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Abstract.  This paper proposes a Particle Swarm Optimization (PSO) algorithm, which is improved by 
making use of the Harmony Search (HS) approach and called HS-PSO algorithm. A computer code is 
developed for optimal sizing design of non-linear steel frames with various semi-rigid and rigid beam-to-
column connections based on the HS-PSO algorithm. The developed code selects suitable sections for 
beams and columns, from a standard set of steel sections such as American Institute of Steel Construction 
(AISC) wide-flange W-shapes, such that the minimum total cost, which comprises total member plus 
connection costs, is obtained. Stress and displacement constraints of AISC-LRFD code together with the size 
constraints are imposed on the frame in the optimal design procedure. The nonlinear moment-rotation 
behavior of connections is modeled using the Frye-Morris polynomial model. Moreover, the P-Δ effects of 
beam-column members are taken into account in the non-linear structural analysis. Three benchmark design 
examples with several types of connections are presented and the results are compared with those of 
standard PSO and of other researches as well. The comparison shows that the proposed HS-PSO algorithm 
performs better both than the PSO and the Big Bang-Big Crunch (BB-BC) methods. 
 

Keywords:  harmony search; Particle Swarm Optimization; semi-rigid connections; steel frames; optimal 

sizing design 

 
 
1. Introduction 

 

In the analysis and design of steel frames, in order to model the actual behavior of beam-to-

column connections, it is convenient to use one of the two simplified extremes of fully rigid and 

perfectly pinned behavior. In spite of its simplicity, however, such a modeling cannot lead to a 

realistic prediction of response of a structure. This is due to the fact that, these connections posses 

some flexural stiffness between two extremes, i.e., are semi-rigid connections. This semi-rigid 

behavior is nonlinear in nature, as well. Consequently, to take into account the effects of the actual 

behavior of the beam to column connections on the response of a frame, in its analysis and design 

the moment-rotation behavior of connections have to be modeled by using suitable relationships.  

Various models including linear, polynomial, cubic B spline, power and exponential models are 

proposed based on M−θ relations for several connections (Frye and Morris 1975, Abdalla and 

Chen 1995). Moreover, analysis and design of steel frames with semi-rigid connections have been 
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extensively investigated (Kaveh and Moez 2008, Ihaddoudène et al. 2009, Gorgun 2013, Valipour 

and Bradford 2013). As a more convenient activity of research in the field of structural 

optimization, optimal design of steel frames with semi-rigid connections has also been 

investigated by means of mathematical programming techniques (Alsalloum and Almusallam 

1995, Simoes 1996) and of meta-heuristics (Kameshki and Saka 2003, Hayalioglu and Degertekin 

2005, 2010, Rafiee et al. 2013). 

Steel specifications such as British Standard, BS5950 (1990), Eurocode3 (1992) and American 

Institute of steel construction (AISC) have investigated the semi-rigid behavior of beam to column 

connections. AISC-ASD specification (2010) describes three types of steel constructions: rigid, 

simple (unrestrained) and semi-rigid (partially restrained) framing, whereas, in AISC-LRFD 

(2010) two types of steel construction namely FR (fully restrained) and PR (partially restrained) 

types are described. The behavior of the construction type PR, which is considered to be semi-

rigid, is described on the basis of experimental and numerical studies.  

In structural optimization, a number of efficient meta-heuristic optimization algorithms 

mimicking natural phenomena and physical processes, have been applied. One of the well-known 

optimization algorithms, which has already received a lot of attention, is the particle swarm 

optimization (PSO) algorithm. The PSO was proposed by Kennedy and Eberhart in 1995 and is 

based on the simulation of a simplified social model. PSO algorithm was proved to be of high 

computation efficiency, easy implementation and stable convergence. Recently, Groenwold and 

coworkers (2002, 2003) used PSO for optimal size and shape design of truss structures. Later, 

Perez and Behdinan (2007) applied improved PSO for optimal design of truss size. Then, Li et al. 

(2007, 2009) applied a heuristic particle swarm optimization for optimum design of pin-connected 

structures and truss structures with discrete variables. Lately, a two-stage particle swarm 

optimization was utilized by Luh and Lin (2011) to solve truss-structure optimization problem 

achieving minimum weight objective under stress, deflection, and kinematic stability constraints. 

Furthermore, PSO was used for optimum design of unbraced steel frames by Doğan and Saka 

(2012). As a combined use of meta-heuristics, in 2012, Kaveh and Talatahari developed a hybrid 

CSS and PSO algorithm for optimal design of structures. 

Another famous optimization algorithm, namely, harmony search (HS) was proposed by Geem 

et al. in 2001, inspiring the performance process of natural music. The use of HS in searching for 

solutions to various optimization problems has been resulted in effective results (Lee and Geem 

2005, Geem 2007, Cheng et al. 2008, Mun and Geem 2009). Together with these studies, HS has 

also been utilized to optimize the design of structures in a number of researches and the results 

demonstrated its robustness. Among these work, those in which the main purpose is to minimize 

the weight of the structure can be summarized as follows: Degertekin (2008), Saka (2009), Saka 

and Erdal (2009). In addition, Degertekin and Hayalioglu (2010) studied the minimum cost design 

of steel frames by developing an algorithm on the basis of harmony search. 

In this study a Particle Swarm Optimization (PSO) algorithm is proposed, which is improved 

by making use of the Harmony Search (HS) approach and called HS-PSO algorithm. In the HS-

PSO algorithm, the harmony memory (HM) is created and improved using particle swarm 

optimization. On the other hand, the new off-springs generated by PSO, which can be considered 

as new improvised harmonies, are improved through the concepts used in harmony search. 

A computer code is developed based on HS-PSO, for optimal sizing design of steel frames with 

various semi-rigid and rigid connections. The developed code selects suitable sections for beams 

and columns such that the total member plus connection cost of the frame, is minimized, while the 

stress and displacement constraints of AISC-LRFD code together with the size constraints are 
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imposed on the frame in the optimal design procedure. The P-Δ effects of beam-column members 

are taken into account in the non-linear structural analysis. The behavior of semi-rigid beam to 

column connections are assumed to be defined by the Frye-Morris polynomial model (Frye and 

Morris 1975), whereas, the column bases are supposed to be rigid. Three benchmark design 

examples with several types of connections are presented and the results are compared with those 

of standard PSO. The results show the efficiency of the HS-PSO algorithm proposed herein in 

comparison with the standard PSO. In addition, the comparison of results of this work with those 

obtained by Rafiee et al. (2013) shows that the HS-PSO performs better than Big Bang-Big 

Crunch (BB-BC) method in all cases. 

 

 

2. Optimization algorithms 
 

In order to yield to an illuminated representation of the proposed algorithm, namely, the HS-

PSO algorithm, in the first two subsections of this part of the paper, we have a brief review on 

particle swarm optimization and harmony search algorithms, respectively. Then in last subsection 

the HS-PSO algorithm is represented in detail. 

 
2.1 Particle Swarm Optimization (PSO) 
 

In 1995, Kennedy and Eberhart first introduced the particle swarm optimization (PSO) method, 

which is derived from the social-psychological theory, and has been found to be robust in 

structural optimization problems. PSO is a kind of population-based optimization algorithm. The 

population of PSO is called a swarm (or flock) while each individual in the population of PSO is 

called a particle (or bird). In PSO each particle is treated as a valueless particle in n-dimensional 

search space, and keeps track of its coordinates in the problem space associated with the best 

solution (Kennedy and Eberhart, 1995). This evaluating value is called pbest. Another best value 

that is tracked by the global version of the particle swarm optimizer is the overall best value, and 

its location, obtained so far by any particle in the group, this is called gbest. The PSO concept 

consists of changing the velocity of each particle toward its pbest and gbest locations.  

In a flock of m particles or birds, the ith particle is represented as  i
n

iii xxx ...,,, 21x  in the n-

dimensional search space. The best previous position of this particle is recorded and represented as

 i
n

iii pbestpbestpbest ...,,, 21pbest . The index of best particle among all the particles in the flock 

is represented by gbest. Furthermore, the rate of the change in position i.e. the velocity for particle 

i is represented as  i
n

iii vvv ...,,, 21v . Kennedy and Eberhart (1995) originally proposed that the 

position x
i
 of the ith particle be updated as 

i

t

i

t

i

t 11   vxx                                 (1) 

whereas, the term v
i

 is updated as 

   i

tt

i

t

i

t

i

t

i

t rcrc xgbestxpbestvv  22111                     (2) 

where, the subscript t denotes a unit integer for pseudo-time increment, or in other words, is the 

pointer of iterations (generations). 
i
tpbest  and tgbest  are, respectively, the best ever position 
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Fig. 1 Flow chart of the HS-PSO algorithm 
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of particle i and the global best position in the swarm associated with time t. According to the 

common characteristic of meta-heuristic methods i.e., the randomness, the r1 and r2 correspond to 

uniform random numbers in the interval 0 to1. It should be noted that the initial velocity of each 

particle equals zero. 

Moreover, as it is initially proposed by Kennedy and Eberhart, the multipliers c1 and c2 should 

be selected to be equal to 2. This is because it allows a mean of unity when multiplied by r1 or r2. 

As a consequence of use of such cognitive and social scaling factors, birds overfly the target half 

the time.  

In Eq. (2), the previous velocity of the particle
i
tv , is multiplied by ω, which is introduced by 

Shi and Eberhart (1998) and called inertia term. They suggested that ω be selected from range 

0.8< ω<1.4. In its original form, however, we have ω=1.  

In an optimal sizing design problem, the position of each bird is represented by the design 

variables x, while the velocity of each bird v influences the incremental change in the position of 

each bird, and hence the design variables.  

 

2.2 Harmony Search (HS) 
 

Harmony search is developed based on the analogy between the performance process of natural 

music and seeking for solutions of optimum design problems. The method consists of following 

steps: 

Step 1. Initialize the HS parameters by determining harmony memory size (HMS), harmony 

memory consideration rate (HMCR), pitch adjusting rate (PAR). 

Step 2. Initialize harmony memory (HM) by filling HM matrix with randomly generated 

designs as the size of the harmony memory (HMS). HMS is similar to the total number of 

individuals in the population matrix of the genetic algorithm. 













































HMS

n
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n

n

HMS xxx

xxx
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









21

22

2

2

1

11

2

1

1

2

1

x

x

x

MH                      (3) 

As it is evident from Eq. (3), each row in the HM matrix represents a steel design (in our 

problem) denoted by the vector  i
n

iii xxx ...,,, 21x , where i=1,2,…,HMS and the subscript n 

corresponds to the n-dimensional search space.  

Step 3. Improvise a new harmony by making use of three rules, HM consideration, pitch 

adjustment and random generation. The HM consideration can be stated by Eq. (4), as follows 

 











HMCRrx

HMCRrxxxx

allowable

j

harmonynew

j

HMS

jjj

harmonynew

j

1

1...,,, 21

X
                   (4) 

where r1 is a random number uniformly distributed over the interval [0,1] and is generated for 
harmonynew

jx . This equation implies that, with the probability of HMCR the j-th component of the

harmonynew
x  vector is selected randomly from the j-th column of HM matrix, while, it is selected 
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randomly from the set of allowable values for the j-th design variable, with the probability of 1-

HMCR. 

Once the j-th component of the new harmony is obtained using the above-mentioned procedure, 

the pitch adjusting rule is applied for the case where the component is chosen from HM, i.e., when 

r1≤ HMCR holds, which can be formulated as  










PARrNo

PARrYes
x harmonynew

j
2

2
fordecisionadjustingpitch               (5) 

If the pitch adjustment decision for the variable under consideration is Yes, then 
harmonynew

jx  is 

replaced with its neighbor allowable value. Otherwise, the current value is not changed. A random 

number r2 uniformly distributed over the interval [0, 1] is generated for 
harmonynew

jx . The selection 

of neighbor value is determined by neighboring index, which is usually selected to be equal to ±1 

with equal probability. 

Step 4. Update the harmony memory by comparing the new harmony with the worst design in 

the HM. If the new harmony is better, the new design is included in the HM and the existing worst 

harmony is excluded from the HM. 

Step 5. Repeat Steps 3 and 4 until the termination criteria are satisfied. 

Supplementary details about harmony search algorithm can be found in Lee and Geem (2005). 

 

2.3 Proposed algorithm: Harmony Search based Particle Swarm Optimizer (HS-PSO) 
 

In the HS-PSO algorithm, presented herein, the harmony memory (HM) is created and 

improved using particle swarm optimization. On the other hand, the new off-springs generated by 

PSO, which can be considered as new improvised harmonies, are improved through the concepts 

used in harmony search. In other words, in HS-PSO the random generation rule, which is used in 

HS, is removed and instead the PSO is applied, and at the same time, the new position of each bird 

in the flock is changed by making use of HM consideration rate and pitch adjustment rules. 

In a standard PSO algorithm, when a particle sees a location which is better than its current 

pbest, interchanges them. This change means that thereafter that pbest plays no role in 

optimization process, whereas that position may be better than the pbest values of other particles 

up to that iteration. To overcome this drawback, in HS-PSO algorithm, a memory of best positions 

(harmonies) is considered. On the other hand, in a standard HS algorithm, harmony memory is 

constructed in a random manner with no proper strategy to move the individuals toward the 

feasible domain. It seems that, the particle swarm concept may be a proper strategy, which can 

result in a better memory of harmonies within a relatively small number of iterations.  

That is to say, we have a swarm of harmonies which flies toward better solutions by adopting 

the strategy of moving toward the best ever seen position of each bird and that of all birds from 

PSO, together with the scheme of considering a harmony memory and pitch adjustment from HS. 

The HS-PSO algorithm can be explained by the flowchart of Fig. 1. This figure is self-

explanatory; however, some points should be noted, as follows 

• In hybrid HS-PSO algorithm HMS ≤ m must be satisfied. 

• The random numbers r1 and r2 used in Eq. (2) is generated independent from those needed 

for HS-based modification for off-springs. 

• The random numbers r1 and r2 used for HS-based modification for off-springs are generated 
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for each component of each particle independently. 

 

 
3. Problem formulation of minimum cost design of semi-rigid steel frames  
 

In this study, the goal of the optimization problem is to minimize the cost of steel frame design. 

The total cost of a steel frame with semi-rigid beam to column connections, considering member 

and connection costs, is defined by Xu and Grierson (1993) as follows 

   
 


NB

i j

ijijij

n

i

ii RAWZ
1

2

1

0

1

x                       (6) 

where Ai and Wi are the ith member cross-section area and weight coefficient, respectively (Wi= 

material density × member length), Rij and βij are the connection rotational stiffness and cost 

coefficient, and 
0
ij  is the cost of a pinned connection having zero rotational stiffness. The j-

subscripts in Eq. (6) correspond to two ends of the semi-rigid beam member and n and NB denote 

the total number of members (n-dimensional search space) and beams in a frame, respectively.  

The values of βij for two ends of a semi-rigid beam member are assumed to be equal and 

calculated as 

i

ii

i
S

AW225.0
                               (7) 

where Si is rotational stiffness of a connection which is a estimated value depending on the 

stiffness of the connection, equal for the both ends of a beam and lies in the range 2.26×10
5 

kN.mm/rad to 5.65×10
8
 kN.mm/rad as it is suggested by Xu and Grierson (1993) and the equal 

value for 
0
1i  and 

0
2i  are accepted to be equal to 

iii AW125.00                                (8) 

As it is usually involved in an optimization problem, some constraints should be imposed on 

the problem during the optimization procedure, which divide the search space into feasible and 

infeasible domains. The optimum design problem of a steel frame with semi-rigid connections has 

the following constraints: 

a) The strength constraints of AISC-LRFD (2001) considering the interaction of bending 

moment and axial force can be formulated in the normalized form, for ith member of the frame, as 

follows 



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
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2.00.1
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1

2.00.1
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IER

i

P

P

M

M

P

P

P

P

M

M

P

P

V




              (9) 

where Pu and Pn are required and nominal strength of a member (tensile or compressive), 
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respectively and ϕ is resistance reduction factor, which is equal to 0.9 for the member in tension 

and 0.85 for compressive ones. Moreover, Mux and Mnx are notations for required and nominal 

flexural strength of the member about its major axis, respectively and reduction factor that 

corresponds to bending is denoted by ϕb (equal to 0.9). The nominal strength of a compressive 

member is calculated based on AISC-LRFD (2001) as follows 

crn FAP                                  (10) 














5.1

877.0

5.1658.0

2

2

cy

c

cy

cr
F

F

F

c







                       (11) 

E

F

r

LK y

c


                                (12) 

where A is cross-sectional area; Fy is yield stress; and E is modulus of elasticity of steel member. L 

and r are the member length and radius of gyration, respectively. The effective length factor, which 

is denoted by K in Eq. (12), is needed in stability evaluation of the columns in the frame. K-factor 

of columns in an unbraced semi-rigid frame is calculated following the relations proposed by Kishi 

et al. (1997). 

b) The displacement normalized constraints including the constraints of inter-storey drift and 

top storey sway can be formulated in general form of 

gjV
u

j

jd

j ...,2,1,0.1 



                        (13) 

where δj is the displacement of the jth restricted displacements among the total number of g and 
u
j  is its allowable upper bound limit determined by the code of practice. 

c) The other group of constraints imposed on the optimization problem in this study arises from 

the size adaptations of beams and columns relative to each other. This group consists of two 

constructional considerations: one consideration implies that flange width of a beam must be 

smaller than the same value for column in all joints, whereas, the other one considers the fact that 

the column of each storey cannot be smaller in depth compared to its above storey column. These 

two constraints can be formulated, respectively, as 

njp
b

b
V

cp

f

bp

f

p ...,2,1,0.1                          (14) 

ncq
d

d
V

lq

c

uq

c
q ...,2,1,0.1                          (15) 

where 
bp
fb  and 

cp
fb  are the value of flange width for beam and column in node number p among 

the total number of nj nodes, respectively (nj is the total number of nodes of frame except the 
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supports). The 
uq

cd  and 
lq

cd  are notations for depths of column sections of upper and lower 

floor in a node, respectively. nc is the total number of columns in the frame excluding ones for first 

storey.  

The optimum design problem, considered in the present work, is a constrained problem; we can 

transform it into an unconstrained one using a penalty function. Here we use the penalty function 

suggested by Rajeev and Krishnamoorthy (1992), so the objective function of the problem can be 

computed as 

   

























 



nc

q

q

nj

p

p

g

j

d

j

n

i

IER

i vvvvCZ
1111

1xx               (16) 

where Z(x) is calculated by Eq. (6); C is a penalty constant, which is equal to 10 in this work; 
IER
iv , 

d
jv , 

pv  and 
qv  are the violations of normalized interaction equation ratio, displacement, 

and size considerations for beams and columns, respectively and are computed using Eqs. (17)-

(20). 

 IER

i

IER

i Vv ,0max                             (17) 

 d

j

d

j Vv ,0max                               (18) 

 
pp Vv ,0max                               (19) 

 
qq Vv ,0max                               (20) 

In this work, two termination criteria are used to stop the optimal design process. The first 

criterion stops the algorithm when a predetermined number of iterations (generations) are 

performed, whereas, the second one terminates the process before reaching the maximum iteration 

number, if lighter frame is not found during a specified number of successive generations. If one of 

these criteria is satisfied, the algorithm is terminated and the so-called optimal solution is printed. 

 

 

4. Nonlinear analysis of steel frames with semi-rigid beam to column connections 
 

In a structural optimization problem, each structural design (individual) is evaluated through its 

analysis, which leads to structural response and makes it possible to evaluate the penalty function. 

On the other hand, it is obvious that the actual complex behavior of a structure must be simplified 

for analysis by feasible modeling of it. Among the numerous experimental and numerical studies 

on the modeling of semi-rigid beam-to-column connections, the model proposed by Frye and 

Morris (1975) is adopted for use in this work, due to its easy-to-implement characteristic. This 

odd-power polynomial model is reasonably good for simulation of the nonlinear M−θ behavior of 

connections and has been presented as 

     5

3

3

21 McMcMc                         (21) 

where θ is the connection rotation and M denotes the moment acting on the connection. The  
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Fig. 2 Semi-rigid beam-to-column connection types 

 

 
parameter κ is the standardization factor determined by the connection type and geometry, and c1, 

c2 and c3 are curve-fitting constants obtained by using the method of least squares.  

For several types of beam to column connections, which are shown in Fig. 2, the values of the 

constants c1, c2 and c3 and the parameter κ for each type, are illustrated in Table 1 (Faella et al. 

2000). The schematic M−θ curves for these eight types of connections are drawn in Fig. 3 

according to Chen et al. (1996). 

In the analysis procedure of the steel frames with semi-rigid beam to column connections, we 

consider the nonlinear M−θ behavior of semi-rigid connections, and the geometrical nonlinearity 

of beam-column members. 
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Table 1 The Curve fitting constants and standardization parameters for Frye-Morris polynomial model 

Connection 

type 

Curve fitting constants 
Standardization parameter, (κ) 

c1
 

c2
 

c3
 

1 4.28×10
−3

 1.45×10
−9

 1.51×10
−16

 
15.081.14.2 gtd aa

  

2 3.66×10
−4

 1.15×10
−6

 4.57×10
−8

 
15.081.14.2 gtd aa

  

3 2.23×10
−5

 1.85×10
−9

 3.19×10
−12

 
35.1694.0415.0128.1287.1 glttd ac

  

4 8.46×10
−4

 1.01×10
−4

 1.24×10
−8

 
5.17.05.05.1  ba dltd  

5 1.83×10
−3

 1.04×10
−4

 6.38×10
−6

 
5.14.04.2  bpg dtd  

6 1.79×10
−3

 1.76×10
−4

 2.04×10
−4

 
6.04.2  pg td  

7 2.10×10
−4

 6.20×10
−6

 −7.60×10
−9

 
1.17.05.05.1  bt dltd  

8 5.10×10
−5

 6.20×10
−10

 2.40×10
−13

 
6.15.06.13.2 gttd wpp

  

 

 

Fig. 3 Moment-Rotation curves of semi-rigid connection types 

 

 

Fig. 4 Secant stiffness values of load increments 
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Table 2 The fixed connection size parameters and adopted rotational stiffness values 

Connection type Fixed connection size parameters (cm) Si values in Eq. (7)  (kN.mm/rad) 

1 ta=2.54, g=11.43
 

85×10
6
 

2 ta=2.858, g=25.4
 

113×10
6
 

3 t=2.54, tc=2.54, g=11.43
 

282×10
6
 

4 t=2.54, db=2.858
 

226×10
6
 

5 tp=2.54, db=2.858
 

339×10
6
 

6 tp=2.54
 

395×10
6
 

7 t=3.81, db=2.858
 

452×10
6
 

8 tp=2.54, g=25.4
 

141×10
6
 

 

 

In this study, the displacements method is used to analyze the structure, wherein, the stiffness 

matrix of the structure is constructed through assembling of the stiffness matrices of members in 

the global coordinates. In order to consider the P-Δ effects into account in the analyses of frames, 

an incremental approach is applied, such that, in each increment the stiffness matrices are updated 

using most recently computed axial force values for beam-column elements, in an iterative 

procedure until the convergence is achieved. Moreover, the secant stiffness approach is applied to 

consider the semi-rigid connection stiffness nonlinearity of beam members. The connection secant 

stiffness values corresponding to all load increments are shown in Fig. 4. In each set of iterations 

convergence criterion is controlled by comparing of the difference between end forces of members 

with applied incremental loads so that to be smaller than a determined tolerance. A convergent 

solution of a load increment forms an initial estimate for the next iteration, and the iterative 

process continues until all load increments are considered. The solutions for all load increments 

are accumulated to obtain a total nonlinear response.  

 

 

5. Numerical examples 
 

In this study three steel frames with semi-rigid beam-to-column connections are solved. These 

examples have been solved by Rafiee et al. (2013) using Big Bang-Big Crunch algorithm. 

Following this reference, in these examples the A36 steel grade is used for all of the members and 

the sections for these members are selected among a total number of 273 standard sections of 

American Institute of Steel Construction wide flange W shapes. The first example is a nine-storey 

single-bay frame (as a small size frame); the second frame consists of ten stories with four bays (as 

a median frame) and the third example has 24 stories and three bays (as a large scale frame). 

In each example the eight types of connections as shown in Fig. 2 are used as semi-rigid beam-

to-column connections. In the present work, due to simplification of the problem, some of the 

connection size parameter values required in Frye-Morris polynomial model of M−θ curve is 

considered to be fixed during the optimum design procedure. These fixed values are selected 

according to Table 2, whereas, the values of angle length, beam height, the vertical distance 

between bolt groups, web thickness of beam are calculated based on dimensions of W-shape 

section assigned to the beam member throughout the optimal design procedure. The last column of 

Table 2, gives the estimated rotational stiffness values, Si for each type of semi-rigid connections. 

These are the case for all of the design examples considered herein. 
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On the other hand, as it is evident from Fig. 1, in the HS-PSO algorithm for a HMCR value of 

zero the algorithm is simplified to the PSO and therefore one can see the HMCR as a HSCR 

parameter, which determines the contribution of harmony search (HS) scheme in the HS-PSO. In 

this study for the minimum cost design of steel frames, the PAR value is chosen to be 0.4 for all the 

examples according to (Degertekin and Hayalioglu, 2010), whereas, to determine the optimum 

value of HMCR, the first example is solved for a range of values of HMCR from 0.1 to 0.8 with a 

step of 0.1, and the optimal HMCR is found to be equal to 0.7. This value is used for the rest of the 

examples. 

 

5.1 Nine-storey, single-bay frame 
 

The geometry, member grouping and the service loading conditions for the nine-storey, one-bay 

frame are illustrated in Fig. 5. The applied loads W, W1 and W2 are equal to 17.8 kN, 27.14 kN/m 

and 24.51 kN/m, respectively. In order to impose the fabrication conditions on the construction of 

the frame, the 27 members of this frame are separated to seven groups of members. Table 3 

presents the optimal designs developed by the HS-PSO algorithm for the 9-storey frame. In order 

to investigate the effect of column sizes on optimal designs, this example is solved again with the 

column sections limited to W14 sections. The optimal designs developed by the HS-PSO algorithm  

 

 

 

Fig. 5 Nine-storey, single-bay frame 
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Table 3 The optimal W-shape sections of nine-storey, single-bay frame via HS-PSO 

Group  

no. 

Semi-rigid connection types Rigid 

connection 1 2 3 4 5 6 7 8 

1 40×215 40×149 40×149 40×149 40×149 33×118 30×90 44×230 24×62 

2 30×90 24×62 24×68 24×76 24×55 24×55 24×55 40×149 24×55 

3 24×68 12×40 14×34 16×36 14×34 14×30 14×30 24×62 14×30 

4 21×44 21×44 21×44 21×44 21×44 21×48 21×55 21×44 24×55 

5 30×90 21×50 24×55 24×68 21×50 24×55 24×55 24×62 21×50 

6 21×44 16×45 21×44 21×44 18×46 21×44 21×44 24×55 21×44 

7 21×50 18×35 18×40 18×40 18×40 18×35 18×35 21×44 18×35 

 
Table 4 The optimal W-shape sections of nine-storey, single-bay frame via HS-PSO when columns are W14 

Group 

no. 

Semi-rigid connection types Rigid 

connection 1 2 3 4 5 6 7 8 

1 14×426 14×109 14×90 14×90 14×99 14×99 14×90 14×176 14×68 

2 14×145 14×74 14×61 14×90 14×68 14×74 14×61 14×90 14×48 

3 14×48 14×30 14×30 14×34 14×30 14×30 14×43 14×30 14×30 

4 30×90 24×68 30×90 30×90 24×68 24×68 24×68 33×118 24×68 

5 36×135 24×55 24×68 24×68 24×55 24×55 24×55 36×135 24×55 

6 21×44 18×46 21×44 21×44 18×46 18×46 16×45 21×44 21×44 

7 18×40 18×35 18×35 18×40 18×35 18×35 16×40 21×44 18×35 

 

 

in this case are listed in Table 4. The global sway corresponding to the roof level is limited to a 

maximum value of 154 mm.  

According to Xu and Grierson (1993), the cost of a steel member with W-section is increased 

by approximately 70% if its end connections are rigid jointed, so the total cost of the rigidly-

connected members of the frame is obtained multiplying the weight values of those members by 

1.70. Fig. 6 shows the convergence history for the optimum design of this frame with connection 

types 1 and 7. As it is clear from this figure, an HMCR value of 0.7 results in better results, i.e., in 

lighter frames with good convergence.  

The minimum cost values presented in Table 5 shows that in the most cases PSO leads to low 

cost frames compared to BB-BC, however, in the cases of rigid connection and semi-rigid 

connection type 3 the BB-BC gives frames with lower costs. In addition, HS-PSO algorithm 

designs the frames so that their costs are lower both than those of BB-BC and of PSO algorithms 

for all connections. This reduction in cost varies in a range of 8% (for connection type 3) through 

72% (for type 7) with an average of 44%, if one compares HS-PSO with BB-BC. The comparison 

of HS-PSO with PSO, however, gives the reduction percents of 12% (for connection types 3 and 

rigid connection) and 32% (for type 7) with an average value of 18%. 

Moreover, it is clear from the results that, limiting the columns to W14 sections will increase 

the frame total cost, weight and top storey sway values; but the percentage of increase in total cost 

is bigger than that of weight, this is due to the increase in connection cost to overcome the lateral 

loads. This fact is evident from Fig. 7 as well, in which the mean used / capacity ratio is drawn 

versus the connection types. This figure depicts that limiting the column sizes to W14 sections 

changes the optimal solution such that in which the storey drift values are dominant with 

compared to member stress values. 
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(a) Connection type 1 (b) Connection type 7 

Fig. 6 The convergence history of nine-storey, single-bay frame 

  

 

Fig. 7 The used / capacity ratio diagram for nine-storey, single-bay frame 

 

 

5.2 Ten-storey, four-bay frame 
 

The second design example is a 10-storey, 4-bay frame with 90 members. Fig. 8 shows the 

twelve groups of members, acting loads and dimensions for this frame. The values of loads are: 

W=44.49 kN, W1=47.46 kN/m, W2=42.91 kN/m. The values of top storey sway for this frame is 

restricted to 158 mm based on AISC-LRFD specifications. 

In this example, the investigation on the effect of column sizes on optimal designs is conducted 

by solving it again with the columns restricted to W14 sections as well. The optimum design 

procedure for the 10-storey frame results in the W-sections, which are listed in Table 6. The 

convergence history for the optimum design of ten-storey frame with rigid and third semi-rigid 

connections are shown in Fig. 9. The minimum cost results obtained for this frame are shown in 

Table 7. These results demonstrates that PSO leads to low cost frames compared to BB-BC except 

for the semi-rigid connection type 3, in which BB-BC gives frames with lower costs. Furthermore, 

HS-PSO algorithm designs the frames so that their costs are lower both than those of BB-BC and 

of PSO algorithms for all connections, as it is the case for the first example. 
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 Member stress ratio when columns are not limited.

 Storey drift ratio when columns are not limited.

 Member stress ratio when columns are limited to W14 sections.
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Table 5 The optimal results for nine-storey, single-bay frame 

 
Semi-rigid connection types Rigid 

type 1 2 3 4 5 6 7 8 

B
B

-B
C

 

(R
af

ie
e 

et
 a

l.
 

2
0

1
3
) 

Total cost 

(kg) 
40,520 36,235 16,881 25,786 33,488 35,799 53,601 46,146 19,861 

Weight (kg) 38,718 32,617 14,809 23,956 30,804 33,481 43,450 44,527 11,683 

Top storey 

sway (mm) 
56 55 66 76 54 65 44 71 73 

P
S

O
 (

p
re

se
n

t 

w
o

rk
) 

Total cost 

(kg) 
27,417 21,455 17,570 19,173 18,373 18,410 21,662 25,932 16,100 

Weight (kg) 24,331 16,867 15,051 16,905 15,630 16,045 18,988 23,338 11,926 

Top storey 

sway (mm) 
67 66 68 71 70 71 68 73 72 

H
S

-P
S

O
 

(p
re

se
n

t 

w
o

rk
)*

 

Total cost 

(kg) 
21,486 17,886 15,464 16,499 15,773 14,970 14,787 21,757 14,877 

Weight (kg) 18,693 13,182 13,468 14,288 12,901 12,136 11,590 19,722 10,529 

Top storey 

sway (mm) 
79 73 70 71 70 69 69 73 73 

H
S

-P
S

O
 

(p
re

se
n

t 

w
o

rk
)*

*
 Total cost 

(kg) 
34,681 20,456 16,848 17,972 16,774 16,323 16,392 26,523 16,168 

Weight (kg) 29,668 13,281 13,797 14,864 12,805 12,983 12,803 21,376 11,281 

Top storey 

sway (mm) 
81 76 73 81 76 77 76 81 74 

* For the case where columns are not limited. 

** For the case where columns are limited to W14 sections.  

 
Table 6 The optimal W-shape sections of ten-storey, four-bay frame via HS-PSO 

Group 

no. 

Semi-rigid connection types Rigid 

connection 1 2 3 4 5 6 7 8 

1 14×342 14×132 14×82 14×109 14×82 14×132 14×109 14×132 14×74 

2 14×233 14×120 14×132 14×145 14×132 14×120 14×132 14×159 14×132 

3 14×120 14×61 14×61 14×74 14×74 14×99 14×74 14×90 14×61 

4 14×193 14×109 14×90 14×90 14×82 14×82 14×90 14×90 14×82 

5 14×53 14×48 14×53 14×53 14×68 14×68 14×38 14×53 14×43 

6 14×68 14×61 14×53 14×53 14×48 14×48 14×48 14×53 14×48 

7 14×48 14×43 14×48 14×61 14×61 14×68 14×38 14×43 14×43 

8 14×61 14×48 14×61 14×48 14×43 14×30 14×48 14×53 14×43 

9 30×90 21×48 24×55 24×62 21×44 21×44 21×44 30×90 21×44 

10 30×90 16×50 21×44 24×55 18×46 21×44 18×46 30×90 21×44 

11 21×44 16×45 21×44 21×44 16×45 16×45 21×44 21×44 21×44 

12 18×40 18×40 21×44 18×40 16×45 18×46 18×40 18×46 18×40 

 

 
The comparison of HS-PSO with BB-BC shows that the reduction in cost varies in a range of 

49% (for connection type 4) to 77% (for types 2 and 7) with an average of 63%. Moreover, this 

reduction varies in a range of 41% (for type 4) through 60% (for types 2 and 3) with an average 
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Fig. 8 Ten-storey, four-bay frame 

 

  

(a) Connection type 3 (b) Rigid connection type 

Fig. 9 The convergence history of ten-storey, four-bay frame 
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Fig. 10 The used / capacity ratio diagram for ten-storey, four-bay frame 

 

 

value of 51%, if HS-PSO and PSO are compared. Furthermore, the results show that, limiting the 

columns to W14 sections will increase the importance of lateral displacements in finding optimal 

solutions. The used / capacity ratio diagram for this frame is shown in Fig. 10, in which the dashed 

red line is completely on top of solid one (similar to previous example) but the solid red line has 

intersections with blue one (in contrary to nine storey frame). This implies that in this frame 

member stresses are dominant in comparison with storey drifts. This may be due to the number of 

bays in this frame which provides enough lateral stiffness.  

 

5.3 Twenty four-storey, three-bay frame 
 

The topology, service loading conditions, four beam groups and sixteen column groups of 24-

storey, 3-bay frame consisting of a total number of 168 members are shown in Fig. 11. Applied 

loads including point (W) and uniformly distributed (W1 through W4) loads have the values of 

W=25.628 kN, W1=4.378 kN/m, W2=6.362 kN/m, W3=6.917 kN/m and W4=5.954 kN/m. 

In this frame, each of the four beam element groups may choose from all 273 W-shapes, while 

the 16 column element groups are limited to W14 sections. AISC-LRFD limits the top storey sway 

of this frame to a maximum value of 456 mm. Tables 8-9 show the optimal designs (W-shape 

sections) obtained using HS-PSO algorithm and minimum cost values for this frame, respectively. 

The comparison of results listed in Table 9 shows that the HS-PSO reduces the costs in ranges 

of 5% (for type 5) to 59% (for type 7) and 8% (for types 2 and 8) to 23% (for type 7) relative to 

BB-BC and PSO algorithms, respectively. Also the corresponding average reduction ratios are 

18% and 14%, respectively. In addition, the comparison demonstrates that the BB-BC performs 

better than PSO if the connection types 2, 4, 5 and 6 are used; otherwise the PSO gives better 

results. However, in all cases the HS-PSO algorithm posses the best performance. It should be 

noted that in the 24-storey frame with connection type 1, both the BB-BC and PSO algorithms 

give an infeasible design, whereas, the design obtained using HS-PSO is a feasible one. The 

convergence history of optimal design procedure of this frame with connection types 2 and 6 are 

also shown in Fig. 12. 
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 Member stress ratio when columns are not limited.

 Storey drift ratio when columns are not limited.

 Member stress ratio when columns are limited to W14 sections.

 Storey drift ratio when columns are limited to W14 sections.

Semi-rigid connection types

    Rigid

connection
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Fig. 11 Twenty four-storey, three-bay frame 
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Table 7 The optimal results for ten-storey, four-bay frame 

 
Semi-rigid connection types Rigid 

type 1 2 3 4 5 6 7 8 

B
B

-B
C

 (
R

af
ie

e 
 

et
 a

l.
 2

0
1

3
) 

Total cost 

(kg) 
140,744 237,050 106,868 93,255 123,743 113,055 204,773 136,881 173,655 

Weight 

(kg) 
128,418 195,578 100,254 87,432 111,865 103,357 150,274 126,120 102,150 

Top storey 

sway (mm) 
67 25 35 58 37 40 26 56 25 

P
S

O
 

 

(p
re

se
n

t 
w

o
rk

) Total cost 

(kg) 
112,077 137,027 115,401 81,765 93,044 88,375 97,494 112,199 79,335 

Weight 

(kg) 
99,261 103,364 97,242 73,160 82,861 76,577 83,181 100,949 63,862 

Top storey 

sway (mm) 
82 29 34 45 47 36 41 62 36 

H
S

-P
S

O
 

 

(p
re

se
n

t 
w

o
rk

)*
 Total cost 

(kg) 
58,939 55,118 46,328 47,788 46,407 46,469 47,328 53,489 46,771 

Weight 

(kg) 
52,196 43,746 40,040 41,853 38,532 37,950 38,737 47,018 33,628 

Top storey 

sway (mm) 
76 62 58 68 63 48 49 75 48 

H
S

-P
S

O
 

 

(p
re

se
n

t 
w

o
rk

)*
*
 

Total cost 

(kg) 
77,340 53,332 44,786 48,962 45,415 46,005 45,288 61,771 48,149 

Weight 

(kg) 
65,672 39,435 37,972 41,590 36,988 38,288 36,845 51,376 35,125 

Top storey 

sway (mm) 
83 72 69 70 71 68 65 81 56 

* For the case where columns are not limited.  

** For the case where columns are limited to W14 sections.  

 

  

(a) Connection type 2 (b) Connection type 6 

Fig. 12 The convergence history of twenty four-storey, three-bay frame 
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Table 8 The optimal W-shape sections of twenty four-storey, three-bay frame via HS-PSO 

Group 

no. 

Semi-rigid connection types Rigid 

connection 1 2 3 4 5 6 7 8 

1 44×290 24×62 33×118 33×118 24×62 27×84 27×84 40×235 24×55 

2 10×33 10×17 10×12 10×17 10×15 10×12 6×20 10×15 21×57 

3 44×290 30×90 30×108 33×118 30×90 24×62 21×55 40×211 27×94 

4 21×50 10×39 12×79 18×106 6×8.5 12×14 12×14 24×207 14×34 

5 14×730 14×193 14×283 14×342 14×233 14×257 14×257 14×398 14×193 

6 14×665 14×193 14×211 14×283 14×193 14×211 14×211 14×342 14×176 

7 14×370 14×176 14×193 14×193 14×193 14×193 14×211 14×283 14×132 

8 14×257 14×159 14×193 14×159 14×176 14×145 14×145 14×233 14×132 

9 14×257 14×99 14×145 14×132 14×132 14×132 14×120 14×233 14×109 

10 14×211 14×74 14×120 14×132 14×109 14×132 14×109 14×176 14×82 

11 14×211 14×68 14×109 14×109 14×74 14×99 14×68 14×159 14×61 

12 14×211 14×61 14×99 14×90 14×53 14×68 14×68 14×99 14×43 

13 14×730 14×426 14×426 14×398 14×370 14×370 14×233 14×370 14×257 

14 14×730 14×398 14×370 14×370 14×311 14×257 14×233 14×342 14×233 

15 14×605 14×342 14×211 14×211 14×311 14×193 14×159 14×211 14×193 

16 14×283 14×211 14×159 14×176 14×193 14×159 14×132 14×211 14×176 

17 14×233 14×145 14×145 14×176 14×120 14×159 14×109 14×176 14×120 

18 14×233 14×109 14×145 14×109 14×120 14×120 14×109 14×132 14×90 

19 14×233 14×90 14×109 14×109 14×109 14×99 14×99 14×99 14×68 

20 14×211 14×90 14×99 14×90 14×99 14×68 14×68 14×90 14×90 

 
Table 9 The optimal results for twenty four-storey, three-bay frame 

 
Semi-rigid connection types Rigid 

type 1 2 3 4 5 6 7 8 

B
B

-B
C

 (
R

af
ie

e 

et
 a

l.
 2

0
1

3
) 

Total cost 

(kg) 
502,197 202,737 267,414 249,806 171,868 176,864 385,074 383,738 233,430 

Weight 

(kg) 
381,754 139,161 236,249 211,149 140,536 150,362 359,372 297,834 137,312 

Top storey 

sway (mm) 
204 245 170 184 237 231 240 190 238 

P
S

O
 

 

(p
re

se
n

t 
w

o
rk

) Total cost 

(kg) 
479,401 206,100 233,390 250,771 183,522 194,011 202,175 369,633 168,151 

Weight 

(kg) 
364,271 127,581 194,883 210,154 148,650 150,122 172,881 284,020 136,680 

Top storey 

sway (mm) 
207 237 182 189 229 225 226 189 224 

H
S

-P
S

O
 

(p
re

se
n

t 
w

o
rk

) Total cost 

(kg) 
505,366 189,791 205,473 210,296 162,582 165,828 156,161 341,798 139,727 

Weight 

(kg) 
384,890 135,368 172,004 175,521 133,930 137,054 125,589 261,722 111,170 

Top storey 

sway (mm) 
200 245 194 208 238 217 221 203 242 
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Fig. 13 Minimum total cost ratios of frames 

 

 

To provide an illuminated comparison of frames with different connection, in Fig. 13 the results 

of examples are shown. In this figure the total cost values of frames are divided by the average 

cost of that example obtained through HS-PSO. The cost of third example, which is a large scale 

frame, is very sensitive to the connection type. The figure depicts that the frames with rigid 

connection and with semi-rigid connection types 7, 6 and 5 (less flexible types) lead to relatively 

low cost frames, whereas, the connection types 1, 2 and 8 (more flexible types) result generally in 

high costs. There are, however, cases where a more flexible connection gives a low cost frame 

with compared to less flexible types, such as the third example with second connection type. 

 

 

6. Conclusions 
 

Harmony search (HS) and particle swarm optimization (PSO) are the well-known meta-

heuristic optimization algorithms and are proposed inspiring the performance process of natural 

music and the social behavior of birds respectively. In this study a hybrid HS and PSO algorithm, 

called HS-PSO is developed and a discrete algorithm based on HS-PSO presents for optimal 

design of steel frames with rigid and semi-rigid beam-to-column connections. The algorithm finds 

the member cross-sections so that the minimum total cost comprising utilized section costs as well 

as connection construction costs. American Institute of Steel Construction (AISC) wide-flange (W) 

shape standard steel sections are used. Stress and displacement constraints of AISC-Load and 

Resistance Factor Design (LRFD) specification are considered as the design constraints. Also, in 

order to find more practical design, size constraints for beams and columns adaptation are imposed 

on the frame in the optimal design procedure. The P-Δ effects of beam-column members are 

considered in the non-linear frame analyses. The nonlinear moment-rotation behavior of semi-rigid 

connections is modeled using the Frye-Morris polynomial model.  

Three benchmark design examples with several types of connections are investigated and the 

results of PSO and HS-PSO are compared. The results are compared with those reported in 

literature using Big Bang-Big Crunch (BB-BC) algorithm, as well. The comparisons lead to the 

following concluding remarks 
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• In some cases BB-BC algorithm leads to more economic frames than those obtained through 

PSO, whereas there are cases where the PSO gives frames with lower costs. 

• In all the examples with all of the rigid and semi-rigid connection types the HS-PSO gives the 

frames with lower cost in comparison with both the BB-BC and PSO algorithms. 

• The convergence of the HS-PSO is better than that of PSO, such that in the same number of 

iterations the HS-PSO reaches better solutions than the PSO, while the premature convergence is 

prevented. 

• A HMCR value of 0.7 is found to contribute properly the harmony memory to the HS-PSO. 

• The results show that, the particle swarm concept can be a proper strategy, which leads to a 

better memory of harmonies within a relatively small number of iterations. 

Furthermore, the comparison of total cost values of frames with different beam-to-connections 

depicts that 

• Among the various types of connections utilized in the design examples, the rigid connection 

and semi-rigid connection types 7, 6 and 5 (less flexible types) lead to more economic frames 

compared to other types. 

• The connection types 1, 2 and 8 (more flexible types) result generally in high cost frames. 

• There are, however, cases where a more flexible connection provides better interaction 

between the constraints imposed on the response of frame and eventually gives a low cost frame 

with compared to less flexible types. 

• The significant variations in the optimal designs and minimum costs of frames with different 

types of connections (especially for large scale frames), shows the key role of connection 

modeling in the real behavior and response of the frame and in the corresponding minimum costs. 
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