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Abstract.   Locking phenomenon is a mesh problem and can be staved off with mesh refinement. If the 
studier is not preferred going to the solution with increasing mesh size or the computer memory can stack 
over flow than using higher order plate finite element or using integration techniques is a solution for this 
problem. The purpose of this paper is to show the shear locking phenomenon can be avoided by increase 
low order finite element mesh size of the plates and to study shear locking-free analysis of thick plates using 
Mindlin’s theory by using higher order displacement shape function and to determine the effects of various 
parameters such as the thickness/span ratio, mesh size on the linear responses of thick plates subjected to 
uniformly distributed loads. A computer program using finite element method is coded in C++ to analyze 
the plates clamped or simply supported along all four edges. In the analysis, 4-, 8- and 17-noded 
quadrilateral finite elements are used. It is concluded that 17-noded finite element converges to exact results 
much faster than 8-noded finite element, and that it is better to use 17-noded finite element for shear-locking 
free analysis of plates. 
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1. Introduction 

 

The Reissner-Mindlin plate theory is widely used for thick plates with bending behavior 

(Reissner 1945). By means of finite element, displacement-based element method is used. 

Displacement-based finite elements require only C0 continuity for the three independent kinematic 

variables: the transverse displacement w and the rotations of the normal vector to the normal 

vector to the plate middle surface x, y. Despite its simple formulation, whenever the plate 

thickness is in thin plate limits these displacement-based elements cause a problem known as 

“shear locking”. Moreover, this element can not pass the patch test for the analysis of very thin 

plates. 

In order to eliminate shear locking problem some numerical techniques have been proposed. 

One of the efficient methods to prevent the appearance of the shear locking phenomenon are 

reduced and selective integration method (Zienkiewich et al. 1971, Hughes et al. 1977, Hughes et 

al. 1978). Beside its advantage this method has disadvantage with the poor convergence and the 
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presence of some spurious modes. For vanishing these undesirable modes stabilization -methods 

(Flanagan and Belytschko 1981, Belytschko and Stolarski) have been proposed. 

A rather heuristic approach to determine whether an element formulation tends to lock or not is 

proposed by Hughes (2000). The basic idea is to determine the ratio of number of equations to the 

number of constraints. If this constraint ratio of the discretized system is less than 1.5 then there 

are more constraints than degrees of freedom and the element will tend to lock if the plate 

thickness t00. Otherwise, if constraint ratio is larger than 1.5 than the Kirchoff-Love constraint 

will be poorly approximate. This approach can be attributed to Hughes and is used to explain why 

higher order finite elements are robust with respect to locking (Düster 2001). 

Shear locking can be avoided by increasing the mesh size, i.e., using finer mesh, but if the 

thickness/span ratio is “too small” (Lovadina 1996), convergence may not be achieved even if the 

finer mesh is used for the first and second order displacement shape functions (4- and 8-noded 

elements).  
The same problem can also be prevented by using higher order displacement shape function 

(Oloysson 2006), but no references have been found in the literature, which views shear-locking 
effect in terms of thickness/span ratios, mesh size and boundary condition by comparing with the 
results of the low order displacement shape function. 

The purpose of this paper is to show the shear locking phenomenon can be avoided by 
increasing low order finite element mesh size of the plates and to study shear locking-free analysis 
of thick plates referring to Mindlin’s theory by using higher order displacement shape function and 
to determine the effects of various parameters such as the thickness/span ratio, mesh size, the 
aspect ratio and the boundary conditions on the linear responses of thick plates subjected to 
uniformly distributed loads. Also the plates are studied with using full, reduced and selective 
integration techniques. A computer program using finite element method is coded in C++ 6.0 to 
analyze the plates considered. For the integration of finite element matrix Gauss numerical 
integration method for two, three and seven sampling points is used. 4-, 8- and 17-noded finite 
elements are used in the program. 17-noded finite element is obtained by using the fourth order 
polynomial for the shape function. No references have been found in the literature, which presents 
results by using 17-noded finite elements. Locking phenomenon is a mesh problem and can be 
staved off with mesh refinement. If the studier is not preferred going to the solution with 
increasing mesh size or the computer memory can stack over flow than using higher order plate 
finite element or using integration techniques is a solution for this problem. 

 
 

2. Mathematical model 
 
2.1 Mathematical formulation of Mindlin plate theory 
 
In this study, it is assumed that xy plane is the middle surface of the plate and z axis is the 

normal to the mid-surface, that is −t/2≤z≤t/2, where t is the plate thickness. In the direction of the z 
axis there is uniformly distributed load q(x,y) applied on the top surface of the plate. In the middle 
surface of the plate at a point (x,y), displacement components are described as transverse 
displacement, w, and the rotations φx, and φy, about the x and y axes, respectively. 

 
2.2 Equilibrium equations 
 
The equilibrium equations in a plate are written as 
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Fig. 1 The positive directions of the external loads and internal forces 
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where Mx and My are the bending moments, Mxy represents the twisting moment, Qx and Qy are the 

shear forces. (Fig. 1). 

 
2.3 Strain-displacement relations 
 

The generalized bending strains vector κ and transversal shear strains vector γ are given as 

follows (Bathe 1996, Ö zdemir 2007) 
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where T stands for matrix transpose. 

 
2.4 Boundary conditions 
 

In this study, since the plate considered are clamped or simply supported along all four edges,  
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Fig. 2 4-, 8-, and 17-noded finite element models used in this study 

 

 

the following boundary conditions are used (see Fig. 2). 

For clamped plates (see Fig. 2); 

Along x = −a/2 and x = a/2; x = 0 and w0 = 0. 

Along y = −b/2 and y = b/2; y = 0 and w0 = 0. 

For simply supported plates (see Fig. 2); 

Along x = −a/2 and x = a/2; Mx = 0 and w0 = 0. 

Along y = −b/2 and y = b/2; My = 0 and w0 = 0. 

 
 
3. Finite element formulation of the problem 

 

In this study, 4-, 8-, and 17-noded finite elements are presented, in which the transverse 

displacement and rotations are interpolated with usage of independent shape functions. 
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Considering the plate with q which is equal to the transverse loading per unit of the midsurface 

area A, the expression for the principle of virtual work is, given as 

П= A
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where k is a constant to account for the actual nonuniformity of the shearing stresses, E  and 

E  are the internal bending moments and shear forces, respectively. E  and E  are given as 

follows (Reissner 1950) 
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where Eκ and Eγ are the elasticity matrix and these matrices are given as 
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where E is the Modulus of elasticity and ν is the Poisson’s ratio. 

If internal stresses are written in a matrix form; the following equation can be obtained 
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Generalized stresses are written in a matrix form and calculated as 

    EM  .                                                              (7) 

The nodal displacements for these elements can be written as follows (Mindlin 1951) 

u={u, v, w}={−zφx, zφy, w}                                                    (8) 
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Where w is the displacement and x and y are the rotations in the x and y directions, 

respectively. Nodal force corresponding to the displacements in Eq. (8) are 
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qi={qi1, qi2, qi3}={Mxi, Myi, qzi} 

element  noded-17for   17 ..., 1, i

element  noded8-for   8 ..., 1, i

element  noded-4for   4 3, 2, 1,i







                            (10) 

The symbols qzi denotes a force in the z direction, but Mxi and Myi are the moments in the x and 

y directions, respectively. Note that these fictitious moments at the nodes are not the same as the 

distributed moments in the vector M of generalized stresses (Weaver and Jahnston 1984) 

The displacement functions for 4-noded, 8-noded
 
(Weaver and Janston 1984, Bathe 1996, Cook 

et al. 1989), and 17-noded elements are given by Eq. (11a), Eq. (11b), and Eq. (11c), respectively 
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From Eq. (11), it is possible to derive the displacement shape function for 4-noded element 

with Eq. (12a), 8-noded element with Eq. (12b) and 17-noded element with Eq. (12c) 
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(13c) 

are given with Eq. (13c), (Ö zdemir 2007, Ö zdemir et al. 2007) 

187



 

 

 

 

 

 

Y.I. Ö zdemir and Y. Ayvaz 

The subscripts in the vector of h stand for the node number of 4-, 8- or 17-noded quadrilateral 

finite element. 

The strain vector in Eq. (7) for these elements can be written as follows 

 
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Before formulating element stiffness matrix, strain-displacement matrix B is partitioned as 

follows 
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Where Bk is the bending strain matrix and Bγ is the shear strain matrix. These matrices are given 

by the following equations. 

element noded-17for  17 ..., 1, i

element noded-8for  8 ..., 1, i

element noded-4for  4 3, 2, 1,i
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Where Bk is the size of 3×12, 3×24, 3×51 for 4-, 8-, and 17-noded quadrilateral elements, 

respectively and B is the size of 2×12, 2×24, 2×51 for 4-, 8-, and 17-noded rectangular elements, 

respectively. The matrix B for each element can be written as follows 

element noded-17for  17 ..., 1, i

element noded-8for  8 ..., 1, i

element noded-4for  4 3, 2, 1,i
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Is it shear locking or mesh refinement problem? 

Then the stiffness matrices for these elements are written as 
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Integration of Eq. (17) through the thickness yields 

  

A

T
kk

T
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dABEBBEBK .                                             (19) 

Thus, Eq. (17) can be rewritten in the following form. 

 
 



1

1

1

1

drdsJBEBdABEBK T

A

T
                                          (20) 

which must be evaluated numerically (Bathe 1996). 

The matrices which show the displacements and rotations in the plate for 4-, 8- and 17-noded 

elements, are given by the following three equations. 

 41
4411

;;...ˆ wwu
yxyx

T                                     (20a) 

 81
8811

;;...ˆ wwu
yxyx

T                                    (20b) 

 .;;...ˆ 171
171711

wwu
yxyx

T                                    (20c) 

The values of these matrixes can be calculated with the Gauss Integration method. 2 gauss 

points for 4-noded finite element, 3 gauss points for 8-noded finite element and 5 gauss points for 

17-noded finite element are sufficient. Then the strains are calculated by the following equation; 

    uB                                                                (21) 

After finding the strains, the stresses of the plate can be calculated by Eq. (6). 

 
 
4. Numerical examples 
 

4.1 Data 
 

A number of examples are considered to examine the performance of 4- noded (MT4), 8- 

noded (MT8), and 17-noded (MT17) elements on both displacements and bending moments with a 

coded computer programme.  

A square plate which is subjected to a uniformly distributed load is modeled with two different 

boundary conditions, i.e., either simply supported or clamped along all four edges, to evaluate 
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Fig. 3 Center displacement coefficients, αi, of the simply supported square plates modeling with MT4 

for different mesh sizes and t/a ratios 

 

 
the acceptability of the solutions obtained with MT4, MT8, and MT17 elements. The geometric 

and material properties are used E=2.7*10
6
 kN/m

2
, = 0.3, a=b=3 m, qz=20 kN/m

2
, and k=5/6, 

where qz is the uniformly distributed load, and a is the smaller span length of the plate. In the 

analysis, the full plate is used. 

 
4.2 Results 
 

In this study, the maximum displacement and bending moment coefficients for different 

thickness/span ratios and the maximum displacements and bending moments for different aspect 

ratios are presented. This simplification to maximum responses is supported by the fact that 

maximum values of these quantities are the most important ones for design.  

In order to understand better the linear response of thick plates subjected to uniformly 

distributed loads, the results are presented in tables and graphs. The maximum displacement and 

bending moment coefficients for different thickness/span ratios and mesh sizes, and the maximum 

bending moment coefficient for different thickness/span ratios are given in Tables 1, 2 and 3, 

respectively, for clamped plates. The maximum displacement and bending moment coefficient for 

different mesh sizes and thickness/span ratios are given in Tables 4, 5 and 6 for simply supported 

plates. These values are also presented in graphical form in Figs. 3, 4, and 5, respectively.  

As seen from Tables 1, 2 center displacement coefficients, αi, of the clamped plates obtained in 

this study are very close to the exact solution for MT8 and MT17 elements. Besides shear locking 

problem can be seen clearly for MT4 element for 0.001, 0.01, and 0.1 t/a ratios and MT8 elements 

for 0.001, 0.01 t/a ratios different mesh sizes. 
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Is it shear locking or mesh refinement problem? 

Table 1 Center displacements coefficients, αi, (=ω/(qa4/100D)) of the clamped square plate for different 

mesh sizes and t/a ratios 

t/a 

αi 

This study (MT8,24 dof.) This study (MT17,51 dof.) Exact,  

(Soh et al. 2001) 

thick 

Mesh size Mesh size 

4×4 8×8 16×16 4×4 8×8 16×16 

0.001 0.0005 0.0499 0.1227 0.1011 0.1252 0.1265 0.1265 

0.01 0.0359 0.1189 0.1256 0.1230 0.1268 0.1268 0.1265 

0.10 0.1420 0.1499 0.1504 0.1503 0.1505 0.1505 0.1499 

0.15 0.1745 0.1785 0.1787 0.1786 0.1788 0.1788 0.1798 

0.20 0.2146 0.2170 0.2172 0.2171 0.2172 0.2172 0.2167 

0.25 0.2639 0.2657 0.2658 0.2657 0.2658 0.2658 - 

0.30 0.3230 0.3245 0.3246 0.3245 0.3246 0.3246 0.3227 

0.35 0.3922 0.3936 0.3937 0.3935 0.3937 0.3937 0.3951 

 
Table 2 Center displacements coefficients, αi, (=ω/(qa

4
/100D)) of the clamped square plate for different t/a 

ratios 

t/a 

αi 

(Ç elik 

1996)
 

(Yuqiu  

and Fei 

 1992)
 

(Ozkul 

and Ture 

2004) 

(16×16 

meshes)
 

(Yuan 

and 

Miller 

1988)
 

(Yuan 

and 

Miller 

1989) 

(Owen 

and 

Zienkiew

icz 1982)
 

(Soh et 

al. 2001) 

(16×16 

meshes)
 

This study 
Exact, 

(Soh et 

al. 2001) 

thick 

MT4 

(20×20 

meshes) 

MT8 

(16×16 

meshes) 

MT17 

(8×8 

meshes) 

0.001 0.1265 0.1293 0.1256 0.1234 0.1255 0.1220 0.1279 0.0002 0.1227 0.1252 0.1265 

0.01 0.1284 0.1293 0.1267 0.1236 0.1267 0.1230 0.1281 0.0195 0.1256 0.1268 0.1265 

0.10 0.1584 0.1521 0.1506 0.1482 0.1513 0.1460 0.1514 0.1433 0.1504 0.1505 0.1499 

0.15 0.1859 0.1801 0.1787 0.1776 0.1807 - - 0.1752 0.1787 0.1788 0.1798 

0.20 0.2236 0.2181 0.2172 0.2171 0.2203 0.2110 0.2183 0.2151 0.2172 0.2172 0.2167 

0.25 0.2716 0.2658 - - 0.2700 - - 0.2644 0.2658 0.2658 - 

0.30 0.3299 0.3229 - - - - 0.3259 0.3236 0.3246 0.3246 0.3227 

0.35 0.3987 0.3896 - - - - 0.3952 0.3930 0.3937 0.3937 0.3951 

 

 
As seen from Table 3, center moment coefficients, βi, of the clamped plates obtained in this 

study with for MT8 and MT17 elements are very close to the exact solution of thin plate. Besides 

shear locking problem can be seen clearly for MT4 element for different for 0.001 and 0.01 t/a 

ratios. 

As seen from Tables 4, 5 and and Figs. 3, 4, and 5, center displacement coefficients, αi, of the 

simply supported plates obtained in this study are very close to the exact solution for MT8 and 

MT17 elements. As also seen from Tables 4, 5 and Fig. 5, the results obtained by using 17-noded 

finite element almost coincide with the exact result for 0.1 t/a ratio. The solutions obtained in this 

study coincide with the exact solution for 0.1 t/a ratio if 8×8 mesh sizes (64 elements) are used for 

MT17 element and 32×32 mesh sizes (1024 elements) are used for MT8 element. 

As seen from Tables 4, 6, center moment coefficients, βi, of the simply supported plates 

obtained in this study are very close to the exact solution for MT8 and MT17 elements. As also 
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Table 3 Maximum bending moment coefficients, βi, (=M/(qa2/10)) at the center of the clamped square plates 

t/a 

βi 

(Ç elik 

1996) 

(Ozkul and 

Ture 2004) 

(16×16 

meshes) 

(Owen and 

Zienkiewicz)
 

(Soh et al. 

2001) 

(16×16 

meshes)
 

This study Exact 

(Timoshenko 

and Krieger 

1959) 

thin 

MT4 

(20×20 

meshes) 

MT8 

(12×12 

meshes) 

MT17 

(8×8  

meshes) 

0.001 0.2300 0.2294 0.2270 0.2069 0.0005 0.2249 0.2209 0.231 

0.01 0.2340 0.2301 0.2270 0.2069 0.0375 0.2280 0.2290 0.231 

0.10 0.2530 0.2331 0.236 0.2070 0.2200 0.2322 0.2320 0.231 

0.15 0.2540 0.2352 - - 0.2280 0.2344 0.2340 0.231 

0.20 0.2550 0.2370 0.250 0.2071 0.2318 0.2361 0.2357 0.231 

0.25 0.2550 - - - 0.2340 0.2374 0.2370 0.231 

0.30 0.2550 - - - 0.2355 0.2384 0.2380 0.231 

0.35 0.2550 - - - 0.2365 0.2391 0.2386 0.231 
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Fig. 4 Center displacement coefficients, αi, of the simply supported square plates modeling with MT8 

for different mesh sizes and t/a ratios 

 

 
seen from Tables 4, 6, the results obtained by using 17-noded finite element almost coincide with 

the exact result for 0.1 t/a ratio. The solutions obtained in this study coincide with the exact 

solution for 0.1 t/a ratio if 8×8 mesh sizes (64 elements) are used for MT17 element and 32×32 

mesh sizes (1024 elements) are used for MT8 element. 

As seen from Tables 1, 2, 3, 4, 5 and 6, and Figs. 3, 4, 5, and 6, the results obtained in this study 

by using MT17 element converges rapidly to the exact results than the results given in the 

literature. By using this element, the mesh size required to produce the desired accuracy can be 

approximately reduced to the half of those of the given in the other literature, (Ç elik 1996, Yuqiu 

and Fei 1992, Ozkul and Ture 2004, Yuan and Miller 1989, Owen and Zienkiewicz, 1982, Soh et 

al. 2001, Ibrahimbegovic 1993, Zienkiewicz et al. 1993, Panc 1975, Belounar and Guenfoud 2005, 

Cen et al. 2006). 
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Is it shear locking or mesh refinement problem? 

Table 4 Center displacements coefficients, αi, (=w/(qa4/100D)) and bending moment coefficients, βi, 

(=M/(qa2/10)) of the simply supported square plates for different mesh sizes 

(a) Thickness/span ratio t/a=0.001 

Mesh 

αi βi 

(Soh et 

al.  

2001) 

(Ibrahi

mbegov

ic 1993) 

(Zienkie

wicz et 

al. 

1993) 

MT4 MT8 MT17 

(Soh  

et al. 

2001) 

(Ibrahi

mbegov

ic 1993) 

(Zienkie

wicz et 

al. 

1993) 

MT4 MT8 MT17 

4×4 0.4045 0.4045 0.4593 0.0001 0.0513 0.4004 0.5009 0.5005 0.5649 0.0001 0.0616 0.4721 

8×8 0.4060 0.4060 0.4292 0.0002 0.3747 0.4062 0.4839 0.4839 0.5010 0.0002 0.4454 0.4776 

16×16 0.4062 0.4062 0.4164 0.0007 0.4053 0.4063 0.4801 0.4801 0.4876 0.0009 0.4775 0.4781 

32×32 0.4062 0.4062 0.4110 0.0029 0.4062 0.4063 0.4792 0.4792 0.4830 0.0286 0.4785 0.4790 

Exact, 

(Soh et al. 

2001) 
thick 

0.4066 0.4792 

Exact 

(Panc 
1975) thin 

0.4062 0.4789 

(b) Thickness/span ratio t/a=0.01 

Mesh 

αi βi 

(Soh et 

al.  

2001) 

(Ibrahi

mbegov

ic 1993) 

(Zienkie

wicz et 

al. 

1993) 

MT4 MT8 MT17 

(Soh  

et al. 

2001) 

(Ibrahi

mbegov

ic 1993) 

(Zienkie

wicz et 

al. 

1993) 

MT4 MT8 MT17 

4×4 0.4047 0.4461 0.4596 0.0045 0.3735 0.4072 0.5007 0.5659 0.5649 0.0048 0.4405 0.4763 

8×8 0.4062 0.4227 0.4297 0.0173 0.4051 0.4083 0.4842 0.5081 0.5012 0.0205 0.4766 0.4805 

16×16 0.4064 0.4140 0.4172 0.0613 0.4075 0.4093 0.4804 0.4892 0.4882 0.0741 0.4797 0.4811 

32×32 0.4067 0.4106 0.4124 0.1690 0.4087 0.4098 0.4797 0.4835 0.4841 0.2039 0.4808 0.4820 

Exact, 

(Soh et al. 
2001) 

thick 

0.4099 0.4820 

Exact 
(Panc 

1975) thin 
0.4064 0.4789 

(c) Thickness/span ratio t/a=0.1 

Mesh 

αi βi 

(Soh et 

al.  

2001) 

(Ibrahi

mbegov

ic 1993) 

(Zienkie

wicz et 

al. 

1993) 

MT4 MT8 MT17 

(Soh  

et al. 

2001) 

(Ibrahi

mbegov

ic 1993) 

(Zienkie

wicz et 

al. 

1993) 

MT4 MT8 MT17 

4×4 0.4280 0.4774 0.4957 0.3587 0.4491 0.4611 0.5206 0.5808 0.5694 0.5808 0.5011 0.5091 

8×8 0.4419 0.4612 0.4727 0.4311 0.4591 0.4617 0.5087 0.5238 0.5169 0.5238 0.5076 0.5095 

16×16 0.4544 0.4600 0.4644 0.4525 0.4614 0.4617 0.5081 0.5117 0.5112 0.5117 0.5094 0.5096 

32×32 0.4596 0.4610 0.4624 - 0.4617 0.4617 0.5091 0.5099 0.5100 0.5099 0.5096 0.5096 

Exact, 

(Soh et 

al. 2001) 
thick 

0.4617 0.5096 

Exact 

(Panc 

1975) 
thin 

0.4273 0.4789 
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Table 5 Center displacements coefficients, αi, (=ω/(qa4/100D)) of the simply supported square plate for 

different t/a ratios 

t/a 

αi 

(Yuqiu 

and Fei 

1992) 

(Ozkul 

and Ture 

2004) 

(16×16 

meshes) 

(Yuan 

and 

Miller 

1988) 

(Owen 

and 

Zienkiew

icz 1982) 

(Soh et 

al. 2001) 

(16×16 

meshes) 

This study 
Exact, 

(Soh et al. 2001) 

Thick/thin 

MT4 
(20×20 

meshes) 

MT8 
(16×16 

meshes) 

MT17 

(8×8 meshes) 

0.001 0.4043 0.4060 0.4054 0.4070 0.4062 0.0014 0.4053 0.4062 0.4066/0.4062 

0.01 0.4045 0.4064 0.4067 0.4070 0.4064 0.1068 0.4075 0.4083 0.4099/0.4064 

0.10 0.4242 0.4278 0.4596 0.4230 0.4544 0.4879 0.4614 0.4617 0.4617/0.4273 

0.15 0.4502 0.4536 0.5018 - - 0.5117 0.5036 0.5037 -/- 

0.20 0.4869 0.4904 0.5511 0.4800 - 0.5281 0.5544 0.5545 -/0.4906 

0.25 - - - - - 0.5410 0.6140 0.6140 -/- 

0.30 - - - - - 0.5514 0.6823 0.6823 -/0.5956 

0.35 - - - - - 0.5600 0.7595 0.7595 -/0.6641 
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Fig. 5 Center displacement coefficients, αi, of the simply supported square plates modeling with 

MT17 for different mesh sizes and t/a ratios 

 
Table 6 Center bending moment coefficients, βi, (=M/(qa2/10)) of the simply supported square plate for 

different t/a ratios 

t/a 

βi 

(Ozkul and 

Ture 2004) 

(16×16 

meshes)
 

(Yuan and 

Miller 

1988) 

(Owen and 

Zienkiewi

cz 1982) 

(Soh et al. 

2001) 

(16×16 

meshes) 

This study Exact 
(Soh et al. 2001) 

Thick/thin 
MT4 

(20×20 meshes) 

MT8 

(16×16 meshes) 

MT17 

(8×8 meshes) 

0.001 0.4795 0.4779 0.4820 0.4801 0.0011 0.4750 0.4776 0.4792/0.4789 

0.01 0.4795 0.4788 0.4820 0.4804 0.0883 0.4797 0.4805 0.4820/0.4789 

0.10 0.4795 0.5079 0.4840 0.5081 0.4416 0.5094 0.5095 0.5096/0.4789 

0.15 0.4795 0.5223 - - 0.4928 0.5236 0.5236 -/- 

0.20 0.4795 0.5350 - - 0.5473 0.5363 0.5362 -/- 

0.25 - - - - 0.6088 0.5472 0.5471 -/- 

0.30 - - - - 0.6782 0.5565 0.5565 -/- 

0.35 - - - - 0.7563 0.5644 0.5643 -/- 
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Is it shear locking or mesh refinement problem? 
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Fig. 6 Center displacement coefficients, αi, of the simply supported square plates for different mesh 

sizes with t/a=0.10 
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Fig. 7 Center displacement coefficients, αi, of the simply supported square plates for different mesh 

sizes with t/a=0.01 

 

 

As seen from Table 7 and Fig. 7, center displacement coefficients, αi, of the simply supported 

plates shows locking phenomenon for 0.01, 0.001 t/a ratios with MT4 element. But for 0.01 ratio 

this locking can be avoiding by increasing mesh size. This solution is not preferred because of 

wasting time and computer capacities by engineer. For 0.001 ratio there is a little improvement to 

the locking with increasing mesh size. This ratio needs excessive mesh size than 0.01 ratio for 

avoiding locking. Writers think that shear locking phenomenon is a mesh problem related with 

thick plates t/a ratios. 
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Fig. 8 Center displacement coefficients, αi, of the simply supported square plates for different mesh 

sizes with t/a=0.001 
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Fig. 9 Center moment coefficients, βi, of the simply supported square plates for different mesh sizes 

with t/a=0.1 

 

 

As seen from Table 7 and Figs. 8, 9, 10, 11, locking phenomenon occurs always MT4 element 

with full integration for all t/a ratios. Also this problem occurs MT8 element with full integration 

with 0.001 ratio. Locking phenomenon can be staving off with reduced and selective integration 

techniques. This can be seen that table and figures. And it can also staving off with using higher 

order finite elements. This can be also seen that table and figures. MT17 element shows perfect 

results than MT4 and MT8 element with full integration. 
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Is it shear locking or mesh refinement problem? 
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Fig. 10 Center moment coefficients, βi, of the simply supported square plates for different mesh sizes 

with t/a=0.01 
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Fig. 11 Center moment coefficients, βi, of the simply supported square plates for different mesh sizes 

with t/a=0.001 

 

 

In general, the results obtained in this study are better than the results given in the literature.  

 
 
5. Conclusions 

 

In this study, 4-, 8-and 17-noded finite elements are used to obtain the maximum displacements 

and bending moments of the plates clamped and simply supported along all four edges. The results 

are compared with the results given in the literature. It is concluded that, by using 17-noded finite 
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element, the mesh size required to produce the desired accuracy can be approximately reduced to 

the half of those of the others given in the literature. The results obtained by using 17-noded finite 

element almost coincide with the exact result for 16×16 (256 element) mesh sizes. The results of 

this study are better than the results given in the literature if they are compared with the exact 

results. In addition, the following conclusions can be drawn from the results obtained in this study. 

• Locking phenomenon is a mesh problem and can be stave off with increasing mesh size. 

• If this solution is not preferred then using higher order plate finite element or using 

integration techniques is a solution for this problem. 

• Convergence of the maximum displacement of the plates modeled by 17-noded rectangular 

finite element is much faster than that of the plates modeled by 8-, and 4-noded rectangular finite 

element. 
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