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Abstract. The damage of concrete subjected to multiaxial complex loading involves strong anisotropy
due to its highly heterogeneous nature and the geometrically anisotropic characteristic of the microcracks.
A comprehensive description of concrete damage is proposed by introducing a fourth-order anisotropic
damage tensor. The evolution of damage is assumed to be related to the principal components of the
current states of stress and damage. The unilateral effect of damage due to the closure and opening
of microcracks is taken into account by introducing projection tensors that are also determined by
the current state of stress. The proposed damage model considers the different kinds of damage mechani-
sms that result in different failure modes and different patterns of microdefects that cause different
unilateral effects. This damage model is embedded in a thermomechanically consistent constitutive equa-
tion, in which hardening and the triaxial compression caused shear-enhanced compaction can also
be taken into"account. The validity of the proposed model is verified by comparing theoretical and

experimental results of plain and steel fiber reinforced concrete subjected to complex triaxial stress histo-
ries.
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1. Introduction

The nonlinearities of concrete behavior under load are caused by two distinct microstructural
changes that take place in the material. One is the permanent deformation of the cement matrix,
which is comparable to the slip-type plastic flow encountered in metals. The other one is the
development of microcracks and microvoids that are commonly associated with damage accumu-
lation. While the plastic deformations are controlled by local shear stresses, the degradation
of elastic properties that accompanies damage accumulation is highly oriented and introduces
anisotropy even in an initially isotropic material. Thus, the mechanical properties such as ultimate
strength and fatigue life depend strongly on the initiation, growth and coalescence of microcracks.
The geometrical anisotropy of microcracks induces highly localized stress fields and anisotropic
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material properties, which, in turn, result in anisotropic damage. On the other hand, the closure
of microcracks under certain stress states causes partial stiffness recovery. This different response
to compression and tension stresses is generally referred to as the unilateral effect, and the
mechanics of crack opening and closing has an. important effect on the material response to
cyclic loads. Also the failure modes are typically complex and depend on the pattern of existing
microdefects and the stress history at a given point. For example, when load induces extension,
mode I cracking may be predominant, but cracks can also propagate in mode II or IIL

The constitutive behavior of concrete subjected to complex loading histories has received con-
siderable attention in recent years, and its significance concerning numerous practical applications
is being recognized by the profession (ASCE, 1982; ASCE, 1991). Since the two behavior characte-
ristics mentioned above are relatively independent, it appears logical to base a mathematical
formulation on a combination of two different theoretical frameworks: the theory of plasticity
is well suited to describe the permanent deformations observed in concrete under both monotonic
and cyclic loads, whereas continuum damage mechanics is capable of reproducing the degradation
of elastic properties as well as the associated anisotropies that result from damage accumulation
under repeated load application.

Reviews of constitutive models of concrete with and without fiber reinforcement can be found
in the literature (Peng, er al. 1997, Paskova 1994, Fang 1996). Herein, a thermomechanically
consistent constitutive theory shall be described. It is an extension of the model originally devel-
oped by Fan and Peng (1991), Peng and Ponter (1994). It has been shown (Peng, et al. 1996)
that this theory includes Chaboche’s viscoplastic model (Chaboche 1983), the endochronic consti-
tutive formulation of plasticity (Valanis 1980) and many other constitutive models as special
cases (Chaboche 1986, Watanabe and Atluri 1986).

Recently, this theory was used to develop a thermomechanically consistent continuum damage
model for concrete (Peng, er al. 1997). In this work, a modified damage model for concrete
is proposed that is embedded in the framework of the thermomechanically consistent equation.
Below, a brief summary of the model will be given. Further details can be found in Peng,
et al. (1997).

2. Constitutive equations

In the past several years, Fan and Peng (1991), Peng and Ponter (1994) proposed thermomechan-
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Fig. 1 A simple mechanical model for thermomechanically consistent constitutive equation.
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ically consistent constitutive equations for dissipative materials based on a simple mechanical
model shown in Fig. 1. It uses n sets of springs C, (with stiffness ¢,) and dashpot-like blocks
a, (with damping coefficient a,) to describe the irreversible behavior of the material, while the
elastic response is described by the spring E (with macroscopic shear modulus u). Assuming
concrete is an initially homogeneous and isotropic continuum, and in the case of isothermal
and small deformation conditions, one has

§= i Q(’)’ Q(’):ér:(ei_p(r)) (l)
r=1

where e’ represents the inelastic deviatoric strain tensor; u is the shear modulus; s is the deviatoric
stress tensor; p” and QY are the tensors representing, respectively, the rth deviatoric internal
variable and the corresponding generalized force that satisfy the following dissipation inequa-
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It is easily seen that ¢, is non-negative and non-decreasing so that it can be regarded as a
generalized time measure, and Eq. (2) is satisfied provided the damping coefficient tensor a, (r=1,
2, .., n) is positive definite. By defining damage as the reduction of load-carrying area (Lemaitre
1987) and noticing the effect of the hydrostatic stress on the mechanical properties and the
hardening induced by inelastic deformation, it is reasonable to assume that (Peng, er al. 1997)

¢ =CUIM, a=fp a,U)M @)

where M is the fourth-order damage effect tensor, f, a hardening function, C, and a, are material
parameters for the undamaged and nonhardening state and J; the first invariant of a stress
tensor. Combining Eqgs. (3), (4) and the differential of Eq. (2), one obtains

d0"=C. M: de— aQ%zp+dM: M~ QP +C, % a1, Q" )
1
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The elastic response can also be obtained from Fig. (1) as
s=2ue—€)=2uM: (e—¢) (7

in which ¢ and e are elastic and total deviatoric strain, respectively.
Following the procedure similar to that to obtain the deviatoric response, the volumetric compo-
nent of the response can be obtained as

m
Ok — Z O'kk(r) (8)
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do-kk(r) = Er MH dgkki - aH(r)O'kk(r)dZH + dMHMH7 : O'kk(r) (9)

in which g, denotes inelastic volumetric strain; My is a volumetric damage variable; dzy is
defined in terms of de¢’, and hardening function fy' as follows

dzy= j’,ﬂ déy=de'y] (10)
If we choose
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the effect of deviatoric inelastic deformation on the volumetric response can be taken into account.
In Eq. (11), f4 is the volumetric hardening function and fp4 a coupling parameter. If fpy is very
large the deviatoric inelastic deformation will not markedly affect the volumetric response, other-
wise the development of any deviatoric deformation will cause volumetric deformation. The elastic
volumetric response can be expressed as

0= 3KM (& — &1’ ) (12)
Combining Egs. (1), (5) and (7) yields the following elastoplastic constitutive equation
(14N orr dos € arg aa
ds—(1+ > ) (CM: de+ Ly dM: M™": s+dH) (13)
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Similarly one can obtain the following relation by combining Eqgs. (8), (11) and (12)
G\ G _
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G= > E,. dH= Y[~ ay/oudzy+dMM;;' o] (16)
r=1

r=1

3. Damage variables and evolution

With assumptions introduced by Peng, er al. (1997), the damage evolution can be expressed
as

dD=f\(o, D) dzptfAo, D) dzy (17)

and the direction of which is assumed to be related to that of the current state of actual stress,

ie.,

3
dD= A.Z. dD, n® ® n® (18)
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where n(k) (k=1, 2, 3) is the eigenvector of the actual stress s. Further, in order to embed this
damage tensor into the constitutive framework, the following fourth-order damage tensor is de-
fined

1
Dy (D)= 4 84Dy + &+ 51‘1Djk +8Dy) (19)

If the unilateral effect is ignored, then the fourth-order damage effect tensor M can be defined
as
M=I1,—D, or My,=Ij—Djy (20)

where I, denotes the fourth-order identity tensor. My can be derived by combining Egs. (12)
and (19) without considering the unilateral effect:

My=1-D;=1— %tr (D) 2D
If the unilateral effect is considered, the damage tensor can be defined as follows
Djy=Dju(D), where D=(P*+ a,P"):DD, (22)
where
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(see Peng, et al. 1997). H( - ) is the Heaveside function and qp is a material parameter reflecting
the unilateral nature and the pattern of microdefects in the damaged material.
Similarly,

My=1—[H(ow)+ axH(— 0u)1D; (24)
In the above the actual stress can be calculated by

S:M*l: S, O'kk:MyilO'kk (25)

4. Application and verification
4.1. Specification of damage evolution

The damage evolution rule is specified as follows

(26)
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The proposed damage model is able to describe the unilateral nature, the pattern of micro-
defects, the damage mechanism and the failure mode of the damaged materials by an appropriate
choice of the material parameters ap, ay, Ap and Ay (see e.g., Peng, et al. 1997).

On the other hand, the dependence of concrete responses on hydrostatic stress is considered
by introducing the following relation,

C.UN=C'p), a,J)=a'plJ), r=0, 1, .., n) (30

where C, and a, are assumed to vary with respect to J; by the same rule so that @, will be
independent of J; (see Eq. (6)).

Following the procedure proposed by Peng, et al. (1997), one can determine the material para-
meters and constants in the present model.

4.2. Analysis for the response of concrete under triaxial loading case

The proposed damage model is applied to the analysis of the behavior of concrete subjected
to triaxial loading and verified by the experimental results obtained by Scavuzzo, er al (1983).
Assuming for the hardening functions f, and fy the following simplest form

fD:1+ﬂDzDﬂ fH:1+ﬂHZH (31)

the coupling parameter fpy to be constant, and adopting the following p(/;) obtained by Scavuzzo,
et al. (1983),

pJ)=1-000932/,—2.084*10"%/,> (MPa) (32)
and choosing =3 and m=1, the material constants can be identified as:

E=42000MPa, v=02, C,,,'= 16830, 560, 370, a,,= 12000, 447, 423, E,=61200MPa
@' =320, Ap=15, Apy=403, Bp=20, Ay=0, By=15 np=2, ap=05, =05, fon=18 (33)

where Ay and ny is not necessary to be given for negative volumetric stress if Az=0 (see Egs.
(26) and (27)).

Fig. 2 shows the responses of the concrete specimens subjected to the deviatoric stress under
hydrostatic pressure 56.3 MPa (8 ksi). The specimens were loaded monotonically or cyclically
in stress space along the hydrostatic axis with gradually varying stress up to 563 MPa (8 ksi)
followed by deviatorically varying stress paths denoted by TC, SS and TE without any change
in the existing volumetric stress. Path designators TC, SS and TE stand for uniaxially compressive,
purely shear and uniaxially tensile cyclic load path in the deviatoric stress plane, respectively
(Scavuzzo, et al. 1983). The horizontal axis represents the three strain components, and the vertical
axis the stress component with maximum absolute value. The stress histories in the three directions
and the corresponding stress-strain curves are marked by X Y and Z, respectively.
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Fig. 2 Responses of concrete under hydrostatically cyclic stress paths followed by different paths at
563 (8 ksi) deviatoric stress plane.
(a) path TC; (b) path TE; (¢c) path SS
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Fig. 2(a) shows the results for load path TC. Nonlinear volumetric deformation is observed
as hydrostatic stress increases and under load cycling. When stress varies within the fixed deviato-
ric stress plane, it is observed that the experimental volumetric strain keeps developing in addition
to the corresponding increment of deviatoric strain. In the direction where the sign of deviatoric
stress coincides with that of hydrostatic stress, inelastic deformation increases faster. In other
words, additional irreversible volumetric deformation occurs in the subsequent deformation pro-
cess although there is no change in the hydrostatic stress. This kind of phenomenon (ie., the
shear-enhanced compaction under triaxial compression path) is well described by the present
model.

The analytical and experimental results for load path TE under the hydrostatic stress of 56.3
MPa are shown in Fig. 2(b). The same phenomenon is observed as for load path TC, although
in the deviatoric stress plane the deformation had changed from axial compression to axial
tension. It is seen in the unloading/reloading process that in the tensile direction the experimental
unloading slope is less than the analytical one. This is probably due to the existence of macro-
cracks that increase the deformation in the tensile direction when tensile stresses are large.

The response of the concrete subjected to the stress history along load path SS under hydrostatic
stress of 56.3MPa is shown in Fig. 2(c). Although tensile stress sy and compressive stress sz
vary by identical values in the fixed deviatoric plane, a marked difference in the corresponding
strain increments can be observed. In direction Y there is no deviatoric stress, but strains develop
in the compressive direction. This demonstrates the effect of inelastic deviatoric deformation
on the volumetric response.

The model was also used to reproduce the results obtained experimentally by Sinha, er al.
(1964) for strain-controlled or stress-controlled monotonic and cyclic loads. In Fig. 3(a) the dashed
curves represent respectively the experimental response envelopes of 28.1 MPa (4 ksi) concrete
(Sinha, er al. 1964), which nearly enclose our analytical results. The experimental and the calculated
results for cyclic stress-controlled process are shown in Fig. 3(b) and (c), respectively. It is seen
that in the cyclic process, inelastic strain accumulates in each cycle but with increasing rate
as the cyclic deformation proceeds, and at last leads to the fracture of the material, although
the applied stress is much smaller than maximal strength of the material. It is seen the calculated
results are in reasonable agreement with the experimental ones (see Sinha, er al. 1964).

It should be pointed out that, for the results shown in Fig. 3, generally, in the vicinity of
the peak, the deformation ceases to be homogeneous and the data are more properly interpreted
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Fig. 3 Stress-strain curves of 4000 psi concrete subjected to monotonic compression and uniaxially cyclic

stress history. (a) Monotonic compression, (b) Cyclic compression (experimental), (c) Cyclic comp-
ression (calculated).

as load-deflection data, so it might be more appropriate to consider a specimen as a structure,
the resulting deformation field of which could be analyzed by the corresponding computational
code. On the other hand, it was also pointed out that macrocracks may develop soon after
the peak stress (Sinha, er al. 1964). In the proposed damage model, it is assumed that the non-
homogeneity of deformation and the macrocracks are smeared and homogenized, so it may
still be valid in a phenomenological description for the material response in the vicinity of
the peak and in the post-peak region.

4.3. Analysis for the response of short fiber reinforced concrete

The above constitutive relationship is also applied to the analysis of randomly distributed
short fiber reinforced concrete under triaxial loading and compared with experimental results.

In the present work concrete containing small amounts of fibers is considered. Such small
amounts of fibers have little effect on strength, but there is a large increase in ductility, toughness
and energy dissipation capability. This mechanism can be phenomenologically described by
assuming the damage to be related to the fiber volume fraction V; in the respective damage
parameters (see Eq. (26)). Among these parameters ¥, and yy are found to be the most sensitive
to V; Here we assume yp to take the following form

Yo="p+ (}’Dz+ Yo3J l) V}ym (34)

where the dependence of 7, on J; is considered due to the fact.that the pull-out of fibers becomes
more difficult at higher values of J;. The form of yy can be determined in a similar way.
The experimental results obtained by Chern, er al. (1992) are used for the calibration of the
material constants. The concrete consists of type I Portland cement, local crushed limestone
aggregate with a maximum size 9.5mm (3/8 in) and crushed fine aggregate. Steel fibers used
were 19mm (3/4 in.) in length and 043mm (0.017 in.) in equivalent diameter, straight with a
shallow notch on one side of each fiber. The concrete was designed for a 28-day strength of
20.65 MPa (3000 psi), with the weight ratios cement:fine aggregate:coarse aggregate:water=1.00:1.50:
2.50:0.58. The steel fiber content covers 0 (plain concrete), 1, and 2 percent of the volume of
the mixture. The function p(J)) can be determined as follows by using the compressive failure
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Fig. 4 Effect of confining pressure on o;-¢ relations of concrete with different fiber contents.
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meridians of the plain concrete
pJ)=1—-00817,—10"Y;? (MPa) (3%
By choosing »=3 and m=2, the material constants are determined as:

E=10375MPa, v=035  C,,'=684022359, @,,3=7253732.5,
E|,=232000,5075Mpa,  @4'?=375050, Ap=10, Ap=2600, pp=210, Ay=0,
Bu=320, np=12, =10, [fo#=0, ¥1234=05171,001205 (36)

Fig4 shows the stress-strain relations in z-direction of plain and fiber reinforced concrete
specimens under different confining pressures. In computation, the loading is stress-controlled
when the confining pressure is non-zero (the load path is also shown in Fig. 4), otherwise the
loading is strain-controlled so that the “softening” of the material can be described. It is seen
that the strength of the concrete increases markedly as the confining pressure increases, while
the increase of fiber volume fraction V; slightly increases the material strength. A satisfactory
agreement between the experimental and theoretical results is observed in a wide range of the
confining pressure and fiber content. In the case of zero confining pressure, although differences
between calculated and experimental results can be found, for fiber reinforced concrete the softe-
ning part of the curves is also well-described by the proposed model.

5. Conclusions

A comprehensive description of the damage of concrete was proposed and embedded in a
thermomechanically consistent constitutive equation. This model takes into account the coupling
between volumetric and deviatoric responses, which includes both the effect of hydrostatic stress
on the inelastic deviatoric deformation and the additional inelastic volumetric deformation caused
by inelastic deviatoric deformation (shear-enhanced compaction under triaxial compression path).
A fourth-order damage effect tensor is introduced to describe both the anisotropic damage by
assuming that damage develops in the principal directions of the effective stress, and the unilateral
effect due to opening and closure of microcracks by introducing the projection tensors P* and
P~ determined by the current state of stress. The proposed damage model was applied to reprodu-
cing the response of plain and short fiber reinforced concrete subjected to complex loading
histories and proved capable of describing the main characteristics of concrete.
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Notations

The following symbols are used in this paper:

a,, a, —initial and damaged damping coefficients of the rth dashpot-like block, respecti-
vely

a, =rth scalar damping coefficient

b, =rth volumetric damping coefficient

C, =initial stiffness coefficient of the rth spring

Cry € =fourth-order initial and damaged stiffness tensors of the rth spring

D, D =second order damage tensor and fourth order damage tensor

D, D, =first and second invariances of D ,

D =damage tensor taking into account unilateral effect

E, =rth initial volumetric stiffness coefficient

e'. e, e —inelastic, elastic and total deviatoric strain tensors, respectively

fo. fiy  =deviatoric and volumetric hardening functions, respectively

for =coupling parameter taking into account shear-enhanced compaction

Ji =first invariance of stress tensor
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=initial and damaged elastic volumetric modulus

=damage effect tensor and volumetric damage effect variable, respectively

=kth eigenvactor of a second order tensor

=projection operators

=parameter taking into account the hydrostatic pressure on deviatoric response
=rth deviatoric internal variable

=rth generalized frictional force

=deviatoric stress tensor and effective deviatoric stress tensor

=generalized time for inelastic deviatoric and volumetric strain histories, respectively
=material parameter reflecting the unilateral effect on deviatoric and volumetric respo-
nse, respectively

=C,/a,, fading memory coefficient for the rth deviatoric dissipative mechanism
=fading memory coefficient for the rth volumetric dissipative mechanism
=deviatoric and volumetric hardening parameters, respectively

=generalized time measures for inelastic deviatoric and volumetric strain histories, res-
pectively

=material parameters reflecting, respectively, the deviatoric and volumetric stress states
on damage

=the fourth order damaged elastic shear modulus tensor and initial elastic shear modu-

‘lus

Ok, O =volumetric stress and its rth component

Ok

=effective volumetric stress

€' Eu» & —Inelastic, elastic and total volumetric strain, respectively





