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Abstract. Closed-form solutions arc analytically derived for stochastic properties of earthquake ground
motion fields, which are conditioned by an observed time series at certain observation sites and are
characterized by spectra with uncertainties. The theoretical framework presented here can estimate not
only the expectations of such simulated earthquake ground motions, but also the prediction errors which
offer important information for the field of engineering. Before these derivations are made, the theory
of conditional random fields is summarized for convenience in this study. Furthermore. a method for
stochastic interpolation of power spectra is explained.
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1. Introduction

The theories or methodologies regarding random fields with the observed data as conditions,
which we call “conditional random fields” (CRF), have been investigated from various standpoints
by many researchers (for example, Kawakami, er al. 1989, 1992, Borgman 1990, Ditlevsen 1991,
Vanmarcke and Fenton 1991, Kameda and Morikawa 1992, 1994). The majority of these methodo-
logies. however, requires a priori information about the spectral characteristics of random fields
for their formulations. According to the circumstances, the requirements for the formulations
may restrict the applicability of the methodology to real phenomena. Thus, Morikawa and Ka-
meda (1996) have proposed a method for the stochastical interpolation of power spectra using
the observed earthquake ground motions. An earthquake ground motion field, conditioned by
a time series and recorded at certain observation sites, can be simulated with their results. The
following question then arises: How trustworthy are the simulated ground motions?

It is important to offer answers to this question, because such information is often used as
a basis for decision making in various engineering problems. The purpose of this study is to
analytically derive the stochastic properties of CRF with spectral uncertainties. Before we discuss
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them in detail, in the following sections, the theory of CRF is summarized within the limits
of the information needed for this study. Then, we explain a method for the stochastic interpola-
tion of power spectra using the observed earthquak ground motions.

2. Summary of the theory of conditional random fields

The theory of conditional random fields deals with a stochastic time-space field that is conditio-
ned by deterministic time functions observed at certain discrete locations in space (Kameda
and Morikawa 1992, 1994, Morikawa and Kameda 1993). The theory is summarized in this
section within the limits of the information needed for this study. For a more detailed description
and relevant studies, the reader is referred to a recent publication by Kameda and Morikawa
(1994).

2.1. Formulation

The conditional random field in this study is represented in terms of a multi-variate stochastic
process that is conditioned by a set of deterministic time functions. This type of representation
facilitates the analytical treatment of probabilistic conditioning. It is assumed that the stochastic
processes, before they are conditioned by deterministic time functions, are zero-mean stationary
Gaussian processes.

The multi-variate conditioned stochastic process is represented by Ui(tlu, (1), i=1, 2, .., m),
j=m+1, .., n at site j. Here, u;(r) stands for the deterministic time function specified at site
i. For simplicity, U;(tlu;(r); i=1, 2, .., m) will be denoted by U;(tlcnd.), in which the word “cnd.”
means that the quantity under discussion is conditioned by u;(r); i=1, 2, .., m. This term will
be used in the same context for other quantities. Without loss of generality, we hereafter assume
that m=n—1 and discuss the conditioned stochastic process U, (t|cnd.). This is because its stochas-
tic characters are independent of the site numbers and can be treated just as if it were a determini-
stic time function, once its stochastic characters have been clarified.

Stationary Gaussian processes such as Ui(t), i=1, 2, .., n can generally be expanded in a
Fourier series as

U()=2 (Ay cos axt+By sin al) (=1, 2, ... n) (1)
k

Fourier coefficients Ay and By at frequency w,=2n£(=1, 2, ... n, for a fixed k) are mutually
independent zero-mean Gaussian random variables, and their covariance matrix, Ay, 1s repesented
by Si and S;; in which Su=3S;(a) is a power spectral density function associated with U;(r)
at frequency @, and S;=S; (@) is a cross spectral density function between U;(r) and U;() at
frequency @, (Kameda and Morikawa 1992).

The deterministic time functions used for conditioning, u;(); i=1, 2, ... n—1, are treated as
realized values in the random field. They can be represented in a similar way to Eq. (1) as

wi()= (ay cos at+by sin @) @i=1, 2, .. n—1), )
k

where a; and b, denote realized values of Fourier coefficients corresponding to 4; and By,
respectively.
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2.2. Analytical derivation of basic parameters

The 2n-dimensional joint Gaussian probability density function (PDF) is derived for Fourier
coefficients 4, and By (i=1, 2, .., n) at frequency @; by means of their covariance matrix A;.
The 2-dimensional conditional joint PDF can then be obtained for Fourier coefficients 4,, and
B, conditioned by realized values ai and by (i=1. 2, ... n—1).

It has been analytically proven that conditioned Fourier coefficients 4,, and B, are mutually
independent Gaussian variables (Kameda and Morikawa 1992). Modifying the results derived
by Kameda and Morikawa (1992), with respect to conditional mean values {44lcnd.) and (Bl
cnd.), the following relations can be obtained between the conditional mean values and power
spectra S, at site »n:

<Ar1klcnd-> = aAk V Snnk (33)
<Bnklcnd-> = gy V Srmk - (3b)

where a4, and @, are defined as functions of au, by, and Sy (=1, 2, ., n—1, j=1. 2. ..
n). In the same way, conditional variances 673, and o3, .a are written as

2 — 2 — 2 —
GAnk lend = GB,;k lend — O nk lend — Q Sm//\ 5 (4)

where @, depends only upon S;. A detailed derivation of Egs. (3) and (4) is shown in Appendix
A ,
From Egs. (1), (3), and (4), the conditional mean value and the variance of conditioned stochas-
tic process U, (tlend.) yield, respectively,

ﬂu,,umf_(t):; (/S (@, cOS @1+ ap, sin o)} ()
Oiptena = 2. S (6)

3. Stochastic interpolation of ground motion spectra

A method for stochastic interpolation of ground motion spectra, based on the work of Morikawa
and Kameda (1996), is summarized here considering the assumption that the ground structure
is weakly inhomogeneous.

In order to consider the variety of ground structures, the stochastic spectra in this method
are divided into terms reflecting the deterministic feature of the ground structure and the random-
ness from the deterministic term. Thus, power spectrum S;( f) at site / (/=1, 2, .., n) is represented
by Si( /)=S7( 1) S%( f). where S7:( £)=S%( f)/S1( f). 8% ( f) denotes the deterministic site effects
which are indepndent of events, and S;( f) is a random component with different stochastic
properties for every event.

If U(r) is a stationary Gaussian process with zero-mean, its “raw” power spectrum follows
the chi-squared distribution with two freedoms. However, since power spectrum S;( f) is ordinarily
estimated in smoothed values for the “raw” power spectrum, its probability distribution may
be a ¥ distribution with many freedoms. Thus. it is substituted it with the log-normal distribution
in order to treat the power spectra as stochastic processes in the frequency domain. The marginal
PDF of power spectrum S;; is then represented as
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Fig. 1 An example of the psudo-earthquake ground motion field.
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Hereafter, we treat the stationary Gaussian processes derived from the logarithm of S;(f) as

In S;(f)=In S%(f)+In S/u(f) (i=1. 2, .. n). (8)

On the one hand, In §,,(f) is determined at site » where there is no information on the
ground motion, using the linear interpolation of observed values at site i (i=1, 2, .., n—1). This
is due to the supposition that S;(f) is a deterministic value changing gradually in the study
area. On the other hand, the stochastic properties of In S’,,,,( /). conditioned by observed values,
are immediately obtained through the theory of CRF.

From the above procedure, we can estimate site effect §7,,(f) and random component S/, (f)
at site # even though we have no a priori information with respect to the spectral characteristics.
Therefore, the conditional properties of S, (f) will be deermined by A, and {0, cOmbining
S (f) and ST, (f) as follows:

A—nl\ lend = ln S'r”” (/;\) + E[ln _S'T;m (/A)l('nd], (()a)
é/-‘nl\ lend. - Var[ln S/-;m (]fl'\) | Cnd‘ ]' (gb)

where §’,m (f) is an estimated value of S, (f). It should be noted that in this method the prediction
errors for the power spectra can be estimated using Eq. (9).

4. Conditioned stochastic processes with random spectra

At first, Fig. I shows an example of the psudo-earthquake ground motion field simulatd under
the power spectra obtained in the previous section using the simulation technique of conditional
random fields.

Essentially, the cross spectra using the observed time series must be identified before the simula-
tion of the wave fields. For the sake of convenience, however. a certain cross spectrum is used
as a target in this simulation. because sufficient investigations have not been conducted to identify
the cross spectra. as mentioned in a previous section. The simulated wave field shown in this
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figure may include at least two estimation errors: one caused by the estimation of the random
power spectra and the other caused by the estimation of wave fields. In this section, we discuss
errors in the estimation of the wave fields with random power spectra. leaving the way to identify
cross spectra to future studies.

From various points of view, some researchers have established a methodology for the derivation
of the estimation errors of the conditional random fields obtained through the spectra given
deterministically as a priori information (Kawakami and Ono 1992, Vanmarcke and Fenton
1991, Kameda and Morikawa 1992, 1994). However, such a methodology is not sufficient for
considering random fields with stochastic spectra. Thus, we extend straightforwardly the theory
of conditional random fields and present the theoretical framework of the fields with stochastic
spectra. In cases where we know deterministically the spectra at site n, for which observed data
is not available, the conditional mean and variance of conditioned stochastic process U, (tlcnd.)
are represented by Egs. (5) and (6), as shown in Section 2. In the case of U, (t|cnd.) with stochastic
spectra, Uy, ia(f) and %y, e 1n Egs. (5) and (6), respectively, must be treated as random variables
in order to be dependent on the probabilistic distribution of power spectrum S, introduced
in Eq. (7). Their probabilistic distributions are derived analytically.

The PDFs of conditional mean {4,.lcnd.) and conditional variance oy, of the Fourier
coefficient are discussed. The PDF of {B,cnd) may be derived by replacing A4 with B. Incorpora-
ting Egs. (3) and (4) into Eq. (7) and making the change in variables for the PDF, the following
equations are obtained:

ln(—y—“—A ' >——A”'-"- ’

— l l aAk 2
o cexp | =5 py 10.
Sutns, (M) \/2—7; Co Han p 3 C (10a)
2 2

Unk

__ 1 o 1 ln(ﬂak_)-&'“ 10b
fUnk(Unk) - 7277 gm Uk exXp b) gﬂ\' . ( )

where uy,,={Auxlcnd) and V=07 4a. From the moment of the first or second order in Eq.
(10), the expected values and variances are derived as

E [,UA,,;(] = —%élz_/:_— V E [Snnk] (1 la)
exp [—L ]

8
Var [uy, J=@y ke —e™t) (11b)
E [Unk] = ak E [Srmk:' (1 ]C)
Var [v.]=a Var [S,.]. (11d)

As the next step, the expectations and variances for each mean iy, .4(f) and variance o%, |
of the conditional stochastic process Uj(rlcnd) are discussed, using Eq. (11), at the site where
observed data is not available. The data is derived from the central limit theorem and variances
are Gaussian variables because u,, and v, can be represented by a linear combination of
the harmonic components shown in Egs. (5) and (6). From Egs. (5), (11a), and (11b), conditional
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mean value py, q(f) of conditional stochastic processes U,ftlcnd) is a non-stationary Gaussian
process with the following time-varying expectation and variance:

E [Hlﬁ,,\cnd_(t)]:; exp [% +£8ﬁ:| “{ay, cos wt+ay, sinwt} (12a)

Cuk

’é‘;n&
Var [y, a@®1=2. ke ® —e* )+ {a, cos? @+ a’y,+a’s, sin® ol (12b)
k

From Egs. (6), (11c), and (11d), conditional variances ¢y, |.q of U, (tlcnd.) are Gaussian variables
with the following expectation and variance:

Elo’y,imal= EA: @ exp [%] (13a)

Vaf [O'ZU,,lcnd.] == Z azk (eé':nk_ 1) " exp [2A'nl\ + Clnk]- (13b)
k

Furthermore, the probabilistic distribution of standard deviation oy, ..q of U,(tlcnd) can be
derived using Eq. (13) as

217 1 ( nzu,,"“E [O-ZUn\L‘mI.] >Z:|, (14)

Un
fnUn (Uun) - 7 Var O'Zu,, h-nd‘] €Xp l: 2 Var[crzu,, Icnd.]

where 1y, =0u,0q- If it 1s necessary to explicitly describe the moment of 7y, of the first or second
order, it can be done (see Appendix B). However, in the case of a numerical calculation of
the expectation and variance of 7y, by means of a digital computer, it may be prompter to
use a numerical integration instead of the moment of 7, which is analytically derived.

For cases in which S, is given deterministically as S,,x=S,. it has been proven that mean
value uy,|qq(f) and variance o7y, ¢, Which are represented by Egs. (5) and (6), respectively, for
the conditioned stochastic process at site n, U, (tlcnd), coincide with E [uy,1.4(f)) in Eq. (12a)
E[oy,10a] in Eq. (13a), respectively, and variances Var u, ..«(f)] and Varl 0%y, .s] are identified
with zero (see Appendix C). This means that no contradiction exists between the theory of
conditional random fields and the extended one.

In order to visualize the above analytical results, we numerically calculate the conditional
mean values and variances using the set of data presented in Fig. 1. Fig. 2 shows an example
of the expectations and uncertainties of the conditional mean values and variances for the condi-
tioned stochastic processes. In this figure, the uncertainties of y, ...(f) are represented by on
inverse number of the coefficient of variation, 1/8y,.4(t). The expectation of conditional mean
values E [y, .a(®)] and 1/8y,.4(f) converge to zero with the distance between the observation
site and the estimating site. The tendencies of the expectations are similar to those of the conditio-
nal mean values calculated under the ‘deterministic power spectra.” Furthermore, the values
for 1/8y,1a(f) show that the errors in estimation for uy,..(f) are relatively the largest at the
midmost site. The expectation and standard deviation of the conditional variance, ¢?y, ..., increase
with the distance from the observation site.

Note that in this calculation, the standard deviation of the conditional mean values and varian-
ces, namely. \/ Varl gy, (1)1 and \/Var (6%, .« ). are very small in comparison to expectations
E L)) and E Lo?y,10a - Varl iy, q(6)] and Varlo?y, ... ] depend on the coherence (in quefre-
ncy domain) of the power spectra between any two sites. This suggests that we can estimate
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Fig. 2 Expectations and uncertainties of the conditional mean values and variances for the conditioned

stochastic processes.

wave fields with satisfactory accuracy even though the estimation errors caused by the spectra
are not considered in cases where a high coherency in the quefrency domain is identified. Further
investigation into this problem is needed, however, from the viewpoint of quantitative analysis.

5. Conclusions

The theory of conditional random fields and a method for stochastic interpolation of power
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spectra were summarized. The basic framework of stochastic properties was then analytically
derived for conditional random fields with spectral uncertainties. From this, we discussed quantita-
tively the prediction errors, which are the uncertainties of estimated values for simulated earth-
quake ground motion fields. Furthermore, the derivation was justified using numerical calcula-
tions.
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Appendixes
A Derivation of Egs. (3) and (4)

We show a representation of the conditional mean and variance of the stochastic process
at site n, which is conditioned by the deterministic time functions observed at n—1 sites. These
values have been derived by Kameda and Morikawa (1992) using the elements of the inverse
matrices of covariance matrices for Fourier coefficients. Based on the results shown in the refere-
nce (Kameda and Morikawa 1992), Egs. (3) and (4) are derived from the calculation of inverse
matrices.

A 1. Notations
The parameters and notations used throughout this section are defined.

S« € IR Power spectrum of a stochastic process at site p.
S, € C  Cross spectrum between stochastic pocesses at site p and site g;
Spdw)= K, (W) +jQp(w)= \/ Spp(W)SsWw) coh,(w) e/t
(where K,,(w), Q,,(w) € IR, j=+/—1).
RA, € IR™ Covariance matrix of Fourier coefficients at frequency @, in real number.
Ay € C"  Covariance matrix of Fourier coefficients at frequency @, in complex number.
Z, € C  Fourier coefficient in complex number at frequency @ and site p; Z,=A,+j By
(where 4,, By € IR)

X Transposed matrix of X.
[x1,, (p. q) element of matrix X.
VA Complex conjugate of Z.
R[Z] Real part of Z.

FlZ] Imaginary part of Z.

{Z) Expected value of Z.

o'z Variance of Z.

A2 Complex representation of conditional means and variances
At first, the conditional mean and variance of the stochastic process conditioned by the n—1
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deterministic time functions, derived by Kameda and Morikawa (1992), are rewirtten concisely
using complex numbers and matrices. Next, they are represented as a function of power spectrum
S, at site n.

The covariance matrix for Fourier coefficients 4,, and B, is represented by

- Sllk 0 o Ko “ank-
0 Sk e ank Ky
R A K lek o Koy _Qan
—Awi: —Qllk Ko " Qo Kou . 15)

L Klnk ank vt Snnk 0
——ank Klnk O Snnk

Extending the definition of power and cross spectra by means of 2X2 matrices such as

_ S,,I,k O quk - quk
Sppi(‘[ O Sppk jla Squ:[ quk K " jl, (16)

P4

unit matrix £ and imaginary unit .l':[(l) *é] are introduced. Then, Eq. (16) can be rewritten
as follows:

S,,l,k:S,,/,kE (173)
Squ :K,,qk E+ quk J. (17b)
Substituting Eq. (16) into Eq. (15), the covariance matrix is reduced to

=S S S Sy ™
Srzk Sor Sow o S
—AL = ST}k S;k}k S o S (18)

Aw

% %k
‘S?izk S2nk S3nk o Snnk
e -

Hereafter, since the 2X2 submatricies are treated as scalar, S, and S, are represented as
S, and S, respectively. From Eq. (18), it is observed that A, is a Hermitian matrix of order
n.

Let’s define complex Fourier coefficients Z,,=A, E+B,J (p=1, 2, ... n) by means of real
Fourier coefficients 4,« and B, The realized values of Fourier coefficients are then z,, =a, E+ b, J
(p=1, 2, .., n—1). Under the above complex representation, we rewrite the conditional means
and variances of the Fourier coefficients conditioned by »—1 deterministic time functions, which
are shown in the reference (Kameda and Morikawa 1992), as follows:

n—1
pz; [A;]]/m * Epk
Zlend)=—"— -
g [Ak I]nn

5 5 1
Ot lend = Onkclend. = TAT (19b)

(19a)
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In order to repersent Eq. (19) as a function of S,,,, inverse matrix A;' is further modified.
Dividing A, in Eq. (18) into four submatrices as

Ak'__ Allk . A12k n—1
— (20)
At A |}
n—1 1
we obtain the well-known representation for inverse matrix A;', namely,
oA =] QA Wt (PO Py —P, |, 21
@yl
where B i B
P= AT A
Q= Ap— (AL ATk Aix (22)

For the Fourier coefficients in complex number, we define two column vectors 'Z,=[Z Zy
« Zu) and ‘z,=[zy Zx *** z,-1:J). Noting that Q, is scalar, substituting Eq. (21) and z, into
Eq. (19) yields

(Zulendy="(z¥) Al A (23a)

2 —
Onklend — Qk

= Ao —"(A* 1) ATk Apge (23b)

Eq. (23) corresponds to the extension of the equation derived by Hoshiya and Kuwana (1993)
to a complex representation.

A3. Conditional mean values

Eq. (23a) is again represented in real number to derive the conditional mean of the conditioned
stochastic process at site » as a function of power spectrum S, Expanding the right-hand
side of Eq. (23a), its real and imaginary parts become, respectively,

n—1

<Ank \Cnd->: Z {(apqunk+Bpk Qan) R [ATllk]pq_*—(_apk Qan+B[1qunk) I[A]lk]pq}

rg=\

n—1

<Bnk icnd-> = Z {(&pk Qan —I;pk ank) R [ATllk]pq + (&pk ank + Bpk Qan) I [ATllk]pq} (24)

pg=1

Replacing K, and Q.. with power spectra S, coherence function coh,. and phase lag function
O, the following forms can be obtained:
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<Anklcnd~> = aAk V Snnk
<Bnk|cnd-> = aBk V Snnk9 (25)

where

n—1 _
Q= Z, V'S gk O N@pic COS BBy sin B,) RLATL D,

pg=

’f‘(—&pk sin 0an+Bpk COos Oq,,k) I[A]_llk]pq}

n—1 _
g — Z, V/Sak Ohguic (@i sin G —byi 08 Gpu) R LA, (26)

pg=

+(épk COS ean+5pk Sin gan) [[AT]lkqu}

Ad4. Conditional variances
The expansion of Eq. (23b) yields only the real part as

n—1

O'gkl('nd.:Snnk'_ Zl {(Kpnqunk+Qpnqunk) R [ATI}(]pq+(‘Kpnqunk+Qpnqunk) I[AYl]k:lpq} (27)

Pq4=
Arranging Eq. (27) as a function of power spectrum S, at site n, we obtain the following form:
o'znk lend. = Qg Srmks (28)

where

n—1
= 1— Z] \[sppk Sqquthnk Cthnk : {R [ATl]k],,q cos(epnk - aan)+l [A_l_l]k:lpq Sin(efmk— ean)}- (29)

Pq4=

B. 1st and 2nd order moments of the standard deviation of U, fticnd.)

The 1st and 2nd order moments of the standard deviation of the conditioned stochastic proces-
ses can be analytically derived with spectral uncertainties, which are introduced as ny, in Eq.
(14) as follows (Gradshteyn, et al. 1990):

2T (v) D ( Y ).ex [_ri_ (E [0 s ] ] 30)
v/ 271 Var 6¢ncna ] ™\ V2B P 8B 2Var| 6gniona ]
E[Oﬁmcnd,]
Var[ Ul%,, !cnd.] ’

I'( ) denotes the gamma function and D,( * ) denotes the parabolic cylinder function of order
V.

E[(nu)]=

where k=1, 2, f7'=2 Varl oy, imals ¥=— a=1/4, e=—1, vv=3/2, and »=2.

C. Relation between stochastic processes with ‘stochastic’ spectra and fixed’ spectra

In this section, we show that mean value uy,.«(t) in Eq. (5) and variance o7, . in Eq. (6)
of conditioned stochastic process U, (tlcnd.) at site n coincide with E [ ty,1.(f)] in Eq. (12a) and
E [64,1ma] in Eq. (13a), respectively, when power spectrum S,,,=S,.x at site # is deterministically
known.

In this case, the probability density function of S,,., determined by Eq. (7) with the & function,
can be replaced as follows:
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fi‘nnk (Snnk): S(Snnk—gnnk) (3 1)

We derive the expected value and variance of the conditional mean, and the expected value
and variance of the conditional variance for conditioned stochastic processes on the basis of
this equation.

C.1. Conditional mean

Sicne the conditional means of Fourier coefficients 4, of the conditioned stochastic process
are determined by Eq. (3), the probability density functions of {A4,,lcnd.), corresponding to Eq.
(10a), can be obtained as

f:u/'uk (,uAnk): Auk . 6 . _Snnk ) (32)
aAk aAk

Using this equation, the 1st and 2nd order moments for u,, are reduced to aAkS,mk and oy, S,,,,k,
respectively, and therefore, E [y, 1= a4, S, and Var[ g, ]=0. This means that E [, ..(f)] coin-
cides with the equation which is set at S,,,=S,x in Eq. (5).

C.2. Conditional variance

Since the conditional variances of the Fourier coefficients of the conditioned stochastic process
are determined by Eq. (4). the probability density function of 6y . corresponding to Eq. (10b),
is

. 1 D &
fvnk(vnk)z_a_k— . 5(7: —Snnk)- (33)

The 1st and 2nd order moments for v, yield akS,,,,k and or’kszm,k, respectively, from Eq. (33).
Therefore, E [0, 1= &S, and Var[v,]=0. It is observed that substituting S, into S, in Eq.
(6) yleldS E [Ol%n\cnd.]-
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