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Abstract. The paper reviews the implementation and evaluation of exact methods for the computation
of transcendental structural eigenvalues, i.e., critical buckling loads and natural frequencies of undamped
vibration, on multiple instruction, multiple data parallel computers with distributed memory. Coarse,
medium and fine grain parallel methods are described with illustrative examples. The methods are com-
pared and combined into hybrid methods whose performance can be predicted from that of the compo-
nent methods individually. An indication is given of how performance indicators can be presented in
a generic form rather than being specific to one particular parallel computer. Current extensions to
permit parallel optimum design of structures are outlined.
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1. Introduction

Critical buckling and undamped free vibration problems of structural analysis may be solved
by the application of exact analytical solutions of the member stiffness equations. Solutions
to the resulting transcendental eigenproblems are guaranteed by the Wittrick-Williams algorithm
(Wittrick and Williams 1971) which guarantees convergence on all required critical buckling
loads or natural frequencies. This exact method locates the eigenvalues individually using an
iterative scheme in which, at successive trial values of the eigenparameter A (ie., the load factor
or frequency), the real symmetric (or complex Hermitian) dynamic stiffness matrix K of the
structure, whose elements vary transcendentally with the eigenparameter, is assembled and reduced
to upper triangular form K in order to calculate J, the number of eigenvalues exceeded by
the eigenparameter. The solution time is generally dominated by the triangulation of K at each
iteration, but may be reduced by several refinements, including exact multi-level substructuring
(Williams 1973), efficient triangulation of K by a hybrid Gauss-Doolittle approach (Williams
and Kennedy 1988a) and convergence on eigenvalues by qualified parabolic interpolation (Wil-
liams and Kennedy 1988b).

Such exact analysis of three-dimensional frames (Anderson and Williams 1987) and prismatic
plate assemblies (Williams, er al. 1991) is often much faster (sometimes more than 1000 times
faster) than analysis by the traditional finite element method. However, some applications, particu-
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larly those involving optimum design, still incur substantial solution times. The authors are
therefore working intensively on the application of parallel computation to the solution of trans-
cendental structural eigenproblems. This paper reviews their recent parallel methods for analysis
(e, eigenvalue extraction), then outlines current extensions to permit parallel optimum design.
The methods have been developed for multiple instruction, multiple data (MIMD) parallel
computers with distributed memory which synchronise tasks by the passing of messages among
the processors. They have been evaluated on two such computers, a 32-processor nCUBE2 and
a 48-processor Transtech Paramid, by measuring elapsed solution times ¢, on different numbers
of processors n, from which are derived values of speedup
_h
S,= - (1)
the ideal case of linear speedup being given by S,=n. The methods are readily adaptable to
shared memory MIMD computers where application software can allocate tasks to specific proces-
SOfrS.

2. Review of parallel methods for eigenvalue extraction

Fig. 1 lists the principal computational tasks associated with eigenvalue extraction by the
Wittrick-Williams algorithm. Parallel processing has been introduced in a number of ways, as
described in the following subsections.

2.1. Coarse grain parallelism

A large number of natural frequencies of a structure may be found on a parallel computer
by the simpie expedient of allocating an (approximately) equal number of frequencies to each
processor (Watkins, er al. 1996), i.e., by parallelising the outer loop of Fig. 1. Variability in conver-
gence rates often leads to large variations in the times taken by each processor to find its frequen-
cies, especially when the structure has coincident or close natural frequencies. In order to overcome
this difficulty, the optional passing of a few short messages among the processors allows frequen-
cies to be re-distributed from busy to idle processors and often enables all the processors to
complete their work almost simultaneously. Table 1 lists computational requirements (Watkins,

For each eigenvalue required:

For each trial value of eigenparameter:
Member stiffness calculations
Assembly and partial triangulation of
any substructure stiffness matrices

Assembly and triangulation of final
structure stiffness matrix K

Convergence test

Fig. | Tasks involved in eigenvalue extraction.
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Fig. 2 Sequence of frequencies found by each processor for the solution of the problem of Table 1
using 4 processors, (a) without and (b) with re-distribution of frequencies to idle processors.

Table 1 Computational requirements for finding the first 160 natural frequencies of a 6 bay, 7
storey frame on an nCUBE2 parallel computer. The improved values given in italics
were obtained by permitting re-distribution of eigenvalues to idle processors

Number of processors

1 2 4 8 16 32

Solution time (seconds) 1570 84.3 50.0 25.5 14.8 8.5
157.0 82.1 428 239 14.0 85
Speedup 1.00 1.86 3.14 6.16 10.61 1845
1.00 1.91 3.67 6.57 1121 1845

Maximum idle time (seconds) 0.0 8.5 16.0 15.2 9.1 42
0.0 0.6 L5 43 38 42

et al. 1996) for computing, to an accuracy of 1 in 10% the first 160 natural frequencies of a
6 bay. 7 storey rectangular frame with 91 identical members, using different numbers of processors
on an nCUBE2 parallel computer. The Table lists overall solution times (i.c., the elapsed time
when the last processor completes its work), speedup and the maximum time that any processor
was idle having completed its work, for parallel analysis both without and with the optional
re-distribution of frequencies to idle processors. This re-distribution substantially reduced the
time that processors lay idle and gave savings in solution time of up to 144% on 4 processors;
Fig. 2 illustrates the sequence in which frequencies were found by each of the 4 processors
for these cases.

The Wittrick-Williams method is particularly efficient if only the lowest buckling load is requi-
red over a number of loading or response cases, because for the second and subsequent cases
calculation of J at the lowest buckling load previously found establishes whether the current
case will yield a lower one. The number of buckling loads found explicitly therefore depends
upon the order in which the cases are examined. Work recently completed (An, er al. 1997a)
enables cases to be examined in parallel, messages being passed among the processors whenever
the closest upper bound on the critical buckling load is reduced.

2.2. Medium grain parallelism

If only one eigenvalue is required, the coarse grain methods of the previous subsection cannot
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be used. In the Wittrick-Williams method new trial values of the eigenparameter are normally
selected by bisection or parabolic interpolation. Parallelisation of the inner loop of Fig. 1 is
therefore expected to be less efficient than sequential methods in which each trial value is selected
after J has been found for all previous trial values. However if K is approximated (Hopper,
et al. 1980) by a linear matrix pencil between two trial values A, and 4, (A,<A,) of the eigenparame-
ter A, so that

KW)=A4—- B )

where

o Ak~ AK(0)
o KU —KGo)
/‘Lh - x1/

and K(4,) and K(A,) are the values of K at A, and A, respectively, then the original transcendental
eigenvalue problem

KA D=0 4)
becomes the generalised linear eigenvalue problem
AD=BD. (5)

The lowest eigenvalue of this linear eigenproblem is a lower bound on A,, the lowest eigenvalue
- of K, if A,<A <A, and an upper bound on A, otherwise, provided that 4, and A, are both below
the lowest pole of K. Two processors have therefore been used to advantage (Chan, et al. 1997a)
in simultaneously improving the lower and upper bounds on A,. This method gave a speedup
of 1.67 for finding the lowest critical buckling load of a 33 bay, 100 storey rectangular plane
frame to an accuracy of 1 in 10® on a Transtech Paramid parallel computer.

2.3. Fine grain parallelism

As an alternative to the coarse and medium grain methods already described, tasks within
the inner loop of Fig. 1 may be performed in parallel. Although work in progress (An, er al
1997b) will permit parallel assembly and partial triangulation of substructure stiffness matrices,
investigations into such fine grain methods have concentrated on the triangulation of the final
structure stiffness matrix K.

K is normally triangulated by Gauss elimination without pivoting or scaling, or by a hybrid
Gauss-Doolittle method (Williams and Kennedy 1988a) which performs the same computations
but requires fewer memory accesses. The Gauss-Doolittle method has been parallelised (An,
et al. 1997b) by partitioning K into blocks of v rows and assembling on the ith processor (i=1,
.. n) a matrix K; having the same order as K and whose ith, (n+ith, 2n+i)th... blocks are
those of K and whose remaining blocks are null, as illustrated in Fig. 3 for the case of K
having order 8v and n=4. Each block is triangulated by the processor on which it was initially
assembled. During triangulation, this processor calculates contributions to the next (n—1) blocks
and passes them in a message to the next processor. It then continues to calculate contributions
to the remaining blocks, while the next processor commences triangulation of the next block.
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Fig. 3 Initial contents of K; in processor i (i=1, .., n) for parallel Gauss-Doolittle triangulation, with
K having order 8v and using n=4 processors. The blocks in the solid boxes are initially null,
but are updated during triangulation and passed in messages to adjacent processors as indicated
by arrows, where they are added to the contents of the dashed boxes.
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Fig. 4 Solution times for Gauss-Doolittle triangulation of a symmetric matrix K having order 840 and
bandwidth 350 on an nCUBE2 parallel computer.

Fig. 4 shows solution times (Watkins, er al. 1997a) for the Gauss-Doolittle triangulation of
a symmetric matrix K having order 840 and bandwidth 350, for v=1, .., 6 and n=1, .. 8 processors
on an nCUBE2 parallel computer. For this problem, the highest possible speedup for v=1
was 536 on 7 processors; for v>1 this limit varied between 341 on 4 processors and 4.36 on
6 processors. In each case, if more processors were used the overall solution time increased
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Table 2 Speedup for extraction of the first 16 natural frequencies of a 23 bay, 30 storey rectanguiar
plane frame on an nCUBE2 parallel computer, using coarse grain and fine grain paralle-
lism and a hybrid method with p clusters of ¢ processors

Number of processors: n=pq

1 2 4 8 16
Fine grain parallelism: g=1 1.00 1.90 357 590 10.71
q=2 - 1.94 372 6.88 11.34
qg=4 - - 296 567 10.47

because processors routinely had to lie idle waiting for a message to arrive before proceeding
to the triangulation of the next block of rows. This potentially serious loss of efficiency has
been shown (Kennedy 1994) to depend crucially on the number of processors used. the bandwidth
of K, the block size v and the ratio of calculation speed to communication speed for the parallel
computer being used.

2.4. Hybrid coarse and fine grain parallelism

Each of the parallel methods described above performs well on sufficiently large problems
of a particular class, but suffers a loss of efficiency if too many processors are employed on
smaller problems. Therefore optimum performance can be obtained by means of hybrid methods
employing two or more forms of parallelism simultaneously. As an illustration (Kennedy, et
al. 1995), the first 16 natural frequencies of a 23 bay, 30 storey rectangular frame were found
on an nCUBE?2 parallel computer, using n=pq processors divided into p clusters of ¢ processors,
each cluster being allocated a set of eigenvalues to find by the coarse grain method and the
processors within the cluster co-operating in fine grain parallel Gauss-Doolittle triangulation
to find them. The results, listed in Table 2, show that, for each value of n>2, the best speedup
is obtained with p>1 and ¢>1, ie. using the hybrid method rather than simply the coarse
grain method (p=n, g=1) or the fine grain method (p=1, g=n). It has also been shown (Ken-
nedy, er al. 1995) that the speedup of the hybrid method can be predicted to good accuracy
from those of the component methods by

Sllpq - S( P Sl‘l[ (6)

where subscripts H, C and F refer to the hybrid, coarse grain and fine grain methods respectively.
2.5, Estimating machine dependency

The coarse and medium grain methods described above require relatively little message passing
between processors. In contrast, the fine grain methods require much inter-processor communica-
tion and their performance depends crucially on the ratio of calculation speed to communication
speed on the parallel computer being used. The solution time 7 for a problem using any chosen
number of processors on a particular parallel computer can be written (Watkins, et al. 1997b)
as

T=Ty(1+w (7)

where T, is a measure of the time spent performing calculations and the problem-dependent
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Initial analysis*

Stabilisation*

For each sizing cycle:

Sensitivity calculation:
Unperturbed analysis*
Perturbed analysis*

For each optimisation cycle:
Move limit calculation
Linear optimisation
Stabilisation*

Convergence test

Convergence test

Final analysis*

Fig. 5 Tasks involved in optimum design. _
*denotes tasks which include some or all of the eigenvalue extraction tasks of Fig. I.

parameter u is a non-dimensional measure of the time spent performing other activities, including
(primarily) sending and receiving messages. If the same problem is run, using the same number
of processors, on a parallel computer whose calculation speed is p. times slower and whose
communication speed is p, times slower. the solution time 7> can be predicted by

T=p.To(1+ )= p, Tols + 1) ®)
where
p=Lm . S= 1 ) (9)
Pe ¥

Accurate predictions for 7, can therefore be obtained (Watkins, er al. 1997b) on the first computer
by artificially sending and receiving each message » times (for integers r>1), or by artificially
performing the principal calculations s times (for integers s if #<1). Thus a parallel algorithm’s
performance indicators such as speedup can be presented in a generic form rather than being
specific to the particular computer used to obtain them.

3. Parallel methods for optimum design

Fig. 5 outlines the sequential optimum (minimum mass) design procedure used in the authors’
panel program VICONOPT (Williams, e al. 1991) and in a simple plane frame design program
currently being used to develop and evaluate parallel design methods. The six tasks marked
with an asterisk each include some or all of the Wittrick-Williams eigenvalue extraction analysis
tasks of Fig. 1 and comprise the most computationally intensive parts of the procedure. Design
moves are performed by a linear optimiser using sensitivity information calculated by a finite
difference method. Key features of the procedure are the stabilisation steps following the initial
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Table 3 Speedup for sensitivity calculations for the fundamental natural frequency of a 10 bay,
12 storey rectangular plane frame with 24 design variables, on a Transtech Paramid
parallel computer

Number of processors 2 3 4 6 12 24
Speedup 1.92 278 354 494 8.02 1149

analysis and each design move, which adjust the design to a ‘just stable’ configuration. and
the re-use of sensitivity information to perform alternative optimisation cycles with different move
limits starting from each intermediate design.

The initial and final analyses may be performed in parallel using any of the analysis methods
of the previous section. The sensitivity calculations require calculation of the partial derivatives
of the buckling, strength, stiffness and geometric constraints g; with respect to the design variables
x; by in turn making a small perturbation of each x; to x;, calculating the resulting perturbed
constraints g;/ and using the approximation

B &' —8)
ax (X[ —x) - (10)
) " 7

The g rarely need to be found explicitly, since they can be estimated (Williams, ez al. 1991)
by triangulating K at just one trial value of the eigenparameter and using information obtained
during convergence on g. In a very recent parallel implementation of these calculations, the
unperturbed constraints g; are found sequentially and then each processor perturbs its share
of the design variables x; to find the perturbed constraints g;/. Preliminary results, involving
explicit calculation of the g;/. are given in Table 3. A forthcoming publication (Chan, er al.
1997b) gives further results including the effects of re-distribution of the workload between proces-
sors when some of the g;/ must be found explicitly while others are estimated.

The stabilisation steps of Fig. 5 involve, for each loading and response case, a single iteration
check for stability, ie., an evaluation of J at the required load level. If necessary, convergence
on a just stable design is achieved by a procedure analogous to that of Fig. 1 which iterates
on trial member sizes instead of on trial values of the eigenparameter and which it is proposed
to parallelise in analogous ways. Advantage has also been taken (Chan, et al. 1997b) of performing
entire optimisation cycles in parallel within each sizing cycle.

The authors are also currently working on sequential methods to avoid convergence on local
optima. These methods include the use of alternative starting designs and new random search
algorithms based on the Improving Hit-and-Run Method (Zabinsky, er al. 1993) which seek
distant lower mass designs following convergence on an optimum. It is planned subsequently
to exploit the natural parallelism of such approaches.

A principal application is the detailed minimum mass design of acrospace wing panels. This
is commonly performed as part of a much larger, computationally intensive, multi-level, multi-
disciplinary process requiring the repeated simultaneous design of all the panels on a wing
and for which parallel processing offers enormous potential benefits.

4. Summary of conclusions

A number of coarse grain, medium grain and fine grain methods for the parallel extraction
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of transcendental structural eigenvalues have been presented, with illustrative results. The methods
can be combined into hybrid methods employing several kinds of parallelism simultaneously.
whose performance can be predicted from those of the component methods individually. Additio-
nally. performance indicators can be presented in a generic form rather than being specific
to one particular computer. Current extensions to the parallel optimum design of structures
have been outlined.
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