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Abstract.  This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by 
using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a 
support system. These systems require careful consideration in their dynamic analysis modeling because 
they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent 
gyroscopic effects. Because of this complex geometry, the finite element model under consideration may 
have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the 
critical speeds, stability, and unbalanced response are computationally very expensive to complete within a 
practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment 
matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and 
critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the 
dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can 
be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show 
that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram 
analysis, while maintaining accuracy comparable to that of the original systems. 
 

Keywords:  model order reduction; Krylov subspace; rotordynamics; Campbell diagram; damped 

eigenvalue analysis; whirling frequency; critical speed 

 
 
1. Introduction 

 

Typical rotor-bearing systems consist of a rotor, a bearing support system, and attached 

components such as disks, blades, fans, and couplings. Their rotordynamic modeling requires 

careful consideration because it usually includes cross-coupled unsymmetrical stiffness, localized 

nonproportional damping, and frequency-dependent gyroscopic effects (Wagner et al. 2010). The 

standard rotordynamic analysis of rotor-bearing systems includes the damped frequencies, critical 

speeds, stability, and unbalanced response (Nelson 2007). Modeling techniques that utilize the 

finite element (FE) method for the rotordynamics have progressed and changed since their first use 

in the 1970s. Because of the increasing geometric complexity of various rotor-bearing systems, the 

FE model can easily reach a high order of degrees of freedom (DOF), which makes it 

computationally very expensive. Thus, it is nearly impossible to complete repeated dynamic 
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analyses for a rotor-bearing system within a practical design cycle in order to investigate the 

critical speeds, stability, and unbalanced response. 

The published literature shows that existing model order reduction (MOR) methods are already 

in practical use for large-size dynamic problems with symmetric system matrices such as 

nonrotating structures (Antoulas et al. 2001, Han 2012, 2013). The common model reduction 

methods are Guyan reduction (Guyan 1965, Rouch et al. 1980), model reduction by modal 

analysis (Kim et al. 1986, Khulief et al. 1997, Wang et al. 1994a), component mode synthesis 

(CMS) (Craig et al. 1968, Glasgow et al. 1980, Wang et al. 1994b, 1995), and balanced truncation 

(Moore 1981, Wang et al. 1999, Casciati et al. 2014). 

In the Guyan reduction method, the selection of master and slave DOFs is usually based on the 

user’s experience and understanding of the mode shapes and key points of interest for loads, 

bearings, and point masses (Rouch et al. 1980). Note that, although the Guyan reduction scheme is 

commonly found throughout the literature, it is not generally effective at reducing systems for 

dynamic analyses (Wagner et al. 2010). 

In the modal analysis method, modal coordinates are used to represent the system and decouple 

the dynamic system equations of motion. The modes to retain can be selected, up to the mode of 

interest, with twice the frequency of interest (Das et al. 2008) or by using a middle frequency 

range (Guyader 2009). A real modal analysis is commonly used because real undamped 

eigenvalues can easily be calculated from the M and K system matrices. On the other hand, a 

complex modal analysis uses a damping matrix, a gyroscopic matrix, or both these system 

matrices to yield complex conjugate pairs of eigenvectors that are calculated from the generalized 

eigenvalue problem in a state space representation; they are used for the system reduction. Kim 

and Lee (1986) presented a matrix reduction technique using the modal data of the isotropic 

undamped stationary parts to analyze rotor-bearing systems. In relation to the differences between 

real and complex modal analyses, Khulief and Mohiuddin (1997) studied a rotor-bearing system 

with anisotropic bearings and gyroscopics for dynamic analysis. They concluded that there is little 

difference between the accuracies when using real and complex modes for reducing simple beam 

finite element models, when comparing real reduced models to the complex natural frequencies of 

the full system, rather than a reduced system via complex modes. 

In the CMS method, the selections of both interface DOFs, the discretization of the full system, 

and the modes to be retained for each subsystem are determined by the user and are similar to 

those of a modal analysis (Craig et al. 1968). However, several interface schemes such as the fixed 

interface, free-interface, and hybrid interface methods are used (Qu 2004, Shanmugam et al. 2006, 

Wang et al. 1994b). One disadvantage of CMS is that the final equations are normally coupled. 

However, this reduction does contain the full system dynamics from a modal analysis, and the 

modal representation is independent of the boundary and interface coordinates, which is useful for 

modeling nonlinear supports such as bearings (Glasgow et al. 1980). Wang and Kirkhope (1994b, 

1995) suggested a CMS method for damped rotor systems and applied it to a complex system 

modeled with beam elements. However, they did not consider the gyroscopics. 

In balanced truncation, the states or modes that are most observable and controllable are 

selected to form the reduced basis of the model on the basis of an error criterion such as the 

infinity norm, a frequency weighted infinity norm, or the energy in the state by the Hankel singular 

value, which expresses the amount of energy in each state (Moore 1981, Gugercin et al. 2004, 

Sawicki et al. 1997, Casciati et al. 2014). In a related study, Mohiuddin et al. (1998) applied the 

direct truncation balanced model reduction method to a complex rotor bearing system with 

gyroscopics, rotary inertia, and light damping for analysis and controller design. The authors 
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presented the use of the singular perturbation balanced truncation scheme to alleviate the 

steady-state offset error common to balanced truncation. 

Although these common model reduction methods have already been applied to rotordynamic 

systems, there is still a gap in the understanding and application to rotor-bearing systems. The 

application of these model reduction methods typically does not address the important properties 

inherent to rotor-bearing systems, such as the unsymmetrical stiffness, nonproportional damping, 

and frequency-dependent gyroscopic effects. In addition, the application examples found in the 

literature have small computational sizes, where MOR is not actually necessary for a rotordynamic 

analysis (Wagner et al. 2010). As Wagner et al. mentioned, no study has conducted a large-scale 

rotor dynamic analysis and shown the effects of various model reduction methods on the analysis. 

In this study, we demonstrate that a Krylov subspace-based MOR (Rudnyi et al. 2006, Han 

2012, 2013) via moment matching significantly speeds up the Campbell diagram analysis to check 

the whirling frequencies and critical speeds of large-scale rotordynamic systems. This approach is 

shown to be very efficient, because it is possible to repeat the rotordynamic simulation with the 

help of a reduced system by changing the operating rotational speed, which can be preserved as a 

parameter in the process of model reduction. The numerical results show very good agreement 

with the original systems. Two finite element models, a turbomolecular pump (TMP) and the 

Nelson and McVaugh rotor system, are used as numerical examples to demonstrate the accuracy 

and efficiency of this MOR method for rotordynamic analysis. 

 
 

2. Theory 
 
2.1 Campbell diagram analysis 
 

A Campbell diagram is one of the most important and frequently used tools for understanding 

the dynamic behavior of a rotating-bearing system (Nelson 2007). In rotordynamics, the general 

dynamic equation to be solved can be described in a stationary reference frame as (Wagner et al. 

2010, ANSYS 2011) 

 )()()()()()( tttt FxBKxGCxM                        (1) 

or expressed in a more general form 

 )()(
~

)(
~

)(
~

tttt FxKxCxM                            (2) 

 MM 
~

                                 (3a) 

 GCC 
~

                                (3b) 

 BKK 
~

                                (3c) 

where M, C, and K
N  N

 are the standard mass, damping, and stiffness matrices, respectively. 

The gyroscopic matrix G depends on the rotational velocity and acts as the major contributor in a 

rotordynamic analysis. This skew-symmetric gyroscopic matrix is derived from the kinetic energy 

that results from gyroscopic moments. The rotating damping matrix B also depends on the 

rotational velocity, and modifies the apparent stiffness of the structure. The vectors ẍ(t), ẋ(t), and 

x(t) are the acceleration, velocity, and displacement response vectors, respectively, and have 
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dimension N. F(t) is the vector of the applied forces. 

Mathematically, the Campbell diagram analysis requires several quadratic eigenvalue analyses 

with multiple steps corresponding to different values of rotational velocity, . Provided that F(t) = 

0 in Eq. (2), the free vibration of the damped second-order system has a solution in the form (Qu 

2004) 

 tet 
ψx )(                                 (4a) 

and its first and second time derivatives are 

 tet ψx )(                                (4b) 

 tet  ψx
2)(                                 (4c) 

where  is the N-dimensional vector of the amplitudes, and  is the complex frequency of the 

response. Substituting the solution and its first and second time derivatives to Eq. (2) gives the 

following quadratic eigenvalue problem (QEP) 

 0ψKCM  )
~~~

( 2                              (5) 

In general, the eigenvalues are a function of the rotating velocity , and the ith complex frequency 

has the general form i = i + ji. The real part of the eigenvalue, i, is the damping constant, and 

the mode is unstable if it has a positive value. The imaginary part, i, is the damped circular 

frequency of whirling in the rotordynamics. From the complex eigenvalues, we can determine the 

damped critical speed and the onset of speed instability. 

Because it is quite difficult to solve Eq. (5) in the displacement space, the commonly used 

scheme for solving QEP is to transform Eq. (2) from the displacement space into the state space. 

We can introduce a supplemental identity equation as follows 

 0xIxI                                    (6) 

Then, the free vibration of the damped system from Eq. (2) can be rewritten in the state space form 

as 
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A 2N-dimensional vector y defined as 
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is referred to as the state vector because it includes both the displacement and velocity, and it 

completely represents the state of the system. Using the state vector, the QEP given in Eq. (5) is 

transformed into the following first-order eigenvalue problem 

 0ηAE  )(                                (9) 

in which 
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The 2N  2N matrices E and A are real but indefinite and unsymmetrical in general. This 

formulation doubles the size of the system matrices and thus increases the computational cost. 

When the FE model has a very large number of DOFs, it is often necessary to use MOR 

techniques to solve Eq. (7). 

 

2.2 Krylov subspace-based MOR 
 

The basic concept of the Krylov subspace-based MOR is to find a low-dimensional subspace 

V
N  n

 of 

 Nnn  ,where zVzx                       (11) 

so that the trajectory of the original high-dimensional state vector x in Eq. (2) can be accurately 

approximated by the projection matrix V in relation to a considerably reduced vector z of order n. 

In other words, the original state vector is represented by a linear combination of column vectors 

from the projection matrix V. Therefore, in this type of model reduction, the choice of the 

projection space V is very important. As the projection matrix, eigenvectors (Kim et al. 1986) and 

Ritz vectors (Wilson 1985) have been used in many engineering cases. 

The Arnoldi process (Freund 2000, Bai 2002, Rudnyi et al. 2006) via implicit 

moment-matching is the most efficient way to compute a reasonably accurate subspace V for 

model reduction. Provided that the subspace V is found using this method, the original Eq. (2) is 

projected onto it. Multiplying the result by V
T
 yields the following reduced-order system 

  )()()()( tttt rrrr FzKzCzM                           (12) 

 VMVM
~T

r                                (13a) 

 VCVC
~T

r                                (13b) 

 VKVK
~T

r                                (13c) 

 FVF
T

r                                 (13d) 

Here, we assume that the linear combination of the Krylov basis vectors obtained by considering 

only the undamped stationary rotor-bearing system constitutes a good approximation of the 

dynamic characteristics of the damped rotating rotor-bearing system. 

In the case of the moment-matching method for a proportionally damped dynamic system, it 

can be shown that if the projection matrix V is chosen from a Krylov subspace of dimension n as 

defined in Eq. (14), the reduced-order system matches the first n moments of the full-order system 

(Eid et al. 2007, Han 2012). 

 })(,,{span),(}{colspan 111111
FKMKFKFKMKV

  n
n K            (14) 

In more detail, the Krylov subspace is a subspace spanned by the original K
1

F and the vectors 

produced by consecutive multiplication of the matrix K
1

M with this vector up to n1 times. Its 
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resulting vectors form the basis for an n-dimensional subspace. Because the direct computation of 

the vectors is numerically unstable because of round-off errors, the Arnoldi process is used to 

construct an orthonormal basis. Moreover, because of the iterative nature of the Arnoldi algorithm, 

a reduced-order model (ROM) of any dimension ranging from one to the reduced order specified 

by the user can be obtained (Rudnyi et al. 2006). Note that the reduction of the dimensions of the 

system to n << N is achieved in Eq. (12), and therefore it is possible to efficiently compute the 

damped eigenvalue problem. Here, the QEP of the reduced-order system is efficiently solved in 

MATLAB (The MathWorks 2011). 

 

2.3 Quadratic eigenvalue analysis by Krylov subspace-based MOR 
 

It can be assumed that the responses of the free vibration of the reduced damped system in Eq. 

(12) have the forms 

 tet ̂ˆ)( ψz                                 (15a) 

 tet 
ˆ

ˆˆ)( ψz                                (15b) 

 tet 
ˆ2 ˆˆ)( ψz                                (15c) 

where nψ̂  is the n-dimensional vector of the amplitudes, and ̂  is the complex frequency of 

the reduced-order system. Substituting Eq. (15) into Eq. (12) gives the following QEP of the 

reduced-order system 

 0ψKCM  ˆ)ˆˆ( 2
rrr                            (16) 

Using a 2n-dimensional vector w defined as 
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the QEP in the displacement space is transformed into the state space in the same way as the 

previous full-order system, that is 
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Thus, the QEP of the reduced-order system given in Eq. (16) is transformed into the following 

2n-dimensional first-order eigenvalue problem 

 0ηAE  ˆ)ˆ( rr                               (19) 

in which 
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We expect that the complex eigenvalue i is equal to i̂  and the eigenvector iψ  is equal to 

inψV ˆ  for some order k, which is lower than the order of reduced system used for the projection 

(n), that is 

 ii  ˆ                                 (21a) 

 nkiini  ,,1whereˆ ψVψ                      (21b) 

It is necessary to note that in the suggested MOR for the QEP resulting from the Campbell 

diagram analysis, the generation of projection subspace V is independent of the rotational velocity, 

, because the reduced-order matrices are given by 

 VMVM
~T

r                                (22a) 

 )()(
~

11 VGVVCVVGCVVCVC
T

S
T

S
TT

r                (22b) 

  VKVK
~T

r                                (22c) 

where CS represents the structural damping matrix, and G1 is the gyroscopic matrix evaluated at  

= 1 rad/s. In this case, the projection subspace is obtained from Eq. (14) using 

 N









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






1

1

F                               (23) 

In this approach, because the generation of V is independent of the rotational velocity, it can be 

preserved as a parameter, and only one projection is necessary for each system matrix, irrespective 

of . This results in better computational performance for the calculation of Campbell diagrams 

using ROMs.  

 

 

3. Numerical examples 
 
3.1 Turbomolecular pump 
 

At present, the TMP is one of the most frequently used pumps to generate and maintain high 

and clean vacuum conditions in industry. Higher performance requires a higher rotational pumping 

speed; thus, in the TMP design currently used, rotordynamic problems such as those dealing with 

the critical speed are of increasing concern (Chiang et al. 2009). As shown in Fig. 1, the FE model 

for a TMP rotor system consists of a cylindrical rotor with eight-stage blades and a shaft supported 

by two sets of ball bearings (brgA and brgB in Fig. 1). The material used in the shaft is stainless 

steel; its Young’s modulus, Poisson’s ratio, and density are E=193 GPa, =0.31, and =7,450 

kg/m
3
, respectively. The rotor is made of an aluminum alloy (AL 2024-T6), and it has a Young’s 

modulus E=72.4 GPa, Poisson’s ratio =0.33, and density =2,780 kg/m
3
. The stiffness 

coefficients of the isotropic brgA and brgB bearings used for QEP are KXX = KYY = 40×10
6
 N/m 

and KXX = KYY = 20×10
6
 N/m, respectively. 

The blades have different shapes and sizes at each stage; they are replaced with a lumped mass 
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element to construct the FE model. Table 1 lists the geometrical properties of the blades at each 

stage of the TMP rotor used for the FE model. The stages are numbered from top to bottom, as 

shown in Fig. 1. The FE model has 124,989 elements, and the total number of DOFs is up to 

378,012. 

A Campbell diagram analysis of the model is performed, as shown in Fig. 2. The Campbell 

diagram is evaluated with the full-order model (FOM) and an angular velocity up to 2,500 rad/s, 

which is the operational spin speed of the rotor system. For the plot of the diagram, QEP, as 

expressed in Eq. (5), is solved for ten different spin velocities. The intersection point between the 

first forward whirling frequency curve and the excitation line (1  spin) indicates the critical speed 

of the TMP rotor system. Fig. 2 shows some whirling mode shapes of the TMP rotor system at the 

operational spin velocity. 

In terms of numerical accuracy, the damped frequencies between the FOM and ROMs are 

compared at three rotational velocities (see Tables 2-4). The percentage of relative error is 

calculated from the relation 100  (fROM  fFOM)/fFOM. 

In this example, ROMs of order 40 and 50 are used to calculate the damped frequencies. Table 

2 lists the damped frequencies for the case when the rotational velocity is 0 rad/s, i.e., no rotor 

spin. The frequencies approximated by the suggested method are extremely accurate. For instance, 
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Fig. 1 TMP rotor system 
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Fig. 2 Campbell diagram for the TMP rotor system 

 

  
(a) First backward whirling (174.9 Hz) (b) First forward whirling (285.1 Hz) 

  
(c) Third backward whirling (745.1 Hz) (d) Third forward whirling (870.6 Hz) 

Fig. 3 Whirling mode shapes of TMP rotor system 

 

 

the ROM of order 40 gives the largest relative error, at about 0.007%. It should be noted that the 

ROM of order 40 seems to already have convergence up to the ninth mode. At the rotational 

velocity of 1,250 rad/s, the approximate damped frequencies are also very accurate (see Table 3). 

The ROM of order 40 gives the largest relative error about 0.03%. When the rotational velocity  

= 2,500 rad/s, the approximate damped frequencies are also very close to those obtained in the 

FOM. In this case, the largest relative errors are about 0.17% for n=40 and 0.14% for n=50. It 

should be noted that higher-order ROMs have smaller relative errors and yield accurate damped 

frequencies up to higher modes than lower-order ROMs. 
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Table 1 The geometrical properties of the blades at each stage of the TMP rotor 

Stage No. 
Mass 

(kg) 

Center of gravity Mass moment of inertia 

C. G. (mm) IXX (kgmm
2
) IYY (kgmm

2
) IZZ (kgmm

2
) 

1 0.363 308.8 2273.5 2273.5 4524.6 

2 0.314 282.2 2145.2 2146.1 4287.9 

3 0.306 264.9 2283.0 2283.0 4564.1 

4 0.290 249.7 2580.6 2580.5 5160.2 

5 0.205 238.4 2024.5 2025.0 4048.9 

6 0.163 225.8 1667.2 1667.2 3334.0 

7 0.134 213.6 1416.3 1416.3 2832.1 

8 0.107 201.8 1129.2 1129.2 2258.1 

Total 1.882 260.9 17515.0 17516.4 31010.0 

 
Table 2 Comparison of damped frequency between FOM and ROMs ( = 0 rad/s) 

Mode 

No. 
Whirl 

Damped frequency Relative error (%) 

FOM 

(N=378,012) 

ROM 

(n=40) 

ROM 

(n=50) 

ROM 

(n=40) 

ROM 

(n=50) 

1 BW 245.820 245.820 245.820 -0.0001 -0.0001 

2 FW 245.820 245.820 245.820 0.0001 0.0001 

3 BW 418.799 418.799 418.799 -0.0000 -0.0000 

4 FW 418.801 418.801 418.801 -0.0001 -0.0001 

5 BW 806.176 806.175 806.175 -0.0001 -0.0001 

6 FW 806.789 806.788 806.788 -0.0001 -0.0001 

7 BW 1062.452 1062.451 1062.451 -0.0001 -0.0001 

8 FW 1062.471 1062.452 1062.452 -0.0018 -0.0018 

9 - 1194.486 1194.401 1194.401 -0.0071 -0.0071 

 
Table 3 Comparison of damped frequency between FOM and ROMs (=1,250 rad/s) 

Mode 

No. 
Whirl 

Damped frequency Relative error (%) 

FOM 

(N=378,012) 

ROM 

(n=40) 

ROM 

(n=50) 

ROM 

(n=40) 

ROM 

(n=50) 

1 BW 210.967 210.998 210.993 0.0147 0.0121 

2 FW 270.618 270.638 270.635 0.0074 0.0061 

3 BW 376.544 376.589 376.580 0.0120 0.0096 

4 FW 490.476 490.644 490.612 0.0342 0.0277 

5 BW 775.423 775.668 775.668 0.0316 0.0316 

6 FW 838.244 838.519 838.519 0.0328 0.0328 

7 BW 1039.830 1039.928 1039.904 0.0094 0.0071 

8 FW 1087.395 1087.521 1087.489 0.0116 0.0087 

9 - 1194.394 1194.394 1194.394 0.0000 -0.0000 

 

 

We have demonstrated the numerical accuracy of ROMs used to calculate approximate damped 

frequencies for a Campbell diagram analysis. Next, we compare the efficiencies of the 

computation times for calculating the damped frequencies. The calculations were performed using  
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Table 4 Comparison of damped frequency between FOM and ROMs (=2,500 rad/s) 

Mode 

No. 
Whirl 

Damped frequency Relative error (%) 

FOM 

(N=378,012) 

ROM 

(n=40) 

ROM 

(n=50) 

ROM 

(n=40) 

ROM 

(n=50) 

1 BW 174.918 175.010 174.993 0.0524 0.0429 

2 FW 285.158 285.206 285.198 0.0167 0.0141 

3 BW 354.919 355.005 354.987 0.0243 0.0191 

4 FW 586.169 587.142 586.965 0.1661 0.1358 

5 BW 745.152 746.078 746.078 0.1243 0.1243 

6 FW 870.620 871.775 871.775 0.1327 0.1327 

7 BW 1018.200 1018.568 1018.482 0.0362 0.0277 

8 FW 1116.713 1117.349 1117.191 0.0569 0.0428 

9 - 1194.371 1194.372 1194.372 0.0001 0.0001 

 
Table 5 Computation times for the Campbell diagram analysis 

Computation time (s) FOM 
ROM 

n=40 n=50 

Total DOF 378,012 40 50 

Meshing in ANSYS 16 16 16 

Quadratic eigenvalue analyses in ANSYS 4,633 - - 

Processing of the FULL files - 79 79 

Generation of Krylov vectors - 1,036 1,062 

Quadratic eigenvalue analyses in MATLAB - 40 51 

Total time 4,649 1,171 1,208 

 

 

ANSYS and MATLAB on an HP workstation xw8400 with dual Xeon 5160 processors and 32 GB 

RAM. 

In the case of the FOM, the quadratic eigenvalue analyses for the Campbell diagram were 

performed in ANSYS using the DAMP method because MATLAB crashed with a memory 

overflow. The calculation of the Campbell diagram using the FOM took about 4,649 s. On the 

other hand, ROMs of n = 40 and 50 had substantially less computational costs of 1,171 and 1,208 

s, or, 25.1% and 25.9% of that of the FOM, respectively. For the ROMs, the total computation 

time included the processing of the assembled global matrix files (.FULL files in ANSYS) to 

extract system matrices, the process of generating Krylov vectors using the Arnoldi algorithm, and 

quadratic eigenvalue analyses in MATLAB. The use of ROMs seemed to be very efficient for 

performing the Campbell diagram analysis, although extra computations were necessary, such as 

for the preparation of system matrices, matrix factorization, and the generation of Krylov vectors. 

 

3.2 Nelson and McVaugh rotor 
 

The second numerical example is a Campbell diagram analysis of the rotor-bearing system 

studied by Nelson and McVaugh (Nelson et al. 1976) (see Fig. 4). The rotor system consists of a 

flexible rotor with one rigid disk supported by two orthotropic bearings. The Young’s modulus, 

Poisson’s ratio, and density of the shaft material are E=200 GPa, =0.3, and =7,850 kg/m
3
,  
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Fig. 4 Nelson and McVaugh rotor 
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Fig. 5 Campbell diagram for the Nelson and McVaugh rotor 

 

 

respectively. The stiffness coefficients of the two identical orthotropic bearings are KYY=KZZ= 

35.03×10
6
 N/m and KYZ=KZY=8.756×10

6
 N/m. The rigid disk is modeled using a lumped element 

with a mass of 1.401 kg, a diametral moment of inertia IYY=IZZ=13.6 kgmm
2
, and a polar moment 

of inertia IXX=2 kgmm
2
. The FE model for the rotor system has 55,949 elements, and the total 

number of DOFs is up to 169,757. 

Fig. 5 shows a Campbell diagram of the model evaluated using the FOM with an angular 

velocity of up to 10,000 rad/s, the operational spin speed of the system. To plot the diagram, the 

QEP expressed in Eq. (5) is solved for six different spin velocities. The intersection points 

between the forward whirling frequency curves and the excitation line indicate the critical speed of 

the rotor. Fig. 6 shows some whirling mode shapes of the rotor at the operational spin velocity. 

The damped frequencies calculated from ROMs are compared to those obtained from the FOM  
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(a) First backward whirling (142.6 Hz) (b) First forward whirling (256.2 Hz) 

  
(c) Second backward whirling (598.5 Hz) (d) Second forward whirling (781.9 Hz) 

Fig. 6 Whirling mode shapes of Nelson and McVaugh rotor 

 

 

in the case of four rotational velocities (see Tables 6-9). In this example, ROMs of order 25 and 30 

are used to calculate the damped frequencies because these orders of ROMs are high enough to 

obtain accurate damped frequencies. Table 6 lists the damped frequencies for the case when the 

rotor does not spin. The approximate frequencies using an ROM of order 25 are very accurate, and 

the largest relative error is approximately 0.004%. This means that the ROM of order 25 seems to 

already converge up to the 10th mode. Table 7 lists the damped frequencies for the rotational 

velocity of 2,000 rad/s. The approximate damped frequencies show good agreement with those of 

the FOM. For instance, ROMs of order 25 and 30 give the largest relative errors of approximately 

0.01% and 0.007%, respectively. At the rotational velocity of 6,000 rad/s, the approximate damped 

frequencies are also accurate (see Table 8). The ROMs of order 25 and 30 give the largest relative 

errors of approximately 0.07% and 0.04%, respectively. When the rotational velocity =10,000 

rad/s, the approximate damped frequencies are still close to those of the FOM. In this case, the 

largest relative errors are approximately 0.17% for n=25 and 0.1% for n=30. From the above 

comparison, a significant improvement in the computational efficiency is observed for the 

Campbell diagram analysis using the Krylov-subspace based MOR, with minimal loss of accuracy. 

It should also be noted that higher-order ROMs generally yield more accurate damped frequencies 

for the highest mode than lower-order ROMs. 

In order to check the stability of each mode, the real parts of the eigenvalues need to be 

investigated. The real parts of the eigenvalues, i, are called as the system damping exponents and 

a positive damping exponent indicates system instability in the linear sense. For simplicity, the 

damping exponents for the rotational velocity of 10,000 rad/s are listed in Table 10. In this case, as 

a damping for the rotor system, Rayleigh damping with =0.172 s is assumed to increase the 
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Table 6 Comparison of damped frequency between FOM and ROMs (=0 rad/s) 

Mode 

No. 
Whirl 

Damped frequency Relative error (%) 

FOM 

(N=169,757) 

ROM 

(n=25) 

ROM 

(n=30) 

ROM 

(n=25) 

ROM 

(n=30) 

1 BW 185.145 185.144 185.144 -0.0002 -0.0002 

2 FW 203.636 203.636 203.636 -0.0001 -0.0001 

3 BW 634.998 634.999 634.999 0.0002 0.0002 

4 BW 654.837 654.850 654.850 0.0020 0.0020 

5 FW 727.071 727.066 727.066 -0.0008 -0.0008 

6 FW 805.690 805.679 805.679 -0.0014 -0.0014 

7 - 959.530 959.530 959.530 -0.0000 -0.0000 

8 BW 1733.581 1733.580 1733.580 -0.0001 -0.0001 

9 FW 1733.999 1733.998 1733.998 -0.0000 -0.0000 

10 BW 2000.409 2000.328 2000.328 -0.0041 -0.0041 

 

Table 7 Comparison of damped frequency between FOM and ROMs (=2,000 rad/s) 

Mode 

No. 
Whirl 

Damped frequency Relative error (%) 

FOM 

(N=169,757) 

ROM 

(n=25) 

ROM 

(n=30) 

ROM 

(n=25) 

ROM 

(n=30) 

1 BW 179.827 179.826 179.826 -0.0003 -0.0004 

2 FW 209.397 209.398 209.398 0.0003 0.0003 

3 BW 632.942 632.936 632.933 -0.0010 -0.0015 

4 BW 654.434 654.442 654.441 0.0012 0.0010 

5 FW 730.143 730.131 730.128 -0.0017 -0.0020 

6 FW 805.838 805.881 805.880 0.0054 0.0053 

7 - 959.530 959.530 959.530 0.0000 0.0000 

8 BW 1727.130 1727.132 1727.132 0.0001 0.0001 

9 FW 1740.493 1740.495 1740.495 0.0001 0.0001 

10 BW 1977.952 1978.168 1978.099 0.0109 0.0074 

 

Table 8 Comparison of damped frequency between FOM and ROMs (=6,000 rad/s) 

Mode 

No. 
Whirl 

Damped frequency Relative error (%) 

FOM 

(N=169,757) 

ROM 

(n=25) 

ROM 

(n=30) 

ROM 

(n=25) 

ROM 

(n=30) 

1 BW 160.827 160.828 160.828 0.0011 0.0010 

2 FW 231.831 231.834 231.834 0.0012 0.0012 

3 BW 618.868 618.943 618.909 0.0121 0.0065 

4 BW 652.354 652.386 652.377 0.0050 0.0035 

5 FW 750.819 750.876 750.851 0.0076 0.0043 

6 FW 807.523 807.565 807.553 0.0052 0.0037 

7 - 959.529 959.529 959.529 0.0000 0.0000 

8 BW 1713.921 1713.937 1713.937 0.0010 0.0010 

9 FW 1754.056 1754.072 1754.072 0.0009 0.0009 

10 BW 1892.842 1894.183 1893.681 0.0708 0.0444 
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Table 9 Comparison of damped frequency between FOM and ROMs (=10,000 rad/s) 

Mode 

No. 
Whirl 

Damped frequency Relative error (%) 

FOM 

(N=169,757) 

ROM 

(n=25) 

ROM 

(n=30) 

ROM 

(n=25) 

ROM 

(n=30) 

1 BW 142.692 142.691 142.690 -0.0010 -0.0013 

2 FW 256.293 256.294 256.294 0.0005 0.0004 

3 BW 598.558 598.765 598.670 0.0346 0.0187 

4 BW 649.681 649.753 649.733 0.0110 0.0080 

5 FW 782.007 782.175 782.089 0.0214 0.0105 

6 FW 811.772 811.854 811.833 0.0101 0.0076 

7 - 959.528 959.527 959.527 0.0000 0.0000 

8 BW 1700.690 1700.745 1700.742 0.0032 0.0031 

9 FW 1767.867 1767.913 1767.912 0.0026 0.0025 

10 BW 1805.330 1808.451 1807.257 0.1729 0.1067 

 
Table 10 Comparison of damping exponent between FOM and ROMs (=10,000 rad/s) 

Mode 

No. 
Stability 

Damping exponent Relative error (%) 

FOM 

(N=169,757) 

ROM 

(n=25) 

ROM 

(n=30) 

ROM 

(n=25) 

ROM 

(n=30) 

1 Stable -1.430 -1.430 -1.430 0.0021 0.0019 

2 Stable -2.701 -2.700 -2.700 -0.0105 -0.0106 

3 Stable -21.102 -21.107 -21.106 0.0201 0.0179 

4 Stable -23.077 -23.077 -23.076 0.0001 -0.0017 

5 Stable -29.576 -29.563 -29.566 -0.0433 -0.0338 

6 Stable -34.846 -34.852 -34.850 0.0177 0.0119 

7 Stable -49.767 -49.767 -49.767 -0.0000 -0.0000 

8 Stable -159.408 -159.400 -159.401 -0.0053 -0.0045 

9 Stable -165.626 -165.623 -165.623 -0.0018 -0.0020 

10 Stable -196.834 -196.988 -196.929 0.0783 0.0484 

 
Table 11 Computation times for the Campbell diagram analysis 

Computation time (s) FOM 
ROM 

n=25 n=30 

Total DOF 169,757 25 30 

Meshing in ANSYS 10 10 10 

Processing of the FULL files - 46 46 

Generation of Krylov vectors - 63 68 

Quadratic eigenvalue analyses in MATLAB 5,880 15 17 

Total time 5,890 134 141 

 

 

magnitude of damping exponents because the undamped system has nearly zero damping exponent 

values. The approximate damping exponents calculated from ROMs maintain a level of accuracy 

similar to that of the FOM as the damped frequencies do. Generally, it has been reported for the 

moment matching methods that stability and passivity are not necessarily preserved in the 
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resulting reduced-order model, so that usually post-processing is needed to realize these properties 

(Bai 2002). In this numerical example, the stability is preserved and the stability of each mode can 

be identified by the approximate complex eigenvalues using ROMs. 

In terms of numerical efficiency, the computation times of the ROMs are compared with that of 

the FOM (see Table 11). In the case of the FOM, the quadratic eigenvalue analyses for the 

Campbell diagram were performed in MATLAB using the “eigs” command. The calculation of the 

Campbell diagram using the FOM took about 5,890 s. On the other hand, ROMs of n=25 and 30 

gave substantially reduced computational costs of 134 and 141 s, or, 2.3% and 2.4% of that of the 

FOM, respectively. The computational efficiency was higher than in the first example because a 

different solver for QEP was used for the FOM in this case. As previously mentioned, the FOM of 

the first example used the DAMP solver in ANSYS to calculate QEP. 

A considerable time reduction is obtained in the computation of Campbell diagram analyses by 

using ROMs. The extra computation time needed to extract the system matrices and to generate 

Krylov vectors is minor compared to the quadratic eigenvalue analysis of the FOMs. Note that the 

computation times listed here may vary slightly, depending on the configuration and condition of 

S/W and H/W used for the calculation. 

 

 

4. Conclusions 
 

This study has demonstrated that reduced-order modeling using Krylov vectors can play an 

important role in reducing the numerical costs of a rotordynamic analysis. The MOR based on a 

Krylov subspace via moment matching significantly speeds up the Campbell diagram analysis 

used to investigate the critical speeds and stability of rotor-bearing systems. Specifically, the 

following conclusions can be drawn from this study. 

(1) The basic assumption of the suggested MOR that the linear combination of the Krylov basis 

vectors obtained by considering only the undamped stationary rotor-bearing system constitutes a 

good approximation of the complex eigenvalues of the damped rotating rotor-bearing system was 

shown to be reasonable in the two illustrative examples. This approach allows a significant 

reduction in the computation time, while retaining the essential rotordynamic characteristics and 

necessitating no modification to the existing FE models. 

(2) In the suggested MOR for the QEP resulting from a Campbell diagram analysis, the 

generation of projection matrix V is independent of the rotational velocity . This approach is 

very efficient because it is possible to repeat the QEP simulation using the same reduced system 

by changing only the operating rotational velocity, which can be preserved as a parameter in the 

process of model reduction. 

Therefore, large-scale rotordynamic FE models, which have the problem of high computational 

cost for Campbell diagram simulation because of the repeated quadratic eigenvalue analyses, can 

be efficiently handled using the suggested MOR. The suggested approach can also be applied to an 

unbalanced response analysis, which necessitates the calculation of frequency responses at 

numerous frequencies of interest. 
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