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Stability and minimum bracing for stepped columns with
semirigid connections: Classical elastic approach

J. Dario Aristizabal-Ochoa t
School of Mines, National University, AA. 75267, Medellin, Colombia

Abstract. Stability equations that evaluate the elastic critical axial load of stepped columns under ext-
reme and intermediate concentrated axial loads in any type of construction with sidesway totally inhibited,
partially inhibited, and uninhibited are derived in a classical manner. These equations can be utilized
in the stability analysis of framed structures (totally braced, partially braced, and unbraced) with stepped
columns with rigid, semirigid, and simple connetions. The proposed column classification and the corres-
ponding stability equations overcome the limitations of current methods which are based on a classifica-
tion of braced and unbraced columns. The proposed stability equations include the effects of: 1) semirigid
connections; 2) step variation in the column cross section at the point of application of the intermediate
axial load; and 3) lateral and rotational restraints at the intermediate connection and at the column
ends. The proposed method consists in determining the eigenvalue of a 2X2 matrix for a braced column
at the two ends and of a 3X3 matrix for a partially braced or unbraced column. The stability analysis
can be carried out directly with the help of a pocket calculator. The proposed method is general and
can be extended to multi-stepped columns. Various examples are inclued to demonstrate the effectiveness
of the proposed method and to verify that the calculated results are exact. Definite minimum bracing
criteria for single stepped columns is also presented.

Key words: buckling; bracing; building codes; columns; construction type; computer application; frames;
loads; stability

1. Introduction

The stability analyses of prismatic columns under extreme axial loads including a uniformly
distributed axial loading and the effects of semirigid connections have been presented by the
writer recently (1994a-c). Approximate and nonparadoxical approaches that include closed-formu-
las to evaluate the effective length K-factor for columns in framed structures of any type of
construction were presented. The closed-form formulas were derived and then utilized in the
design of steel and reinforced concrete columns using current codes (AISC-LRFD 1986, AISC-
WDS 1990, ACI-1989 revised 1992). In addition, a complete set of classical stability equations
for prismatic columns with semirigid connections and their application to plane frames have
been presented by the writer (1996). However, columns having intermediate concentrated load
or/and stepped cross sections require special treatment. Anderson and Woodward (1972) and
Castiglioni (1986) have treated the stability problem of stepped steel columns in a simplified
manner. Similarly, Shrivastava (1980) has treated the problem of a prismatic column under
varying axial load. Buckling equations for stepped columns under an intermediate axial load

t 125-Year Generation Professor



416 J. Dario Aristizabal-Ochoa

R

Bucklin,
4 Sa B
%’WWV“ IA ‘l’l‘op End

I
E AL l{ h,

E
2 A MSACMPCL(*

4‘ Intermediate
) 4 Connection
,n \

u
%%gH h,
|
i
. | Bouo
%XJ;B - gnf:lt -

Fig. 1 Single stepped column under end and intermediate axial loads with semirigid connections. (Struc-
tural Model).

in any type of construction (rigid, simple, and semirigid frames) are not available in the technical
literature, particularly, from the classical stability analysis point of view.

The main objective of this pubication is to present such analysis and the complete set of
stability equations for single stepped columns with semirigid connections and sideway uninhibited,
partially inhibited, and totally inhibited subjected to an intermediate axial load in addition to
extreme axial loads. The buckling analysis consists in determining the lowest eigenvalue of a
2X2 matrix for a braced column at both ends and of a 3X3 matrix for a partially braced
or unbraced column. This analysis can be carried out directly with the help of a pocket calculator.
Minimum bracing criteria for stepped columns under end and intermediate axial loads are
also presented. Several examples are included that demonstrate the effectiveness and exactness
of the proposed stability equations and bracing criteria.

2. Structural model
2.1. Assumptions

Consider the stepped column that connects points 4 and B as shown by Fig. 1. This consists
of column segments AC and CB with semirigid connections at the extreme ends 4 and B, and
at the intermediate joint C. It is assumed that: 1) column segments AC and CB are made of
homogeneous linear elastic materials with mechanical and geometric properties E, I, A, h, and
E, I, A, h, (Where E=c¢lastic modulus, /=moment of inertia, 4 = cross sectional area, and 4= span).
The subindices ¢+ and b indicate the top and [ ottom segments, respectively; 2) the centroidal
axis of each segment is a straight line with both axes lineup; 3) column 4B is subjected simulta-
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neously to a top-end axial loading P, at 4, and to an intermediate concentrated loading P,
at C with both loads applied along the common centroidal axis; 4) the column’s lateral sways
are partially inhibited by displacement springs S, and S. located at 4 and C, respectively, and
an external rotational spring S, located at C. The rotational fixity factors at the ends of column
A and B. and at the intermediate joint C are assumed to be 0, £, and P, respectively. For
ideally rigid connections, the rotational fixity factors are equal to one (p=1.0); whereas, for ideally
hinged connections, these factors are equal to zero (p=0). In real connections (ie., semirigid)
the fixity factors vary between one and zero (0<p<1.0). A complete discussion on the rotational
fixity factors are presented by the writer (1994a~c) and Cunningham (1990).

2.2. Proposed stabi//ty equations

2.2.1. Stability criteria

In a frame with sidesway uninhibited or partially inhibited every column is defined as having
reached its critical load when sidesway buckling of the frame occurs, with the distribution of
axial loads among the columns P, and P, being as specified. Similarly, in a frame with sidesway
inhibited every column is defined as having reached its critical load when at least one of the
columns of the frame buckles first, with the load distribution among the columns as specified.

The stability analysis presented in this paper consists in determining the set of critical loads
(P.). and (P.)., that makes column AB buckle (Fig. 1). Both loads can be determined by making
the determinant of the stiffness matrix of the column [K] given by Eq. (1) equal to zero. This
matrix includes the second-order effects caused by the applied pattern of axial loads P, and
P.

K, Symmetric
(K]=| Ky K> (D
K}I K32 ij
Where the stiffness coefficients k; are given by Eqs. (2H7):
_ 3ulp(1—p)+90,p.(1—u/Tanu) EI
Kn= D, h
" 3uy*(1—p) +90,(1—us/Tanu,) EI, +S, 2
Db hb
_ 3ulp(1—p)+9p,p.u,(1—Cosu)/Sinu, ElI
Kzl - Dl hlz
3u (1= ) +9p,u, (1 —Cos u,)/Sinu, EI,
+ % ©)
Db hh
_ 3ulp(1—p)+90,0.u,(1—Cosu)/Sinu, EI
K= u 5 @
30, + P.— 20, )+ 9p, p, L20EL2)
.2 u,/ 2 EI,
K»n=u, D —1 B
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3(1— py)+9p, 12002)
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Téngu,/2) )
3(pa+p(‘_2papc)+9pgp(‘
Ko=—u w2 | EL ©)
32 ! D, h/3
ot p—2p,p) 900 TN
K33:u12[ D, : _l:l hr; +3, (7)
and T ”
D=1 (1= P X1 = P)+ 30+ =20, )1 — 10, /Tan 1)+ 99, p. [ﬂ;’j‘z—D - 1] (8)
D,=3(1—pX1 — 1,/ Tan uy) +9p, [m%_@-l] ©)
by
— / (P a)cr .
U, (EI),/h,z (10‘1)
— iPa!cr-’_chZcr 10
W=V T ED (10b)
where E Young’s modulus
I, and I, moments if inertia of columns AC and CB, respectively
h, and h, lengths of columns AC and CB, respectively
(Po)er total compressive critical load applied at A
(P).+(P)., total compressive critical load at C
P, and p, rotational fixity factors of column AB at top A and bottom B,
respectively
ol rotational fixity factor of column AC at the intermediate joint C
S, lateral stiffness restraining column AB against sidesway at top A
S, lateral stiffness restraining column 4B against sidesway at intermediate joint
C
So stiffness of rotational spring restraining column AB at intermediate joint

C.

The first and second rows and columns of matrix in Eq. (1) correspond to the rotational
and lateral deflection at the intermediate joint C; the third row and column correspond to the
lateral sidesway of top end A. The rotations at 4 and B are condensed out in this approach
and are represented by the rotational fixity factors o, and p,, respectively. It is assumed that
the axial deformations and shear distortions in both segments AC and CB are negligible compared
to their bending deformations. The stability coefficients given by Eqgs. (2)-(7) are derived in Appen-
dix I in a classical manner.

In general the sidesway buckling of column 4B (Fig. 1) is based on the lowest eigenvalue
of the characteristic equation |[K]|=0. This requires the solution of a 3X3 determinant which
might be carried out using a pocket calculator. The stability analysis of multi-stepped columns
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with more than one intermediate axial load can be carried out in similar fashion, except that
the number of degrees of freedom and the size of the matrices will be larger (an increase of
2-DOF for every additional intermediate node). Then, a computer program would be required
to solve the eigenvalue of multi-stepped columns. However, the analytical procedure described
herein is similar.

Four different types of buckling modes are possible for a single stepped column as shown
by Fig. 2a-d. These modes and the corresponding eigenvalue equations can be obtained from
Eq. (1) as follows:

(1) When sidesways between A B and C are totally inhibited

The stability equation for this particular case (Fig. 2a) is reduced to K,;=0 or simply

2 _ _ 201 — _
3ulp(1 pﬂ)+9%pc(l u,/Tan u,) _Iz% 4 3u,(1 p,,)+9%(1 u,/Tan u,) El, +S=0 (1)
t t b b

The validity of Eq. (11) is cheked by Example 1.

(2) When sidesway between A and B is totally inhibited.

The stability equation for this particular case (Fig. 2b) is reduced to K 1 K»n—Kp=0 or
simply

R
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Fig. 2 Buckling modes of a single stepped column under end and intermediate axial loads with semirigid
connections.
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3ulp.(1—p)+90.0.(1~u/Tan u) EI | 3u(1—p)+90,(1—~uy/Tan uy) El,
- 7 =2 +8,| X
D’ ht Dh hb
30, + .~ 20,0) + 90, p—TANLL2) 3(1— p,)+9p,—L2nE4/2)
{uz uz/z ~1 EI: +u 2 u,,/2 1 EIb -f-S}
[ Dr h,3 b Db hb3 ¢
3u’p.(1=P)+ 9P, P.u(l =Cosu)sinu, EL | 3uy(1=p)+90up(1 =Cosup)/sinuy, EL |_

(12)
The validity of formula Eq. (12) is checked by Example 2.

(3] When sidesway between C and B is totally inhibited

The stability equation for this particular case (Fig. 2¢) is reduced to K, Ky;—K#i=0 or
simply

[311,2;0((1—/2,)-1-9/7,1/%(1—u,/I‘anu,)_12,_+ 3u*(1—p,)+90,(1 —uy/Tanu,) El,

Dl hz Db hb * SG:I x

3(PatP—=20,£)+9P, pclaﬂ“’—/zl

2 t 2 EII
{u,“[ D, u/ _1] h,B +Sa}
2 — — 1 2
_[ 3u’p.(1 pa)+9paﬁu,(1 cos u,)/sin u, %] —0 13)

The validity of Eq. (13) is checked by Example 3.
(4) Columns with sideway partially inhibited and uninhibited

For stepped columns with the lateral sway between 4 and B partially inhibited (i.e., when
S,#0 and S.#0) or uninhibited (i.e., when S,=S.=0) as shown in Fig. 2d, the general sidesway
buckling is based on the lowest eigenvalue of the characteristic equation |[K1|=0. This requires
the solution of a 3X3 determinant which might be carried out using a pocket calculator or
simply

Ku(K22K33*K§2)“K21(K21K33‘K31K32)+K31(K21K32_K22K31):O (14)
The validity of Eq. (14) is checked by Example 4.

3. Verification study: Examples
Example 1
Eq. (11) was checked against solutions presented by Timoshenko and Gere (1961, pages 66-

76) for the buckling of continuous beams. The case under consideration is a stepped column
with hinged ends and compressed at 4 and B by P as shown in Fig. 3a (hinged at A: p,=0;
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Fig. 3 Example 1: Stepped beam-column (after Timoshenko & Ger 1961, pp. 66-70).

rigid connection at C with no exterior restraints and no load: p.=10, S,=0, P.=0; and hinged

at B: p,=0).
Substituting in Eq (11) 0,=p,=0, and p.=10, the eigenvalue equation becomes
u;z EIy ub2 EIb —

(A=u/Tanw) h ' (—wu/Tanu) hy 500 (152)
when S¢=0 Eq. (15a) can be reduced to Eq. (15b) as follows

1. I hpl, _

o (1—u,/Tanu,)+ 0 (1—uy/Tan up) nl, 0 (15b)
Eq. (15b) is identical to the solution reported by Timoshenko and Gere (1961. Eq. (b), page

67).

An additional example was considered when Sy=3EI'/H (provided by the transverse element
located at midspan with a hinged far end) h,=h;, I,=I, as shown in Fig. 3b. Then Eq. (15a)
becomes

u[2 EII ub2 EIb -
(0—u/Tanu) h T (—u/Tanu) h, T EIH=O (15¢)

.Since u,=u, (15¢) is reduced to Eq. (15d)

3 __ 2H]
2 (1—u,/Tanu)= W

(15d)

which is identical to the solution reported by Timoshenko and Gere (1961, bottom of page
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Fig. 4 Example 2: Simple supported stepped column (After Timoshenko & Gere 1961, p. 100).

B
0

69). Note that in Timoshenko’s notation u,=2u, and u,=2u,.
Example 2

Results from Eq. (12) were tested against tabulated values presented by Timoshenko and Gere
(1961, Table 2-6, p. 100). The case under consideration is a stepped column with hinged supports
at A and B and compressed at A by P, and by P. at midspan as shown in Fig. 4 (hinged
at A: p,=0; rigid connection at C with no exterior restraints: 2.=1.0, S,=S,=0; and hinged
at B: p,=0).

The values of the reduced length L of the column calculated from Eq. (12) are listed in Table
1. They are practically identical to those derived by Timoshenko and Gere, where (P,+P.),=
mELL".

Example 3

The validity of Eq. (13) was tested against solutions obtained utilizing the classical method
of slope-deflection (Salmon and Johnson 1980) for a stepped column with hinged ends and
compressed at 4 by P, and by P. at C as shown in Fig. 5 (free at 4: p,=0, S,=0; braced
at C with no exterior rotational restraint: 0,=1.0. Sy=0; and hinged at B: p,=0).

Substituting in Eq. (13) 0,=p0,=0, ,.=10, and S,=0 the eigenvalue equation becomes

u? El " Uy El, :I y 2,: 1 B 1:| El, | _ulELYR |_
(1—wu,/Tanu) h, (1—uy/Tanu,) hy | ' [(1—u,/Tanu,) h? (1—u,/Tan u,)
(16a)
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Table 1 Calculated-versus-theoretical values of L/l for a stepped column (Problem 2: After Timoshenko
& Gere 1961, Table 2-6, p. 100)

ip—lj—ﬁl 1.00 125 1.50 175 200 3.00

1
L/I mmp  Mca Mm  Mcg Mm  Mca Mp Moy Mm Moy Mp Mca
1.00 1.00 1.00000 095 094904 091 091397 0.89 0.88847 0.87 0.86892 0.82 0.82257
125 1.06 1.06229 1.005 1.00505 097 096553 094 093662 091 091455 -na- 0.86187
1.50 1.12 112354 106 106045 1.02 101675 099 098470 096 096019 -na- 090149
1.75 1.18 1.18321 1.11 111467 1.07 106707 1.04 103208 1.01 1.00529 -na- 094088
2.00 124 123810 1.16 1.16745 1.12 1.11620 108 107846 105 104951 -na- 097976
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Fig. 5 Example 3: Stepped column with simple Fig. 6 Example 4: Stepped cantilever column

supports at C and B and top sidesway. (After Timoshenko & Gere 1961, p. 115).
u' [ 1,2 (1—u,/Tan u) I, h  ]|_
or (1—u,/Tan u,)* I_u,/Tan ut wTanu(l—u,/Tanu,) I, h, 1]=0 (16b)
from which
2
u'(A—w/Tanw) L b |_
[“/F anut e w(—u/Tanwy) 1, k|0 (16c)

For the particular case: P.=0, h,=h,, I,=1I,, the stability equation is reduced to 2u,=Tanu,
whose solution is u,= 1.16556 or (P,).,= m°EL(2.695h,)*. Using the slope-deflection method (Salmon
and Johnson 1980, p. 840-842) a stability equation identical to Eq. (16¢c) can be obtained.

Example 4
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Table 2 Calculated-versus-theoretical m-factor for a step-variable column (Problem 4: After
Timoshenko & Gere 1961, Table 2-10, p. 115)

ho (i + 1) 02 04 06 08

L/L M Tt m cal M m cal M mca m m ca

0.01 0.15 0.15344 0.27 0.27052 0.60 0.59843 2.26 2.25706
0.1 1.47 1.46750 240 2.40063 4.50 449778 8.59 8.58799
02 2.80 2.79651 422 4.22180 6.69 6.69418 9.33 9.33015
04 5.09 5.08844 6.68 6.67739 8.51 8.50980 9.67 9.67421
0.6 698 6.97941 8.19 9.18500 9.24 924378 9.78 9.78394
0.8 8.55 8.55122 9.18 9.17672 9.63 9.63146 9.84 9.83755

Results from the 3X3 eigenvalue equation [K]=0 or Eq. (14) were tested against tabulated
solutions presented by Timoshenko and Gere (1961, Table 2-10, p. 115) for a stepped cantilever
column shown in Fig. 6 (free at 4: p,=S,=0; rigid connection at C with no exterior restraints:
p.=10, S.=Sy=0; and, perfectly fixed at B: p,=1).

Table 2 shows that the values of m calculated from Eq. (14), which are listed with five significant
figures, are practically identical to those by Timoshenko and Gere. Note that m is for the hinged-
hinged column, and m/4 for the cantilever column, where m is used by Timoshenko and Gere
in P,=mEL/(h,+h).

4. Partially braced columns and minimum lateral bracing
4.1. Partially braced column criterion
A partially-braced stepped column is one whose total critical load P, lies between the critical

load obtained from Egs. (11), (12) or (13) and that from Eq. (14) assuming that S,=S.=S¢=0
as follows:

> >
Critical - PCritical - PCritical a7
Braced Column Partially Braced Column Unbraced Column
from Egs. (11). (12) or (13) from Eq. (14) From Eq. (14) with S,=S,=5,=0

In addition, the upper limits on the critical loads given by Egs. (11), (12) and Eq. (13) depend
on what column’s joints that are being braced (ie. if the stepped column is fully braced at
A and C simultaneously or only at A or at C, respectively). It is obvious that:

(18)

Critical o PCritical " Critical - PCn'tical
obtained from Eq. (11) obtained from Eq. (12) obtained from Eq. (13) obtained from Eq. (14)

This cirterion is simple to apply and indicates that the total critical load P, of a partially
braced column is less than that of the same column but with sidesway inhibited, as indicated
by Egs. (17) and (18).
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4.2. Minimum bracing criterion

The minimum bracing required to convert a stepped column with sidesway uninhibited or
partially inhibited into a braced column can be determined utilizing Eqs. (17) and (18) or by
comparing Egs. (11), (12) or (13) to (14) depending on which column’s joints are braced, as
follows:

Feritical = Feritical (192)
Braced Column at 4 and C Partially Braced
obtained from Eq. (11) obtained from Eq. (14)

Fesitical = Reritical (19b)
Braced Column at 4 Partially Braced
obtained from Eq. (12) obtained from Eq. (14)

PCn'ticaI = PCn'tical (19)
Braced Column at C Partially Braced
obtained from Eq. (13) obtained from Eq. (14)

By combining Egs. (11), (12) or (13) with (14) as indicated by Egs. (19a)<(19c), the required
S, and S, can be determined directly following the steps described below: 1) The end fixity
factors p,, P, must determined for both conditions braced and unbraced, as shown in Example
5; 2) The u-factors for the desired braced conditions are calculated from the corresponding Egs.
(11), (12) or (13) utilizing, of course, the fixity factors p, and p, for the braced case; 3) The
braced u-factors along with p, and p, for unbraced conditions previously calculated are substituted
into Eq. (14) from which the required minimum bracings S, and S, can be calculated directly.

An example describing the calculation of (S,). and (S.),.. for a bent frame is presented
next.

Example 5 Minimum lateral bracing for a bent frame

Utilizing the minimum bracing criteria and the steps just decribed, determine the lateral
bracings required to convert the bent frame shown in Fig. 7a into a braced frame. The bracings
that need to be analyzed are: 1) S, along the top level (ie., frame braced at A and A’ only),
2) S. at the intermediate connection (ie., frame braced at C and ' only); and 3) S, and S.
along the top and intermediate levels (ie. frame braced at A and C). Assume that g,=p.=1
in both columns.

Solution: Since the frame is symmetrical, columns 4B and A'B’ are both identical with the
same loads and boundary conditions. Therefore, the stability analysis can be reduced to that
of a single column. :

The first step is to find the fixity factors at the columin ends for unbraced and braced conditions.
Relationships between the rotational restraints and the fixity factors in framed structures are
presented in Appendix 1. For this particular frame the fixity factors are as follows:

i) For Unbraced Conditions along 44’ the frame would buckle in a anti-symmetric shape
(Figs. 7b-c) with the beam providing rotational restraints at both ends 4 and 4’ of magnitude
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Fig. 7 Example 5: Minimum lateral bracings for a simple bent frame with stepped columns
(a) Structural model;
(b) Buckling mode with sidesway between A and B uninhibited;
(c) Buckling mode with sidesway between C and B totally inhibited;
(d) Buckling mode with sidesways between 4 and B totally inhibited.

6El/L=1.5El//h (since L=4h). Therefore, p,=1/(1+3/1.5)=1/3, and p,=p.=1.

ii) For Braced Conditions along 44’ the frame would buckle in a symmetric shape (Fig
7d) with the beam providing rotational restraints at both ends 4 and 4" of magnitude 2EI/L=0.5
El/h. Therefore, p,=1/(1+3/0.5)=1/7, and p,=p.=1.

The required bracings for column AB for each one of the requested cases are calculated as
follows: 1) Braced at A only-. Taking into consideration that: I,=1I, h,=h, I,=2I, h,=2h, P,=P,
P.=3P, p,=1/7, and p,=p.=1, the solutions for braced conditions obtained from Eq. (12) are:
(P.)-=0.19072 m*El/h* and (P,)+ (P.),=0.76288 m*El/h* (or u,= m/0.19072=1.37198 and u,=m/1.
52576=3.88055). Now, the magnitude of S, can obtained directly from Eq. (14) by substituting
the values of u,=1.37198, 1,=3.88055, p,=1/3, and p,=p.=1. The result was S,=3.3818El/h>
per column.; 2) Braced at C only-. Taking into consideration that. I,.=1I, h,=h, I,=2I, h,=2h,
P,=P, P.=3P, p,=1/3, and p,=p.=1, the solutions for braced conditions obtained from Eq.
(13) are: (P,),=0209097*El/h’ and (P,).,+(P.),=0.836377El/h* (or u,==m/0209092=143654
and u,=m/1.67273=4.06315). Now, the magnitude of S, can obtained directly from Eq. (14)
by substituting the values of u,—143654, u,—4.06315, p,=1/3, and p,=p.=1. The result was
S, =2.773225 X 10* El/h* per column.; 3) Braced at 4 and C simultaneously-. Taking into considera-
tion that: I,=1I h,=h, I,=2I, h,=2h, P,=P, P.=3P, p,=1/7, and p,=p.=1, the solutions for braced
conditions obtained from Eq. (11) are: (P,),=0.329338m°El/h* and (P,),~+(P.),= 1.31735m2El/R’
(or u,=m/0.329338=1.802898 and u,=m/2.634707=5.09936). Now, the magnitude of S, can obtai-
ned directly from the characteristic equation |[K]|=0 by deleting the second row and column
(or K|, K33 —K;¢ =0) and substituing the values of u,= 1.802898, u, = 5.09936, p,=1/3, and p,=p.= 1.
The result was S,=47.3354El/h* per column. Similarly, S, can obtained directly from the characte-
ristic equation |[K]|=0 by deleting the third row and column (or K;,K»—K,? =0) and substitu-
ting the values of »,= 1.802898, u,=15.09936, p,=1/7, and p,= p.= 1. The result was S,=1.0966774 X
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103El/R® per column.

It is interesting to note that: 1) the trend indicated by Eq. (18) for (P,),+ (P.). for this particular
frame is 1.317357° EI/h*>0.836377 EI/h*>0.76288 77 EI/h*>0.16074:7 EI/R? (this last value correspo-
nds to the unbraced frame); and 2) the magnitude of the required lateral bracing at A is relatively
small compared to that required at C

5. Summary and conclusions

The complete set of four stability equations by which the buckling loads of single stepped
columns in any type of construction can be evaluated is presented in a classical manner. The
proposed equations include the effects of: 1) semirigid connections at the column joints; 2) step
variation in the column cross section at the point of application of the intermediate load; and
3) lateral and rotational restraints at the column ends and intermediate connection. The method
is particularly applicable to the stability analysis of stepped columns of any type of construction
with sidesway inhibited, partially inhibited, and uninhibited. To understand the four-way classifi-
cation for a single stepped column and the corresponding stability equations, four examples
are presented and the results compared to those using other methods. A verification study indicates
that the calculated elastic buckling loads are exact. The proposed formulation consists in determi-
ning the eigenvalue of a 1X1 matrix for braced columns at three supports, of a 2X2 matrix
for braced columns at two supports, and of a 3XX3 matrix for unbraced columns. The eigenvalue
calculations can be carried out with the help of a pocket calculator.

The proposed classification and the complete set of transcendental equations for stepped colu-
mns are more general than those from other methods. In addition, definite criteria are given
to determine the minimum amount of lateral bracings required by stepped columns in framed
structures to achieve any nonswaying buckling mode. The proposed algorithm can be extended
to multi-stepped columns with semirigid connections.

Analytical studies indicted that the stability of stepped columns increases substantially with
the magnitude of the lateral restraints and the fixity at the column base and at the intermediate
connection. The degree of fixity at the top end has less influence on the overall stability of
stepped columns with sidesway inhibited than in frames with sidesway uninhibited.

Appendix 1

Formulae derivation

The stiffness coefficients including the second-order effects for a single stepped column AB (Fig. 1)
can be obtained by adding the stiffnesses of its segments AC with and CB as shown by Egs. (1)(7).
The stiffness coefficients or stability functions of a single prismatic column with semirigid connections
are derived below for quick reference.

Assumptions

Consider a prismatic element that connects points 4 and B as shown in Fig. 8a. The element AB
is made up of the column itself 4'B’. and two lumped flexural connectors 44’ and BB’ at the top
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EAI

(a) Structural model (b) Degrees of freedom and end actions

Fig. 8 Prismatic column 4B with flexural DOFs 14 including the fixity factors p, and .

and bottom ends, respectively. It is assumed that: 1) the column 4’ B’ is made of a homogeneous linear
elastic material with a modulus of elasticity E; 2) the centroidal axis of the member is a straight line;
3) the column is loaded with an end axial load P along the centroidal axis of the cross section with
a principal moment of inertia / and cross are A4; and 4) deformation are small so that the principle
of superposition can be applied.

The flexurual connectors 44’ and BB’ have stiffnesses k, and k, (whose units are in force-distance/ra-
dian), respectively. The ratios R,=«,/(EI/h) and R,=x,/(El/h) are denoted as the stiffness indices of
the flexural connections. Where /=column’s moment of inertia about the principal axis in question,
and #=column’s height. These indices vary from zero (i.., R,=R,=0) for simple connections (i.c., pinned)
to infinity (ie., R,=R,= o) for fully rustrained connections (ie., rigid). It is important to note that the
proposed algorithm can be utilized in the inelastic analysis of framed structures when the nonlinear
behavior is concentraded at the connections. This can be carried out by updating the flexural stiffness
of the connections A4’ and BB’ for each increment in a linear- incremental fashion. Gerstle (1988)
has indicated lower and upper bounds for «, and k.. More recently, Xu and Grierson (1993) used these
bounds in the design of frames with semirigid connections. For convenience the following two paramaters
are introduced (Aristizabal-Ochoa 1994a):

p.= —-1—3 (20a)
1+ R,
N 1
p=——g— (20b)
14—
R,

where p, and p, are called the fixity factors. For hinged connections, both the fixity factor p and the
rigidity index R are zero; but for rigid connections, the fixity factor is 1 and the rigidity index is infinity.
Since the fixity factor can only vary from 0 to 1.0 (while the rigidity index R may vary form 0 to
o), it is more convenient to use in the analysis of structures with semirigid connections (Cunningham
1990, Xu and Grierson 1993).

The relationships between the fixity factors p., © and the alignment charts ratios y, and , (ie.,
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v= Z(EI/h)C/Z(EI/L)g at the top and bottom ends, respectively) of a column in a symmetrical rigid
frame with sidesway uninhibited or partially inhibited are: 0,=2/2+ y,), and p,=2/2+ w) (Aristizabal-
Ochoa 1994a, p. 1276-1277). For symmetrical rigid frames with sidesway totally inhibted, the relationships
are: 0,=2/(2+3y,), and p,=2/(2+3w). For unsymmetrical frames, the fixity factors can be determined
using structural principles as shown by the writer (1994a-c).

Stiffness matrix

The classical stability equations for a prismatic column with rigid connections are formulated using
the stiffness coefficients by Salmon and Johnson (1980, p. 837) as follows:

__uSinu—u’Cosu  EI ,, w'—uSinu EI ,,
M.= 2—2Cosu—uSinu h o'+ 2—2cosu—uSinu h o (21a)
_ u'—uSinu EI ,, uSinu—wCosu _ EI ,,
M= Cosu—uSmu h %" 3 2Cosu—uSinu h O (21b)
or simply
Ma:rﬂ90’+sﬂgb! (21C)
h h
My=s EL g +r LEL g, @1d)
h h
L s w
where the functions r= uSinu—u’Cosu and s= u —uSinu are known as the classical

2—2Cosu—uSinu ~ 2—2Cosu—uSinu
stiffness coefficients; and €' are the end slopes of member A’'B’ measured with reference to the axis
of the member (Fig. 8b). However, when member 4B includes the two lumped flexural connectors 44’
and BB’ at the ends as shown by Fig. 8a, the stiffness matrix of member AB can be derived by the
procedure explained below.

The four flexural degrees of freedom (DOF) of member 4B are shown in Fig. 8b. DOF’s 1 and
2 correspond to 6, 6, and DOF’s 3 and 4 §,, and &, respectively. For instance, the stiffness coefficients
corresponding to a unit rotation at 4: ki, ki, k31, kg (1., moments and shears forces at 4 and B necessary
to have a unit rotation at A while B remains unchanged) are obtained from the following two end
conditions:

1) At end A4: Mo=ky. 6,=1, and 0,/ =0,— Ma =) kn
Kq Kq
2) At end B: My=k», 6=1, and 6,=6,— M —o_ K
Ky Kp

when conditions are substituted into (21c-d), (22a-b) are obtained:

_, EI(. kn\___El ky
kn=r 7 (1 X, ) 57, % (22a)
_ EI(._ kn\ _El ku
kn=s A <1 . ) r= ) (22b)
Now, taking into consideration that Ra—_-Ka/(%) and R;,qu,/(—Ehi ) then

k|1(1+ I:a )z%r“kzl_k% (22¢)
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k.7(1+ = ) B S (22d)

Substituting Eq. (22d) into Eq. (22¢) and using Eq. (20a-b) lie., R.=3p./(1—p,) and R,=3p,/(1—p)],
then ki, and k» can be obtained as follows

30, =) — ) +90. Por El 23
kll ( )
(P —s N1 =P — P+ 3Pt P —20,0) +90, P h
sy = 905 LL 24)
('- -8 )(l pa)(] - 1)17)+ 3r(p11 + pl) - 2pu ph) + 9pu ph h
In terms of the w-factor and after tedious algebra reduction, k,, and k> become:
P 30.{1—pp) > +90,0,(1 —u/Tan u) El (25)
"= )1 = Po) 12+ 3(Put 05— 20, P)(1 —u/Tan u)+9p, p, [Tan(u/2)/(u/2)— 1] h
Koo = 90,0, (u/Sinu—1) EI (26)
a (1 - pu)(l - pb) u- + 3(‘)u + Pr— 2pa pb)(l - M/Tdn u) + 9Rl p[l [Tan(u/z)/(u/z) - 1] h
Now k3 and k4 can be obtained from static equilibrium conditions: ky= —kqy= e : el
s = — k= 30.(1—ps) u+ 90, Py u(1 — Cos u)/Sin u) EI 27

(1= P — Po) >+ 3P0+ Po— 2P, PoX1 —u/Tan u) + 90, o, [ Tan(w/2)/u/2)— 1] 1>

Similarly, the stiffness coefficients corresponding to DOF 6,=1 k», k» and ks can be obtained simply
by exchanging p, for p, in Egs. (25)-(27) as follows:

3p,(1—p)u+90,0,(1 —u/Tan u) _EI

M= o T ) w4 30+ Pr— 20, o)1 —u/Tan u)+ 99, oy Tan@/2@/2)— 11 h (28)
o= — k= 30, (1= p) u”+ 9P, P (1 — Cos u)/Sin u) EI (29)
¥ A=) — ) 12+ 3P+ P 20 P — u/Tan u)+9p, o [ Tan(u/2)/(u/2)— 11 K’
ki ki and kg can be obtained from equilibrium: kp=ku= ~k43=—ki+l}:il-) as follows:
k :|: 3()00 'I'ph*2papb)+9paphTan(u/z)/(u/z) 1] bl (30)
BT (=)= Po) 2+ 3(00 + 0o — 2P0 P X1 —u/Tan u)+ 90, P, [ Tan(u/2)/(u/2)— 1] R

The stiffness coefficients given by Egs. (25)-(30) can now be utilized in Eq. (31) to assemble the stiffness
matrix for a single column with semirigid connections that includes the second-order effects caused
by the end axial load P.

kll

kll kll

ka ke K 1)
ka ke ko ke

(k1=

Notations

The following symbols are used in this paper:

A, and A, cross area of columns AC and CB, respectively;
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E Young modulus;
I, and I, moments of inertia of segment columns AC and CB, respectively;
h, and h, lengths of segment columns AC and CB, respectively;

K; stiffness coefficients for the 3-DOF stepped column given by Eq. (1);

ki stiffness coefficient for a single prismatic element given by Eq. (31);

(Po)er compressive critical load at A4;

(P.).+(P.). total compressive critical load at C and B;

P applied compression axial load to columns’s ends;

P, applied compression axial load to columns segment AC at 4;

P. applied compression axial load to column segment CB at C;

p. and p, rotational fixity factors of column AB at top A and bottom B, respectively;
0. rotational fixity factor of column AC at the intermediate joint C;

Sq lateral stiffness restraining column AB against sidesway at top A;

S. lateral stiffness restraining column AB against sidesway at intermediate Joint C;
Se rotational stiffness restraining column AB externally at intermediate joint C,

r and s classical stiffness coefficients for a beam-column.
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