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bond-slip behavior under cyclic loads
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Abstract. Bond-slip behavior between reinforcement and concrete under push-pull cyclic loadings is
numerically investigated based on a reinforcement model proposed in this paper. The equivalent reinfor-
cing steel model considering the bond-slip effect without taking double nodes is derived through the
equilibrium at each node of steel and the compatibility condition between steel and concrete. Besides
a specific transformation algorithm is composed to transfer the forces and displacements from the nodes
of the steel element to the nodes of the concrete element. This model first results in an effective use
in the case of complex steel arrangements where the steel elements cross the sides of the concrete elements
and second turns the impossibility into a possibility in consideration of the bond-slip effect in three
dimensional finite element analysis. Finally, the correlation studies between numerical and experimental
results under the continuously repeated large deformation stages demonstrate the validity of developed
reinforcing steel model and adopted algorithms.
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1. Introduction

It is well known that the load carrying capacity of reinforced concrete (RC) structure depends
on the bond between reinforcing steel and concrete; nevertheless, all design procedure is based
on insuring that bond failure does not occur even upon overload, that is, complete compatibility
between concrete and reinforcement which means perfect bond is usually assumed (Choi and
Kwak 1990). But this assumption is only valid in those regions where no or only negligible
stress transfer between the two materials occurs. In regions of high stresses in the contact interfaces
such as near cracks, however, the bond stresses are related to relative displacements between
concrete and reinforcing steel. The assumption of perfect bond in cracked zones would cause
infinitely high strains to explain the existence of a finite crack width. In reality, there are different
strains in the adjacent regions of the connections between reinforcing steel and concrete (Fig.
1). Moreover since the shear stresses transferred across interfaces in concrete such as crack surfaces
and bond surfaces have a significant influence on the behavior of concrete structures, the response
of RC structures in which shear plays an important role, such as over-reinforced beams and
shear wall, is much more affected by the bond-slip of reinforcing steel (Kwak and Filippou
1995).

To account for the bond-slip of reinforcing steel two alternative approaches have been proposed
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in the finite element analysis of reinforced concrete structures. The first approach makes use
of the bond-link element proposed by Ngo and Scordelis (1967). This element connects a node
of a concrete finite element with a node of an adjacent steel element. The link element has
no physical dimensions, i.e., the two connected nodes have the same coordinates. A bond-link
can be thought to consist of three springs, one parallel and the other two normal to the longitudi-
nal axis of the reinforcing steel. The second approach makes use of the bond-zone element
developed by de Groot, et al. (1981). In this element the behavior of the contact surface between
steel and concrete and the behavior of the concrete in the immediate vicinity of the reinforcing
bar is described by a material law which considers the special properties of the bond zone.
The contact element provides a continuous connection between reinforcing steel and concrete,
if a linear or higher order displacement field is used in the discretization scheme. Even though
many studies of the bond-slip relationship between reinforcing steel and concrete have been
conducted, considerable uncertainty about this complex phenomenon still exists because of the
many parameters which are involved. Especially the complication in numerical modeling caused
by taking the double nodes exacts that most finite element studies of RC structures do not
account for bond-slip of reinforcing steel.

In this study, an equivalent reinforcing steel model which can consider the bond-slip without
taking the double nodes is proposed and a specific transformation algorithm to solve the construc-
ted global equilibrium equation for each steel element is introduced. Moreover correlation studies
between analytical and experimental results are conducted with the objective to establish the
validity of the proposed model under monotonically increasing loads and repeated cyclic loads.

2. Numerical modeling of bond-slip behavior

2.1. Bond-slip

Since bond behavior is the interaction between reinforcing steel and surrounding concrete
and can be thought of as the shear stress or force between the two materials, it is influenced
by the stress levels in the bars and conditions of concrete around the bars. Moreover, bond

stresses in reinforced concrete members arise from the change in the steel force along the length
and the effect of bond becomes more pronounced at the end anchorages of reinforcing bars
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Fig. 1 Stress transfer mechanism by bond.
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and in the vicinity of cracks because the force in the reinforcing steel is transmitted to the
concrete by bond, or vice versa (Fig. 1).

Two basically different elements, namely, the bond-link element and bond-zone element, have
been proposed to date for inclusion of the bond-slip effect in the finite element analysis of
RC structures as mensioned above. In studies where the detailed local behavior is of interest,
the continuous bond elements such as bond-zone elements are most appropriate. In cases, how-
ever, where the overall structural behavior is of primary interest, the bond-link element provides
a reasonable compromise between accuracy and computational efficiency. Therefore, the bond-
link element is selected for representing the bond-slip effect in this study.

However, the use of bond-link element imposes the following restrictions on the finite element
mesh: (1) each reinforcing bar must be located along the edge of a concrete element, and (2)
a double node is required to represent the relative slip between reinforcing steel and concrete.
The bond stress at a certain location can thus be determined from the relative displacement
between concrete and steel. These previous restrictions lead to a considerable increase in the
number of nodes and elements in the case of complex structure, not only because of doubling
the number of nodes along the reinforcing steel bars, but also because the mesh has to be
tailored around the reinforcement layout. The complexity of mesh definition and the large number
of degrees of freedom has discouraged researchers from including the bond-slip effect in many
previous studies. To address some of these limitations of the bond-link element, an equivalent
reinforcing steel model considering the bond-slip effect without taking the double nodes is propo-
sed by condensing the steel nodes internally.

2.2. Adopted material properties

The properties of reinforcing steel, unlike concrete, are generally not dependent on environmen-
tal conditions or time and for all practical purposes steel can be assumed to exhibit the same
stress-strain curve in compression as in tension. Thus the specification of an uniaxial stress-
strain relation for steel is sufficient to define the material properties needed without introducing
the complexities of three-dimensional constitutive relations in the analysis of reinforced concrete
structures since the reinforcing steel is used in the concrete construction in the form of reinforcing
bars or wire. In this study the reinforcing steel is modeled with discrete one-dimensional truss
elements embedded in the concrete element. This representation of steel can be easily superimpo-
sed on the two-dimensional concrete element mesh where the nodes of the steel element do
not coincide with the nodes of the concrete element. A significant advantage of the discrete
representation, in addition to its simplicity, is that it can include the slip of reinforcing steel
with respect to the surrounding concrete. Besides to simulate the material property according
to the loading history, the stress-sirain relation proposed by Menegotto and Pinto (1973), which
can simulate effectively the material behavior under the initial yielding and also large deformation
stage after yielding, is adopted (Fig. 2). The basic stress-strain relation in the adopted model
can be expressed as fellows:

(1=b)-¢°

G() :b . 8”—+— (1+80R)]/R (1)

where ¢’ =(e—¢,)/(e, —¢,). 0°=(c—0,)o,—0,). b=E,/E, is the strain hardening parameter,
R=R,—a {/(a,+{) is the material constant to simulate the Bauschinger effect and the stress
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Fig. 2 Stress-strain relation of steel.

history, { expressed as the ratio between the yield strain and ¢, —¢, is the parameter representing
the strain history, and the values of material constants R,=20, a, =185, a,=0.15 obtained
from the experimental study are used in this study.

To account for the bond-slip effect it is necessary to construct a constitutive relationship between
bond stress and bond slip at representative location along the reinforcing steel. The bond stress
is determined from the change in steel stress over a certain measurement length, which is usually
taken equal to five bar diameters, and the relative slip is determined externally or internally.
It is, therefore, practically impossible to establish a local bond stress-slip relation since the meas-
ured bond stress-slip relation generally represents the average relation over the measurement
length. Moreover, the result is very sensitive to the experimental error because the bond stress
is derived from the change in steel stress, and the bond-slip relation also depends on the position
of the bars, the surface conditions of bars, the loading stage, the boundary conditions, and
the anchorage length of bars. In spite of these difficulties, several experimental bond-stress slip
relations have been proposed (Eligehausen, er al. 1983, ASCE 1982). There are also many simple
relations among the proposed models due to these difficulties (ASCE 1982). Since it is the objective
of this study to investigate the bond-slip behavior of reinforcing steel in more detail, a more
sopisticated bond-slip model is adopted in the correlation studies of anchored reinforcing bars
under monotonic and cyclic loads as shown in Fig. 3. These explicit expressions for bond stress-
slip relation are presented by Eligehausen, er al. (1983) based on many experiments and modified
to improve an initial bond-slip behavior by Zuifigar and Filippou (1990). The monotonic envelope
consists of an initial nonlinear relation t= 7, (u/u, )% valid for u<u |, followed by a plateau =1
for u,; <u<u, For u2u, t decreases linearly to the value of ultimate frictional bond resistance
7; at a slip value of u; which is assumed to be equal to the clear distance between the lugs
of deformed bars. As the unloading (curve ¢ in Fig. 3) and reloading (curve d in Fig. 3) are
repeated, the monotonic envelopes are updated (curve e in Fig. 3) by reducing the characteristic
bond stress values 7, and t; by a factor which is a function of the damage parameter d. The
damage parameter has the following form.

tN)=zr(1-d) 2
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Fig. 3 Bond stress-slip relation.

where 7, is the characteristic value of the virgin envelope curve and t,(N) is the corresponding
value after N cycles. The damage parameter depends on the total energy dissipated by the bond-

Y NFE, 1.1
slip process and is given by d=1—e HEED where E is the total dissipated energy, E, is the
|y

energy absorbed under monotonically increasing slip up to the value u; and is used as a normali-
zation parameter. More details can be found elsewhere (Viwathanatepa, et al. 1979).

2.3. Embedded reinforcing steel bond element

Based on the aforementioned material models, an equivalent reinforcing steel element which
can consider the bond-slip effect in spite of embedding in concrete element is proposed. Unlike
the classical bond models, the proposed model is considering the bond-slip effect without taking
double nodes by condensing out the steel nodes at the structural level. This requires separate
treatment of the entire reinforcing bar. To explain the derivation procedure a convenient free
body diagram is selected which isolates the steel element with the bond-link elements attached
at its end points as shown in Fig. 4. Fig. 4b shows the element before and Fig. 4c after deformation.
In Fig. 4, 7 and j denote the end points of the element, points 1 and 3 are associated with
concrete and points 2 and 4 are associated with the reinforcing steel at ends i and j, respectively.
The corresponding degrees of freedom of the reinforcing steel and concrete at each end are
connected by the bond-link element whose stiffness depends on the relative displacewment bet-
ween steel and concrete. With this assumption the stiffness matrix which relates the end displace-
ments along the axis of the reinforcing bar with the corresponding forces can be expressed

as follows:
P.l_[ K. K, {d}
{R}_[Km Kﬁ} d, 3)
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Fig. 4 Discrete reinforcing steel element with bond-slip.

where

_ Kbi 0 — —Kl;/' 0 _ K.s'.s'+Khi —K.\‘
K“—[ 0 be]’ Ka_[ 0 _Kh/]ﬂ K“_[ —K, KSA'+K12/':| @

k.=AE/L is the steel stiffness, k, =E,A=FE ,mmd ,L/2b is the stiffness of the bond-link parallel
to the bar axis at the corresponding end of the steel element where the dowel action is neglected,
E, is the slip modulus, 4 is the bar circumferential area tributary to one bond link element,
m is the number of bars of diameter, d, is the diameter of reinforcing bar, L is the spacing
of the bond links along the reinforcing bar, and b is the width of the member cross section.
The factor 2 appears in the denominator to account for the fact that it is usually convenient
to place bond-link element at both the top and bottom of the reinforcing bar element (ASCE
1982).

Since the finite element model only includes the concrete displacement degrees of freedom,
the degrees of freedom which are associated with the reinforcing steel need to be condensed
out from the element stiffness matrix before it is assembled into the structure stiffness matrix.
By applying static condensation of the steel degrees of freedom in Eq. (3) the following relation
between concrete displacements and corresponding forces results in:

{Pr=[Kx] - {d.} (5)

where
{P={P}-[K,] |K,] " - 1P} (©)
K% =Ko )= [Ko] - [Ko] ™' - [P (7

After some calculations for evaluating the inverse and carrying out the multiplications the equiva-
lent concrete element stiffness matrix [K*] can be expressed as:
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Fig. 5 Parameters and shape functions of embedded steel element.
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which is the local stiffness matrix of the reinforcing steel element including the effect of bond-
slip and it is now apparent that bond slip reduces the stiffness of the reinforcing steel element.
In case of perfect bond the bond stiffness terms k, and k, become infinitely large and the
stiffness matrix in Eq. (8) is reduced to the local stiffness of the embedded steel model with
perfect bond.

Since the end points of the reinforcing bar element do not generally coincide with the nodes
of the concrete element, the steel element stiffness matrix of Eq. (8) expressed relative to the
global coordinate system by applying a rotation matrix has to undergo another transformation
before it can be assembled together with the concrete element stiffness matrix. This can be
formally expressed by the following relation:

I:KGL]:[T2:|T.[TI]T'[Keq].y.l:Tl]'[sz C)]

where [ K, ], denotes the local stiffness matrix of the axially loaded reinforcing bar derived
in Eq. (8) and [ T, ] represents the transformation matrix to the global coordinate system expressed

by the following relation:
| cos@ sin@ O 0
[T']—[ 0 0 cosd sin9] (19)

Transformation matrix [ 7] can be derived with the procedure used to establish the consistent
nodal forces of the finite element method. When the 8-node isoparametric element is used in
the two-dimensional mesh representation of the member, the shape functions for nodes i, j,
k in Fig. 5 are N,;=(r,—1)-(2r;:— 1), N;=4r-(1—r;), N, =r-(2r:—1) where r,=c,/l:(Fig. 6). If the
reinforcing bar element crosses the concrete element boundary on sides 2 and 4 in Fig. 6, nodes
i, j and k correspond to node numbers 1, 8, and 7 on side 4 and node numbers 3, 4 and
5 on side 2, respectively. With the notation of Fig. 6 the transformation matrix [7>] has the
following form:

(11)

[4,00 0 004,4,
[sz“[o 0B, B,B;0 0 0]
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Fig. 6 Steel element embedded in concrete element.

where

| 2p*—=3p+1 0
A'_[ 0 2p2—3p+1] Az

Il

—dp’+4p 0 [2p*=p O
[ 0 —4p2+4p] AS_[ 0 p—p] @

BI:[2q2—3q+l 0 ]82:[—4q2+4q 0 ]83:[2q2—q 0 ] (13)

0 2q°—3q+1 0 —dq’+4q 0 2g°—q

p=ci/l\, g=c»/l; and 0 is the 2X2 null matrix (Fig. 6). In Eq. (11) the position of sub-matrices
A and B within the transformation matrix [ 75] is related to the side of the concrete element
which the reinforcing bar element crosses. If the reinforcing bar element crosses the concrete
element boundary on sides 1 and 2 in Fig. 6, the transformation matrix [ 7] takes the form:

_[A,4,4, 0 0000
[m_[o 0 B, B, 33000] (14

noting that the submatrix 4 and B are the same as before, but ¢, is now defined as shown
on the right hand side of Fig 6.

Moreover an additional step becomes necessary for determining the deformations and forces
in the reinforcing steel because the degrees of freedom associated with the reinforcing steel are
condenced out of the stiffness matrix in Eq. (5). Once the displacement increments at the nodes
of the concrete finite elements are determined for the current load increment, they can be transfor-
med by the matrix [7,] and [T>] to yield the concrete displacement increments {d.} at the
ends of the steel element in the direction of parallel to the axis of the reinforcing bar. Using
the second row of the matrix relation in Eq. (3) which expresses the condition of equilibrium
of the reinforcing bar element, the force and deformation increments in steel can now be determi-
ned by assembling the steel element matrices and imposing appropriate boundary conditions
at the ends of the entire reinforcing bar.
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(K Jdf=dP}—[K,]1d.}) (15)

The successive application of this relation along with appropriate conditions for the transition
from one element to the next element results in a transfer matrix solution method which offers
certain computational advantages over the direct solution method.

3. Solution algorithm for reinforcing steel (Transfer matrix method)

If the reinforcing bar is assumed to be subdivided into » elements, the equilibrium equation
of Eq. (15) for the kth element can be represented as Eq. (16):

{APJ =K, {Ad }+ (K (A} (16)
or can be explicitly written as follows:
{APZ }k: kx+kb1' _’k_,. k.{Adg }I‘_{ kb,"Adl }k (17)
AP4 “ks ké‘*"kbj Ad4 k[_,,"Ad3

where it should be noted that the concrete displacement increments Ad, and Ad; are known
from the global nonlinear finite element analysis of reinforced concrete structures. Solving Eq.
(17) for the force and displacement increment at node 4 (Fig. 4) yields:

an e {40 {40 )
{Aa% =Lol Ad, LR] Ad, 19
where 0
p L | —(kytky) k.s-'(kbf+khj)+kbi'kbi]
L0} k, [ ~1 k,+k, (19)
kbi' ksl_:kbj kb/ ‘
[R]*= (20)
ﬁf_ 0
k,

For the transition from the kth to the (k+1)th element using the force equilibrium and the
compatibility condition, Eq. (21) can be obtained

o} - ([ g e 2
{Aar2 “lad, S| o 1] ad, S =V ag, @D
and the substitution of Eq. (18) into Eq. (21) yields the following relation.

Apz}kﬂ: _ k.{Apz}k_ — {Adl}k

{Adz SRR VN St Y 3

where [QT*=[SI[Q]* and [RI*=[SI[R]*

Eq. (22) relates the force and displacement increments at the beginning of steel element k+ 1
with those of steel element k. By applying Eq. (22) successively to elements k—1, k—2. ... 2.
I and summing up the results, the following transfer matrix relation of Eq. (23) is resulted
in:
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{art = {204 - 80

—rorigr- {4 i {40 e {40

=[Q)-[0] "+ [Q]" {gsz}‘_@,@“;_ [QV-[RY" {j‘\f];}l

—---—[R]*’-{ﬁz;}k (23)

After replacing k+1 with n in Eq. (23) and applying Eq. (18) for element ». the following relation
between the forces and displacements at the two ends of the reinforcing bar can be obtained.

{2‘52}”:@]"-[@]”'- --[Ql" ‘{ ﬁ}l—@"-@" e [QF-[R]" {ﬁle}l

—«+-—[R]" {j‘j‘} 4

Since one boundary condition is known at each end of the reinforcing steel. after assuming
the second boundary condition at the starting end, Eq. (24) yields the force and displacement
at the other end of the reinforcing steel. As one condition is known at that end, the initial
assumption needs to be corrected until the known boundary condition at the far end is satisfied.
It should be noted that the transfer matrix method is applied during the correction phase of
the global solution algorithm. Consequently, the transfer matrix relations in Eq. (24) are linear
since no updating of the bond and steel stiffness takes place during the correction phase which
is based on the initial stiffness method. Thus, Eq. (24) can be solved very rapidly through a
series of multiplications and no iteration with the cyclic bond-slip model is required.

The satisfaction of equilibrium of the reinforcing steel by the transfer matrix method of Eq.
(24) yields the steel displacement increments. Since the concrete displacements at the ends of
the bar are also known for the current load increment, the relative displacements can be readily
determined. The state determination of the steel and bond elements can now be undertaken
yielding the new steel and bond forces and the updated stiffness matrices. The latter are only
needed at the beginning of a new load step, when the stiffness matrix of the structure is updated.
The substitution of the new steel and bond forces in Eq. (6) yields the equivalent nodal forces
at the global degrees of freedom and the calculated forces are subtracted from the applied load
increments to vield the unbalanced forces. The process continues until the convergence criterion
is satisfied.

3.1. Convergence criterion

The criterion for measuring the convergence of the iterative solution is based on the accuracy
of satisfying the global equilibrium equations or on the accuracy of determining the total displace-
ments. The accuracy of satisfying the global equilibrium equations is controlled by the magnitude
of the unbalanced nodal forces. The accuracy of the node displacements depends on the magni-
tude of the additional displacement increment after each iteration. The latter convergence criterion
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is used in this paper. This can be expressed as:

. 12

[Saay]
E;=————— <TOLER (25)
|[Say]

J

where the summation extends over all degrees of freedom j, d; is the displacement of degree
of freedom j, Adj’ is the corresponding increment after iteration i, and TOLER is the specified
tolerance.

In the nonlinear analysis of RC structures the load step size must be small enough so that
unrealistic “numerical cracking or unstability” does not take place. These numerical unstability
can artificially alter the load transfer path within the structure and result in incorrect modes
of failure. Crisfield (1982) has shown that such numerical disturbance of the load transfer path
after initiation of cracking can give rise to alternative equilibrium states and, hence, lead to
false ultimate strength predictions. In order to avoid such problems after crack initiation which
means the occurrance of bond-slip, the load is increased in steps of 2.5~5.0% of the ultimate
load of the member. The failure load is assumed to occur at a load level for which a large
number of iterations are required for convergence. This means that very large strain increments
takes place during this step and that equilibrium cannot be satisfied under the applied loads.
Obviously, the maximum number of iterations depends on the problem and the specified tolera-
nce, but a maximum of 30 iterations seems adequate for a tolerance of 1%. This is the limit
in the number of iterations selected in this study.

4. Numerical examples

In order to test the proposed reinforcing steel model with bond-slip, the response of anchored
reinforcing bars under monotonic pull-out and cyclic push-pull loads is studied. Viwathanatepa,
Popov and Bertero (1979) tested several anchored reinforcing bars simulating anchorage and
loading conditions in interior beam-column joints of moment resisting frames which are subjected
to a combinations of gravity and high laterial loads. #6, #8 and # 10 reinforcing bars were
anchored in well confined concrete blocks and were subjected to monotonic pull-out at one
end, monotonic pull-out at one end with simultaneous push-in at the other (called push-pull)
and cyclic push-pull.

Two specimens are selected for comparison with the proposed reinforcing steel model with
bond-slip. The first specimen is an anchored #8 bar in a well confined block of 25in. (63.5cm)
width, which corresponds to an anchorage length of 25 bar diameters. This specimen was subjected
to a monotonic pull-out under displacement control at one end only. The second specimen
also involves a #8 reinforcing bar with identical dimensions which was subjected to a cyclic
push-pull loading with gradually increasing end slip value. Both specimens have been the subject
of earlier analytical correlation studies by Viwathanatepa, et al. (1979), Ciampi, et al. (1982), Yanke-
levky (1985) and Filippou (1986). The material properties of concrete and reinforcing steel are
as fellows: the concrete cylinder strength is 4,700psi (330.5kg/cm’) for the specimen under monoto-
nic pull-out and 4,740psi (333.3kg/cm?) for the specimen under cyclic push-pull. The yield strength
of the reinforcing steel is 68ksi (4780kg/cm?), the yield strain is 0.23%, and the modulus of elasticity
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Fig. 7 Stress distribution along anchored reinforcing bar.

after yielding is assumed as 411ksi (28,900kg/cm?). Also the parameters used in the bond model
are equal to those used by Filippou, er al. (1983) and Filippou (1986) in earlier investigations,
namely: #,=0.02756 in (0.07cm), u,=007874in (0.2cm), u;=0.2756 in (0.7cm) and tv =2350psi
(165.2kg/cm?) (Fig. 3). In the study by Ciampi, et al. (1982) the bond-slip relation was modified
in the outer unconfined portions along the entire anchorage length. For the sake of simplicity
in the present study, the same bond stress-slip relation is used along the entire anchorage length.
Under cyclic push-pull loading conditions, this assumption leads to underestimation of the bond
resistance at the push-in end of the reinforcing bar. Twenty-five (25) steel elements of 1 inch
length were used in modeling the anchored reinforcing bar.

Figs. 7a-7d show the distribution of steel stresses along the anchorage length of the reinforcing
bar at different loading stages. The experimental results are compared with the analytical results
of Viwathanatepa, ef al. (1979), Yankelevsky (1985) and those of the present study. The result
of the present study shows the best agreement, particularly, with increasing load. It should be
noted that the model of Yankelevsky (1985) does not allow for yielding of the reinforcing steel.
The results by Viwathanatepa, er al. (1979) are from a linear finite element analysis since no
stress distributions are presented for the nonlinear model proposed in that study.
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Fig. 8 Stress-slip response of anchored reinforcing bar under cyclic push-pull (Analytical results).
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Fig. 9 Stress-slip response of anchored reinforcing bar under cyclic push-pull (Experimental results).

Figs. 8a and 8b show the end stress-slip relation of the reinforcing bar under cyclic
push-pull loading. Fig. 8a shows the cycles before yielding of the reinforcement and Fig. 8b
shows the entire response, and the corresponding experimental data are shown in Figs. 9a and
9b. The steel stress distributions along the anchorage length of the reinforcing bar are shown
in Figs. 10a-10f. The experimental results are compared with the analytical results of Viwathana-
tepa, et al. (1979), Yankelevsky (1985) and those of the present study. The results of the proposed
model show an excellent agreement with experimental results in the early cycles in Figs. 10a-
10f. However, the comparison of the overall response in Figs. 8 and 9 shows small discrepancies
between the present model and the experimental data as the loading increases. Two factors
are attributable to this: (1) the present model is tested under load controlled conditions while
the experimental specimen was subjected to displacement controlled testing, and (2) the assump-
tion that the bond stress-slip relation is the same along the anchorage length of the bar is
not adequate for the large deformation stage where a significant bond damage can occur. It
is concluded that the proposed reinforcing steel model with bond-slip can describe quite well
the response of anchored reinforcing bars under monotonic and cyclic loading conditions.
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Fig. 10 Stress distribution along anchored reinforcing bar under cyclic push-pull loading.

An improved numerical approach to consider the bond-slip effect without taking doubie ...»'cs
is proposed. Unlike the classical bond-link and bond-zone element which have the restrictions
in the numerical modeling such as a reinforcing bar arrangement along the edge of a concrete
element and a double node to represent the relative slip between reinforcing steel and concrete,
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the proposed model which does not take the double nodes can yield significant savings in the
number of nodes needed to account for the effect of bond-slip, particulary, in three dimensional
finite element models. A new nonlinear solution scheme based on the equilibrium at each node
of steel and the compatibility condition between steel and concrete is developed in connection
with this model. The efficiency and reliability of the proposed model are demonstrated through
the correlation studies between analytical and experimental results under both monotonically
increasing and repeated large deformation stages.
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