorithm, and then their constant coordinates in the search space 

are determined as follows, Eq. (1) 
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jmin,

jmin,jmax,

i,j x
1NOSA

]xx)[1i(
xs 




                                           (1) 

Where NOSA is the number of supervisor agents, and xsj,i  is the  j
th
 variable of the i

th
 supervisor 

agent; xmin,j and xmax,j are the minimum and the maximum limits of the j
th
 variable, respectively. The 

kind of the force for these agents is determined from Eq. (2) 

)
fit

fit
log(p

i

                                                              (2) 

where p is the same as the parameter in the original version of the CSS (Kaveh and Talatahari 

2010), 
ifit  is equal to the fitness value of the i

th
 supervisor agent and fit  is the average value of 

the fitness of the normal agents. Calculating other properties of the supervisor agents such as force 

and radius are similar to the standard CSS algorithm (Kaveh and Talatahari 2010). Supervisor 

agents do not move from their coordinate determined from Eq. (1), yet they apply additional forces 

on the normal agents. By doing so, they determine the fitness values of their fixed coordinate and 

its neighborhood, resulting in a better exploration ability of the CSS algorithm (Kaveh and 

Ahmadi 2013). 

 

 

3. Minimum energy principle 
 

As mentioned in the previous section, minimum energy principle is used directly in order to 

analyze the structure. In the following a brief introduction is provided to the energy method. Three 

main concepts of energy are strain energy, complementary strain energy, and the total potential 

energy that can be expressed as 

 dVdgU  )(                                                             (3) 

 dVdfU c  )(                                                           (4) 

uP
tUV                                                                  (5) 

Where P is the vector of the external loads and u is the vector of joint displacements. g(ε) and f(σ) 

are the stress-strain relationship functions. 

According to Castigliano’s first theorem, for an elastic (linear and nonlinear) system, the 

potential energy in stable equilibrium is minimum. Similarly according to the second theorem, the 

complementary potential energy is minimum for a system of internal forces which satisfies the 

compatibility. In general, U corresponds to the stiffness method and U
c
 corresponds to the 

flexibility approach. In the first case one looks for the displacements and in the latter case we look 

for redundant forces. Since in a statically indeterminate structure, after calculating the redundant 

loads, the remaining member forces can easily be obtained, hence using U
c
, i.e., the flexibility 

method, corresponds to smaller number of unknown. In the following the basic steps of the 

flexibility method based on the principle of complementary strain energy is described. 
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4. Energy function formulation using force method 
 

In the presented approach, force method is applied to analyze the structures. Since this method 

leads to less number of unknowns, it is preferred to displacement method. In the force method, the 

redundant forces are unknowns, whereas in the displacement method, the nodal displacements are 

unknowns. In this method, energy function is derived using the force method and by applying the 

minimum energy principle as illustrated in the second section member internal forces and nodal 

displacements can be calculated (Kaveh 2004, 2006, Kaveh and Rahami 2006). Energy function is 

considered as a constraint in the objective function in the CSS algorithm and simultaneous with 

reducing the weight of the structure energy function is minimized. Suppose {p}={p1,p2,…,pn}
t
 is 

the vector of nodal forces, {q}={q1,q2,…,qr}
t
 is the vector of redundant forces, and 

{r}={s1,s2,…,sm}
t
 comprising of the internal forces of the members. Equilibrium condition results 

in the following Eqs. (16), (17) 

  









q

p
BBqBpBr 1010                                                  (6) 

In addition, the complementary energy function is 

                                                      

rFr m

t

2

1
cU                                                               (7) 

where [Fm] is the unassembled flexibility matrix of the structure. According to the Castigliano’s 

principle, a group of the redundant forces that minimize the complementary energy function is the 

exact solution that satisfies compatibility condition. By substituting {r} from Eq. (6) into Eq. (7), 

the following equation obtained 

  









q

p
Hqp

tt

2

1cU                                                         (8) 

where    10m

t

00 BBFBBH ][ . Decomposing matrix [H] into four submatrices leads to 

                    pHqpHqqHppHp qq

t

qp

t

pq

t

pp

t


2

1cU                        (9) 

In the classical method, the derivative of U
c
 in terms of {q} is calculated and is equated to zero 

leading to 

      pHHq qp

1

qq


                                                       (10) 

Since [H] is symmetric, [Hqp]
t 
= [Hpq] , Ref. (Kaveh and Rahami 2006). 

Accordingly, in the classical method the inverse of [Hqq] needs to be calculated. This is a 

difficult task and requires extensive computer memory, especially in the case of large-scale 

structures. Therefore, finding {q} that minimizes the complementary energy without calculating 

the inverse of [Hqp] reduces the computation time and computer memory. The first term of Eq. (9) 

is constant and the second and third terms are equal. It can be shown that the third and fourth terms 

of U
c 
are symmetric. Therefore 
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    pHq qp

t
uF                                                           (11) 

is the equation that should be minimized (Kaveh and Rahami 2006). 

 

 

5. Simultaneous analysis, design and optimization formulation 
 

In the case of simultaneous design and analysis of structures, the objective function is the 

weight of the structure, and the equilibrium, compatibility, and force/displacement conditions are 

the constraints. In summary, all these three conditions are called analysis criteria for simplicity. 

Other constraints such as stresses, displacements, dynamical properties, etc. can also be imposed to 

the fitness function. Penalty function is the most common approach to satisfying the constraints. 

The penalty function imposes a penalty to the fitness value of the solution, if the constraint is not 

satisfied 

BAf        
                                                        (12) 

In Eq. (12), f is the fitness value, A is the objective function and B is the penalty function and  

is often selected as a big number. According to this equation, when B approaches to zero and A 

goes to its minimum value, f approaches to the minimum value of the fitness. However, since the 

minimum complementary energy is not zero, this form of penalty function cannot be used. In this 

case, W is minimum while the corresponding U
c
 is not minimum, i.e. the structure is not analyzed 

yet. Also a small value of α does not guarantee the minimum value of the B. On the other hand, in 

a structure that is in equilibrium and compatible state, sum of the complementary energy U
c
 and 

the strain energy U is zero. Therefore, instead of the complementary energy, the sum of the 

complementary energy and the strain energy is used as the analysis criteria and is imposed to the 

SCSS as a constraint. The strain energy is a function of nodal displacements as follows (Kaveh and 

Rahami 2006) 

           )qBpB(FBd 10m

t

0                                               (13) 

and 

        FddKd
tt


2

1
U                                                   (14) 

Where [K] is the stiffness matrix and {F} is the nodal force vector. For equilibrium, U is 

negative and U+U
c
 is equal to zero. Kaveh and Rahami used a different formulation to impose the 

analysis criteria as a constraint (Kaveh and Rahami 2006). In this method, using the derivative of 

U
c
 in Eq. (9) with respect to {q} leads to 

      0qHpH qqqp 




q

U c

                                               (15) 

Eq. (15) indicates that the complementary energy of the structure is equal to its minimum value 

in the compatible condition. Thus, {q} should be selected such that Eq. (15) holds. The left hand of 

this equation is a zero vector and it should be changed to a scalar. The best way is calculation of 

the norm, because the norm of a vector is equal to zero when all the entries are equal to zero. Here, 
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we use the equilibrium itself. For this purpose we can write 

     ))(1)(()( {q}HpHADA,q, qqqp  normWF 
 
                           (16) 

Where {q} is the force variables vector, {A} is the member cross sections vector and {D} is the 

topology and geometry variables vector. Having these variables the magnitude of F can be 

calculated from Eq. (16) and its minimum for a large value of α corresponds to minimum W. Other 

constraints such as stress constraints, displacement constraints or dynamical properties constraints 

can be applied to Eq. (16) after normalizing and selecting a penalty coefficient. Therefore, the final 

formulation will be as follow 

 

       







nc

m

m

ne

i iii

cd

AgnormlAMinF

SorSAAqFind

1
1

))(,0max()1()(

;,

qHpHDA,q, qqqp
      (17) 

Where Sd and Sc are the discrete and continuous sections, respectively. gm(A) corresponds to 

violation of the constraints. According to Kaveh and Ahmadi (2013), the following formulation is 

more efficient than Eq. (17). 

       
)(

1
1

))(,0max()1()(

normRnc

m

m

ne

i iii AgnormlAF 



 qHpHDA,q, qqqp       (18) 

Where R(norm) is a function of       qHpH qqqp norm . This function can be considered 

as follows: 

)10log()( NORMnormR                                                 (19) 

Where NORM is equal to       qHpH qqqp norm . In all of the examples studied in the 

following, Eq. (18) is used in the SCSS algorithm. Geometry variables are considered as the nodal 

coordinates and topology variables are considered as a vector with length equal to the number of 

members of the structures. This vector has entries of 1 and 0 for presence or absence of a member, 

respectively. By altering the number of members in a structure during the algorithm, redundant 

members and the number of redundant forces (DSI) alter. In order to improve the performance of 

the algorithm, a vector of redundant force equal to the number of members of the structure is 

considered and each selected redundant force will be affected by the corresponding redundant 

forces in the other agents. Besides because of altering the number of members of the structure, the 

DSI of the structure will change, considering the mentioned redundant force vector leads to having 

constant value for the number of variables in the optimization algorithm. 

 

 

6. Numerical examples 
 

In this section, different planar and space trusses are optimized by the presented method. 

Results show that the combination of SCSS and force method has a good performance in 

comparison to some other optimization algorithms. Besides the weight of the considered examples 

are also less than the existing results.  
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Fig. 1 The topology of a fifteen-bar truss 

 
Table 1 Data for design of fifteen-bar planar truss 

Design variables 

Size variables Ai; i=1, 2, …, 15 

Geometry variables x2=x6; x3=x7; y2;y3;y4;y6;y7;y8 

Constraint data 

Stress constraints 

    4.172)( 
it

  MPa (25 ksi); i=1,…,15 

    4.172|)| ( 
it

  MPa (25 ksi); i=1,…,15 

Side constraint for geometry variables 

    254 cm (100 in) 
2

x 355.6 cm (140 in); 558 cm (220 in) 
3

x 660.4 cm (260 in) 

    254 cm (100 in) 
2

y 355.6 cm (140 in); 254 cm (100 in) 
3

y 355.6 cm (140 in) 

    127 cm (50 in) 
4

y 228.6 cm (90 in); -50.8 cm (-20 in) 
6

y 50.8 cm (20 in) 

    -50.8 cm (-20 in) 
7

y 50.8 cm (20 in); 50.8 cm (20 in) 
8

y 152.4 cm (60 in) 

    p=0.0254 cm (0.01 in.) 

List of the available profiles 

Ai   S = {0.716, 0.910, 1.123, 1.419, 1.742, 1.852, 2.239, 2.839, 3.477, 6.155, 6.974, 7.574, 8.600, 9.600, 

11.381, 13.819, 17.400, 18.064,  

                   20.200, 23.00, 24.6, 31.0, 38.4, 42.4, 46.4, 55.0, 60.0, 70.0, 86.0, 92.193, 110.774, 123.742} 

(cm
2
) 

Ai   S ={0.111, 0.141, 0.174, 0.22, 0.27, 0.287, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 

1.764, 2.142, 2.697, 2.8, 3.131, 3.565, 

                   3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 10.85, 13.33, 14.29, 17.17, 19.18} (in
2
); i=1,…,15 

Loading data 

Load case                                    node                             Fx                              Fy 

   1                                                 8                                0.0              -44.537kN (-10.0 kips) 

Material properties 

Modulus of elasticity E=6.895 × 10
4
 MPa (1.0 × 10

4
 ksi) 

Density of the material  =0.0272 N/cm
3
 (0.1 lb/in

3
) 

 

 

Case study 1. The firs structure is a fifteen-bar truss as shown in Fig. 1. The input data for this 

truss is given in Table 1. The optimization variables in this example consist of redundant force {q},  
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Table 2 The comparison of the results of optimum weight for fifteen-bar truss with those of the other 

references 

Design variables 

(in.
2
) 

Wu and Chow 

(1995) 

Hwang and He 

(2006) 

Tang et al. 

(1995) 

Rahami et al. 

(2008) 
Present work 

A1(in.
2
) 

A2(in.
2
) 

A3(in.
2
) 

A4(in.
2
) 

A5(in.
2
) 

A6(in.
2
) 

A7(in.
2
) 

A8(in.
2
) 

A9(in.
2
) 

A10(in.
2
) 

A11(in.
2
) 

A12(in.
2
) 

A13(in.
2
) 

A14(in.
2
) 

A15(in.
2
) 

X2(in) 

X3(in) 

Y2(in) 

Y3(in) 

Y4(in) 

Y6(in) 

Y7(in) 

Y8(in) 

Weight (lb) 

Weight (N) 

1.174 

0.954 

0.440 

1.333 

0.954 

0.174 

0.440 

0.440 

1.081 

1.333 

0.174 

0.174 

0.347 

0.347 

0.440 

123.189 

231.595 

107.189 

119.175 

60.462 

-16.728 

15.565 

36.645 

120.528 

536.1 

0.954 

1.081 

0.440 

1.174 

1.488 

0.270 

0.270 

0.347 

0.220 

0.440 

0.220 

0.440 

0.347 

0.270 

0.220 

118.346 

225.209 

119.046 

105.086 

63.375 

-20.0 

-20.0 

57.722 

104.573 

465.1 

1.081 

0.539 

0.287 

0.954 

0.954 

0.220 

0.111 

0.111 

0.287 

0.220 

0.440 

0.440 

0.111 

0.220 

0.347 

133.612 

234.752 

100.449 

104.738 

73.762 

-10.067 

-1.339 

50.402 

79.820 

355.0389 

1.081 

0.539 

0.287 

0.954 

0.539 

0.141 

0.111 

0.111 

0.539 

0.440 

0.539 

0.270 

0.220 

0.141 

0.287 

101.5775 

227.9112 

134.7986 

128.2206 

54.8630 

-16.4484 

-13.3007 

54.8572 

76.6854 

341.0962 

1.081 

0.539 

0.287 

0.954 

0.539 

0.141 

0.111 

0.111 

0.440 

0.440 

0.539 

0.270 

0.220 

0.141 

0.287 

102.4881 

227.8206 

134.6850 

128.3577 

54.5826 

-16.7742 

-13.3367 

54.3873 

76.8214 

341.7011 

At the present work, Max stress ratio=0.9992 

 

 
Fig. 2  Optimum geometry of fifteen-bar truss 

 

 

member cross sections {A}, and nodal coordinates {D}. 

One set of redundant forces can be the internal forces of the elements 11, 13 and 15. In this 

case, the topology of the structure is constant. Achieved results and comparison with other 

references is provided in Table 2. Resulted geometry of the example is shown in Fig. 2. Elapsed 

time for this case is 5.264266 seconds when a computer with core (TM) i5-2400 CPU @ 3.10GHz 

and 4.00 GB RAM is being used.  
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Fig. 3 The topology of an eighteen-bar planar truss (a=250 in) 

 

 
Fig. 4 The optimum geometry of eighteen-bar planar truss 

 

 

Force method finite element formulation has just three unknowns (redundant forces) to solve 

this problem while displacement method has 12 unknowns (degrees of freedom), then using 

displacement method increases the optimization variables and leads to higher computational cost. 

Case study 2. This example is an eighteen-bar planar truss which is statically determinate, and 

therefore the optimization variables do not contain any redundant force variable. The cross 

sections of the members in 4 set, and the coordinates of four bottom nodes, form the optimization 

variables. The topology of structure is shown in Fig. 3. The optimum geometry of structure is 

shown Fig. 4. The input data and comparison of the achieved results with other methods are 

provided in Table 4 and Table 5 for discrete and continuous cross sections, respectively. Elapsed 

time for this case is 4.050538 seconds when a computer with core (TM) i5-2400 CPU @ 3.10GHz 

and 4.00 GB RAM is used.  

Case study 3. In this example, the presented method is applied to a twenty five-bar space truss. 

The topology of the truss is provided in Fig. 5. Optimization variables consist of member cross 

sections in 8 set, 7 redundant forces (such as elements with end nodes 1-2, 1-4, 2-6, 6-7, 4-9, 3-8, 

5-10), and 8 nodal coordinates. The input data are given in Table 6. The comparison of the results 

with those of the other references is provided in Table 7. The SCCS is the optimization algorithm 

and Eq. (18) is considered as the objective function. Elapsed time for this case is 3.544595 seconds 

when a computer with core (TM) i5-2400 CPU @ 3.10GHz and 4.00 GB RAM is being utilized. 

As can be seen, force method analysis variables are seven redundant forces while displacement 

analysis variables are 18 free nodal displacements. Then displacement method will increase 

optimization problem variables and analysis system size in comparison to the force method, and 

this will increase computational time. 

Case study 4. In this example, a ten-bar truss as shown in Fig. 6 is considered. The presence or 

absence of members is considered as variable. Then topology of this truss is considered as variable 

similar to the geometry. For this purpose, a vector of 1 and 0 is considered to determine the 

373



 

 

 

 

 

 

A. Kaveh and B. Ahmadi 

Table 3 Data for design of eighteen-bar planar truss 

Design variables 

Size variables A1=A4=A8=A12=A16; A2=A6=A10=A14=A18; A3=A7=A11=A15; A5=A9=A13=A17 

Geometry variables x3;y3;x5;y5;x7;y7;x9;y9 

Constraint data 

Stress constraints 

     9.137)( it  MPa (20 ksi); i=1,…,18 

    9.137|)(| ic  MPa (20 ksi); i=1,…,18 

Euler buckling stress constraints 

    
2

/|)(|
ii

LEAic     i=1,…,18 

Side constraint for geometry variables 

-571.5 cm (-225 in)  9,7,5,3 yyyy 622.3 cm (245 in); 

 1968.5 cm (775 in)  3x 3111.5 cm (1225 in) 

1333.5 cm (525 in)  5x 2476.5 cm (975 in) 

698.5 cm (275 in)  7x 1841.5 cm (725 in) 

63.5 cm (25 in)  9x 1206.5 cm (475 in) 

        p=2.54 cm (1.0 in) 

List of the available profiles 

Discrete cross section 

Ai   S ={12.903, 14.516, …, 138.709, 140.322} (cm
2
) 

Ai   S ={2.00, 2.25, …, 21.50, 21.75} (in
2
); i=1,…,15 

Continuous cross section 

3.5Ai 18 (in
2
); i=1, …, 25 

Loading data 

Load case                                    node                                    Fx                                        Fy 

   1                                           1, 2, 4, 6, 8                      0.0                              -89.075kN (-20.0 kips) 

Material properties 

Modulus of elasticity E=6.895 × 10
4
 MPa (1.0 × 10

4
 ksi) 

Buckling coefficient α =4 

Density of the material  =0.0272 N/cm
3
 (0.1 lb/in.

3
) 

 

 
presence or absence of the members. Geometry variables are considered as the coordinates of the 3 

top nodes in y direction. Connectivity of the example is provided in Fig. 6. Modulus of elasticity 

for this example is 10
7
 psi, weight density is considered as 0.1 lb/in

3
, allowable stress in tension or 

compression is 25000 psi and the maximum displacement in y direction is limited to 2 in. Loading 

is as shown in Fig. 6. In some references for size and topology optimization and fixed geometry, 

the maximum displacement in y direction is limited to 2.05 in, while the allowable displacement is 

2.0. In the present article, both cases are considered and results and comparison with those in the 

other references are provided in Tables 8 and 9. Optimum topology and geometry of this example 

is provided in Fig. 7. Elapsed time for this case is 10.817588 seconds when a computer with core 
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Table 4 Results and comparison with other references for eighteen-bar truss by discrete cross sections 

Design variables 
Hasancebi and 

Erbatuer (2001) 

Kaveh and Kalatjari 

(2004) 
Rahami  et al. (2008) Present work 

A1(in.
2
) 

A2(in.
2
) 

A3(in.
2
) 

A4(in.
2
) 

X3(in) 

Y3(in) 

X5(in) 

Y5(in) 

X7(in) 

Y7(in) 

X9(in) 

Y9(in) 

Weight (lb) 

Weight (N) 

12.50 

18.25 

5.5 

3.75 

933.0 

188.0 

658.0 

148.0 

422.0 

100.0 

205.0 

32.0 

4574.28 

2034.6 

12.25 

18.0 

5.25 

4.25 

913.0 

186.8 

650.0 

150.0 

418.8 

97.4 

204.8 

26.7 

4547.9 

2022.9 

12.75 

18.50 

4.75 

3.25 

917.4475 

193.7899 

654.3243 

159.9436 

424.4821 

108.5779 

208.4691 

37.6349 

4530.7 

2015.3 

12.50 

18.00 

5.25 

3.75 

911.7926 

186.8277 

645.6011 

150.2578 

416.4751 

101.5338 

204.1336 

31.6508 

4527.6952 

2013.9 

Maximum stress ratio for the present work=0.999988 

 

 
 

 

Fig. 5 Topology of a twenty five-bar space truss (Case study 3) and grouping of the members 
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Fig. 6 The primary geometry and topology of a ten-bar truss 

 

 

Fig. 7 Optimum topology and geometry of a ten bar planar truss 

 

 

 (TM) i5-2400 CPU @ 3.10GHz and 4.00 GB RAM is used. This problem redundancy depends on 

the number of nodes and members are being considered, but in the case that all nodes and 

members are presence, the force method finite element has only two unknowns while displacement 

method has eight unknowns. 

As shown in the Fig. 7, the node number 1 has been eliminated in the optimum topology. This 

happens because of eliminating all of the members of a node. Because of existing of loads on the 

nodes number 2 and 4, these nodes cannot be eliminated. Obviously, support nodes also cannot be 

eliminated. Because of presence and absence of members, redundant forces cannot be considered 

fixed. In this manner, algebraic force method that finds redundant forces using considering 

independent columns of equilibrium matrix is used here in the examples with member presence 

and absence variables. 

Case study 5. In this example, a fifteen-bar truss shown in Fig. 1 is considered to optimize its 

topology and geometry. A vector of 1 and 0 is considered to determine the presence or absence of 

the members. Input data for this example is the same as those of Table 1. The achieved results and 

comparison with those of other references are provided in Table 10. Fig. 8 shows the achieved 

optimum topology and geometry of the example. Elapsed time for this case was 8.083642 seconds 

when a computer with core (TM) i5-2400 CPU @ 3.10GHz and 4.00 GB RAM is used. 
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Table 5 Results and comparison with other references for eighteen-bar truss by continuous cross sections 

Design 

variables 

(in.
2
) 

Imai and 

Schmit 

(1981) 

Felix 

(1981) 

Yang 

(1996) 

Soh and 

Yang 

(1996) 

Rajeev and 

Krishnamoorthy 

(1997) 

Yang  

and Soh 

(1997) 

Kang and 

Zong 

(2005) 

Rahami et 

al. (2008) 

Present  

work 

A1(in.
2
) 

A2(in.
2
) 

A3(in.
2
) 

A4(in.
2
) 

X3(in) 

Y3(in) 

X5(in) 

Y5(in) 

X7(in) 

Y7(in) 

X9(in) 

Y9(in) 

Weight(lb) 

Weight (N) 

11.24 

15.68 

7.93 

6.49 

891.10 

143.60 

608.20 

105.40 

381.70 

57.10 

181.00 

-3.20 

4667.9 

2076.3 

11.34 

19.28 

10.97 

5.30 

994.60 

162.30 

747.40 

102.90 

482.90 

33.00 

221.70 

17.10 

5713.0 

2541.1 

12.61 

18.10 

5.470   

3.540 

914.5 

183.0 

647.0 

147.0 

414.2 

100.4 

200.0 

31.90 

4552.8 

2025.1 

12.59 

17.91   

5.50 

3.55 

909.8 

184.5 

640.3 

147.8 

410.0 

97.00 

200.9   

32.00 

4531.9 

2015.8 

12.50 

16.25 

8.00 

4.00 891.90 

145.30 

610.60 

118.20 

385.40 

72.50 184.40 

23.40 

4616.8 

2053.5 

12.33 

17.97 

5.60 

3.66 

907.20 

184.20 

643.30 

149.20 

413.90 

102.00 

202.10 

30.90 

4520.0 

2010.5 

12.65 

7.22 

6.17 

3.55 

903.10 

174.30 

630.30 

163.30 

402.10 

90.50 

195.30 

30.60 

4515.6 

2008.5 

12.55 

18.02 

5.11 

3.57 

912.96 

188.06 

646.45 

150.61 

416.61 

102.52 

204.28 

32.65 

4511.4 

2006.7 

12.4106 

17.8115 

5.3029 

3.8306 

911.4261 

185.4620 

643.4574 

147.2265 

413.7991 

98.3685 

202.4140 

29.3862 

4509.1083 

2005.6 

At the present work, Max stress ratio=0.99999075 

 
Table 6 Data for design of twenty five-bar space truss 

Design variables 

Size variables A1; A2; A3; A4; A5; A6; A7; A8 

Geometry variables x4=x5=-x3=-x6; x8=x9=-x7=-x10; 

y3=y4=-y5=-y6; y7=y8=-y9=-y10; z3=z4=z5=z6 

Constraint data 

Stress constraints 

    (σt)i≤275.8  MPa (40 ksi); i=1,…,25 

   |(σc)|i≤ 275.8 MPa (40 ksi); i=1,…,25 

Displacement constraint in all direction of the coordinate system 

    |∆i|≤0.89 cm (0.35 in); i=1,…,18 

Side constraint for geometry variables 

50.8 cm (20 in) ≤x4≤152 cm (60 in); 101.6 cm (40 in) ≤x4≤203.2 cm (80 in);  

101.6 cm (40 in) ≤y4≤203.2 cm (80 in); 254 cm (100 in) ≤y8≤355.6 cm (140 in);  

228.6 cm (90 in) ≤z4≤330.2 cm (130 in);  

        P=0.0254 cm (0.01 in.) 

List of the available profiles 

Ai   S ={0.645I (I=1, …, 26), 18.064, 19.355, 20.645, 21.935} (cm2) 

Ai   S ={0.1I(I=1, …, 26), 2.8, 3.0, 3.2, 3.4} (in2); i=1,…,25 

Loading data 

Load case              Node                    Fx kN (kips)                         Fy kN (kips)                    Fz kN (kips)              

   1                          1                          4.454 (1.0)                        -44.537 (-10.0)               -44.537 (-10.0) 

                               2                                0.0                               -44.537 (-10.0)               -44.537 (-10.0) 

                               3                           2.227 (0.5)                                 0.0                                   0.0 

                               6                           2.672 (0.6)                                 0.0                                   0.0  

Material properties 

Modulus of elasticity E=6.895 × 10
4
 MPa (1.0 × 10

4
 ksi) 

Density of the material ρ=0.0272 N/cm
3
 (0.1 lb/in.

3
) 
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Table 7 Results and comparison with other references for twenty five-bar space truss 

Design variables 

(in.
2
) 

Wu and Chow 

(1995) 

Tang et al. 

(1995) 

Kaveh and 

Kalatjari (2004) 

Rahami et al. 

(2008) 
Present work 

A1(in.
2
) 

A2(in.
2
) 

A3(in.
2
) 

A4(in.
2
) 

A5(in.
2
) 

A6(in.
2
) 

A7(in.
2
) 

A8(in.
2
) 

X4(in) 

Y4(in) 

Z4(in) 

X8(in) 

Y8(in) 

Weight (lb) 

Weight (N) 

0.1 

0.2 

1.1 

0.2 

0.3 

0.1 

0.2 

0.9 

41.07 

53.47 

124.6 

50.8 

131.48 

136.2 

605.8168 

0.1 

0.1 

1.1 

0.1 

0.1 

0.2 

0.2 

0.7 

35.47 

60.37 

129.07 

45.06 

137.04 

124.94 

555.7323 

0.1 

0.1 

1.1 

0.1 

0.1 

0.1 

0.1 

1.0 

36.23 

58.56 

115.59 

46.46 

127.95 

124.0 

551.5512 

0.1 

0.1 

1.1 

0.1 

0.1 

0.1 

0.2 

0.8 

33.0487 

53.5663 

129.9022 

43.7826 

136.8381 

120.1149 

534.2703 

0.1 

0.1 

0.9 

0.1 

0.1 

0.1 

0.2 

0.9 

32.9609 

53.6141 

129.8648 

43.6204 

137.2674 

119.3354 

530.8031 

At the present work, maximum displacement=0.34978946 in 

 
Table 8 Results and comparison with other references for ten-bar truss (With fixed geometry and maximum 

displacement=2.05 in) 

Design variables (in.
2
) Rajan (1995) Tang et al. (1995) Rahami et al. (2008) Present work 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

Weight (lb) 

Weight (N) 

Max displacement (in) 

30.0 

0.0 

19.9 

15.5 

0.0 

0.0 

7.22 

22.0 

22.0 

0.0 

4962.1 

2207.1 

2.07 

30.0 

0.0 

26.5 

14.2 

0.0 

0.0 

7.97 

19.9 

18.8 

0.0 

4921.25 

2189.0 

2.05 

30.0 

0.0 

19.9 

15.5 

0.0 

0.0 

7.22 

19.9 

22.0 

0.0 

4855.2 

2159.6 

2.0486 

30.0652 

0.0 

21.4747 

14.2382 

0.0 

0.0 

5.9382 

20.4454 

20.9991 

0.0 

4780.3 

2126.3 

2.0500 

 

 
Case study 6. The twenty five-bar space truss shown in Fig. 5 is optimized for topology and 

geometry variables in addition to the redundant forces and cross section variables. Input data for 

this case is considered the same as Table 6. The achieved results and comparison with those of 

other references are provided in Table 11. Elapsed time for this case is 5.326514 seconds when a 

computer with core (TM) i5-2400 CPU @ 3.10GHz and 4.00 GB RAM is being used. Fig. 9 

shows the optimum topology and geometry of this case.  

Table 12 shows the connectivity of members that are eliminated in the process of topology 

optimization of the twenty five-bar space truss.  
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Fig. 8 Optimum topology and geometry of the fifteen-bar truss 

 

 

Fig. 9 Optimum topology and geometry of the twenty five-bar space truss 

 
Table 9 Results and comparison with other references for ten-bar truss (Geometry and topology optimization 

with maximum displacement=2.05 in) 

Design variables (in
2
) Rajan (1995) Tang et al. (1995) Rahami et al. (2008) Present work 

A1(in.
2
) 

A2(in.
2
) 

A3(in.
2
) 

A4(in.
2
) 

A5(in.
2
) 

A6(in.
2
) 

A7(in.
2
) 

A8(in.
2
) 

A9(in.
2
) 

A10(in.
2
) 

Y1(in) 

Y2(in) 

Y3(in) 

Weight (lb) 

Weight (N) 

Max stress ratio 

Max displacement (in) 

9.9 

9.4 

11.5 

1.5 

0.0 

12.0 

11.5 

3.6 

0.0 

10.4 

186.5 

554.5 

786.9 

3254.0 

1447.4 

0.6240 

1.99 

13.5 

0.0 

7.97 

7.22 

1.62 

0.0 

4.49 

3.13 

13.5 

0.0 

- 

527.9 

888.8 

2813.8 

1251.6 

0.7400 

1.9998 

11.5 

0.0 

11.5 

5.74 

0.0 

0.0 

5.74 

3.84 

13.5 

0.0 

- 

506.4203 

789.7306 

2723.05 

1211.2 

0.7659 

1.999996 

11.9651 

0 

10.0722 

6.9273 

0 

0 

5.7919 

3.7217 

12.9009 

0 

- 

506.4203 

789.7306 

2695.6 

1199.0 

0.7590 

1.9999935 
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Table 10 Results and comparison with other references for fifteen-bar truss topology and geometry 

optimization 

Design variables(in.
2
) Rajan (1995) Tang et al. (1995) Rahami et al. (2008) Present work 

A1(in.
2
) 

A2(in.
2
) 

A3(in.
2
) 

A4(in.
2
) 

A5(in.
2
) 

A6(in.
2
) 

A7(in.
2
) 

A8(in.
2
) 

A9(in.
2
) 

A10(in.
2
) 

A11(in.
2
) 

A12(in.
2
) 

A13(in.
2
) 

A14(in.
2
) 

A15(in.
2
) 

X2(in) 

X3(in) 

Y2(in) 

Y3(in) 

Y4(in) 

Y6(in) 

Y7(in) 

Y8(in) 

Weight (lb) 

Weight (N) 

1.174 

0.954 

0.440 

1.333 

0.954 

0.174 

0.440 

0.440 

1.081 

1.333 

0.174 

0.174 

0.347 

0.347 

0.440 

123.189 

231.595 

107.189 

119.175 

60.462 

-16.728 

15.565 

36.645 

120.528 

536.1078 

1.081 

0.539 

0.000 

1.081 

0.954 

0.440 

0.000 

0.141 

0.000 

0.270 

0.270 

0.539 

0.141 

0.440 

0.000 

111.85 

242.45 

104.02 

109.22 

- 

-10.82 

-11.12 

48.84 

77.84 

346.2318 

0.954 

0.954 

0.000 

1.081 

0.539 

0.539 

0.000 

0.000 

0.000 

0.440 

0.220 

0.111 

0.347 

0.539 

0.000 

107.3896 

244.4534 

125.4198 

117.2854 

- 

-1.6249 

18.0828 

50.2040 

75.0966 

334.0292 

0.9540 

0.5390 

0.00 

0.9540 

0.5390 

0.4400 

0.00 

0.00 

0.00 

0.4400 

0.4400 

0.2700 

0.2200 

0.4400 

0.00 

104.3184 

238.9108 

129.4551 

111.4651 

- 

-19.1032 

-15.1112 

42.8964 

71.1417 

316.5016 

 
Table 11 Results and comparison with other references for twenty five-bar truss Topology and geometry 

optimization 

Design variables(in.
2
) Wu and Chow (1995) Tang et al. (1995) Rahami et al. (2008) Present work 

A1(in.
2
) 

A2(in.
2
) 

A3(in.
2
) 

A4(in.
2
) 

A5(in.
2
) 

A6(in.
2
) 

A7(in.
2
) 

A8(in.
2
) 

X4(in) 

Y4(in) 

Z4(in) 

X8(in) 

Y8(in) 

Wight (lb) 

Weight (N) 

Maximum stress ratio 

Maximum displacement 

(in.) 

0.1 

0.2 

1.1 

0.2 

0.3 

0.1 

0.2 

0.9 

41.07 

53.47 

124.6 

50.8 

131.48 

136.2 

605.82 

0.3897 

0.347 

0.0 

0.1 

0.9 

0.0 

0.0 

0.1 

0.1 

1.0 

39.91 

61.99 

118.23 

53.13 

138.49 

114.74 

510.36 

0.4338 

0.3500 

0.0 

0.1 

0.9 

0.0 

0.0 

0.1 

0.1 

1.0 

38.7913 

66.1110 

112.9787 

48.7924 

138.8910 

114.3701 

508.72 

0.4438 

0.34999896 

0.10 

0.20 

0.90 

0.30 

0.10 

0.20 

0.30 

0.80 

34.4947 

59.4592 

129.9686 

45.3730 

139.0046 

106.0518 

471.7178 

0.4016 

0.35000 
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Table 12 The eliminated members and end nodes for the case study 6 

Member number End nodes 

2 (1,4) 

4 (1,5) 

7 (2,4) 

10 (3,6) 

13 (5,6) 

17 (5,8) 

23 (4,8) 

 

 

7. Conclusions 
 

The presented algorithm could achieve better results in all of the cases studied in comparison to 

those of other references. This method increases the exploitation and exploration ability of the 

algorithm in comparison to the classical methods. Geometry and topology optimization needs 

more iterations and agents if inversion processes of the matrices are not eliminated. Force method 

is used as an approach for driving energy functions of structures. This method helps to reduce the 

number of variables in comparison to the displacement method. Besides the SCSS algorithm 

shows a good performance in reducing the weight of the structure and minimizing its energy 

function. In order to keep the length of the variable vector constant in the topology optimization, a 

vector of 0 and 1 with length of member numbers is considered. Also a vector with the length 

equal to the memebr numbers is considered as the redundant force variables for keeping the 

redundant variables constant by changing the DSI of the structure during the process of topology 

optimization. Finally combination of the force method as analyser and the SCSS algorithm as an 

optimizer leads to an algorithm that improves all of the results achieved by other considered 

methods. 
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