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Abstract. High order finite element have a greater convergence rate than low order finite elements,
and in general produce more accurate results. These elements have the disadvantage of being more
computationally expensive and often require a longer time to solve the finite element analysis. High
order elements have been used in this paper to obtain a new eigenvalue solution with out re-solving
the new model. The optimisation of the eigenvalue via the differentiation of the Rayleigh quotient has
shown that the additional nodes associated with the higher order elements can be condensed out and
solved using the original finite element solution. The higher order elements can then be used to calculate
an improved eigenvalue for the finite element analysis.
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1. Introduction

There has been very few successful attempts to predict the error in the eigenvalue for a finite
element analysis. Some work has been done by Friberg (1986) (1987), Cook (1991) and Fried
(1971) using different approaches. However most of these techniques are not directly applicable
to general finite element analysis.

The patch recovery technique is applied to a finite element analysis to improve the eigenvalue
solution representing the natural frequency or buckling load factor of a structure. Work in this
field has been successfully done by Stephen and Steven (1994) (1995). The improved eigenvalue
is achieved by taking a patch around each element and interpolating a relatively high order
polynomial for the distorted shape using the nodal displacements in the patch. The interpolated
function is determined using a weighted least squares procedure and the order of the polynomial
is chosen to be greater than that of the finite element shape function used in the elements
of the patch.

Elements with higher order polynomial shape functions generally produce results that are
more accurate than elements with low order shape functions (Cook, Malkus and Plesha 1989).
A high order element requires additional nodes and larger number of equations to solve. It
is common to use elements with low order polynomial shape functions as they are easier to
define and the number of computations are reduced.
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Increasing the order of a polynomial in the elements of a finite element model requires adding
additional nodes to the model. This will increase both the number of degrees of freedom of
the system and also increase the bandwidth of the matrices to solve the problem.

The method produced in this paper calculates a new eigenvalue using the eigenvector solution
from a finite element analysis with higher order elements than the original elements. The higher
order elements have additional nodes that have their displacements determined from the original
eigenvector.

2. Optimised eigenvalue

The eigenvalue A, can be derived using the eigenvector {x}, and the Rayleigh quotient shown
in Eq. (1)
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where [K] is the elastic stiffness matrix and [M] is either the mass matrix for natural frequency
analysis or the geometric stiffness matrix for linear buckling analysis.

The elements with higher order shape functions will have nodes with no displacements from
the original finite element analysis. To determine these displacements the eigenvalue, given by
the Rayleigh quotient can be optimised for these displacements. The technique of optimising
the eigenvalue has been used by Stephen and Steven (1995) to improve the eigenvector in certain
applications. In this paper it will be used to improve the eigenvalue to give a more accurate
solution.

To optimise the eigenvalue, the partial differential of the Rayleigh quotient must be equal
to zero for each nodal displacement x;. The differential can be written as Eq. (2):

51 _ 6 [{x}T[K] {x}]
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Looking at a portion of Eq. (2):
RN SN CCA Ny VIR NS CLR) ®
The displacements are linear in the vector form, hence:
S (o e 01O
—5;1_{}—{00 010 - 0 4)
Rewriting the differential shown in Eq. (3):
2 [P TKT (x1=2{0 0 =+ 0 10 -~ 0} (K] {x] ©)

Similarly for the mass matrix (or the geometric stiffness matrix in the case of buckling):
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2 " OM] (x1=200 0 - 01 0 - 0} [M] i) ©)

The product of the differentiated vector with the stiffness matrix and the full vector will be
a scalar quantity that is dependant on the nodal displacements immediately surrounding the
node that is differentiated. Rewriting the differential quantities in Egs. (5) and (6) as:

{00010 - 0}[K]Ixt=(K] {x}y )
{00010 - 0}[M]{x}=(M]{x}) ®)

which are one dimensional quantities.
Using the terminology in Egs. (7) and (8) the differential of the eigenvalue can be written
as:

84 _ (K e M) — Ll TR M ©
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The optimum of the eigenvalue will be when the partial differentials for all displacements are
equal to zero. Looking at one displacement differential and setting it to zero, Eq. (9) can be
written as:

0=(CKI{x) Ll TMix) ]~ LI IR ()] CM e (10)
0=([K1{x})i—%% ) a1
0=CKJ{xi—ACMI{x}) (12)
0=(K1—ADM] b (13)

The matrices inside the brackets in Eq. (13) multiplied by the eigenvector to the right will equal
the zero vector. This is the characteristic eigen equation. Any other vector multiplied by these
matrices will not equal zero. The eigenvalue and eigenvector must be the precise quantities
to satisfy this equality. As the Rayleigh quotient is optimised, the eigenvalue and eigenvector
are shown to be the optimal quantities.

The optimisation of the eigenvalue via the differentiation of the Rayleigh quotient has shown
that the additional nodes as a result of the higher order elements can be calculated for each
element individually.

3. Determining the new nodal displacements

Partitioning the eigen equation for the finite element model using the higher order terms,
as shown in Eq. (14).

[ el e P ed={0 a9

where the subscript n refers to terms related to the original nodes in the original finite element
model and the subscript 4 refers to terms related to the unknown nodes for the higher order
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elements. :

The vector of known displacements is given by {«,}, and the unknown displacements can
be determined using the bottom row of the partitioned Eq. (14). Re-writing this equation. leads
to the solution for the unknown displacements.

{unt=— (K — A M1 ) (K] — A M0 ]) {un} (15)

Choosing higher order elements that have the additional nodes with in the boundaries of the
elements causes only one element to effect the unknown nodal displacement given in Eq. (15).

The optimum eigenvalue A is not known in Eq. (15), hence the eigenvalue from the original
finite element analysis is used to calculate the unknown nodal displacement associated with
the additional nodes in the higher order element.

Once the additional nodal displacements have been calculated the eigenvalue can be calculated
using the Rayleigh quotient given in Eq. (1). Unknown displacements can be calculated individua-
lly for each element and the numerator and denominator components for the Rayleigh quotient
can be summed. Once all elements have been examined, the new eigenvalue can be determined
be division of the numerator by the denominator.

4. Examples
4.1. Truss element
The standard truss finite element is a simple two node element. The elemental shape function
for this element is given by:
N.=a+ax (16)

From the shape function the elastic stiffness, consistent mass and lumped mass matrices can
be calculated for this element.
Elastic stiffness matrix:

[k]:%[_i _}] a7)
Consistent mass matrix:

[m(‘]:lgh—[ % ; ] (18)
Lumped mass matrix:

=2t 5 7] )

For simplicity a two element finite element model was used to represent a one dimensional
structure for a compression wave between two supports. This model is shown in Fig. 1.
There is only one degree of freedom in this model, hence the eigenvector solution is simply:

{x}={1} (20)
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Fig. 1 One dimensional structure using truss elements.

The exact solution to this problem is known, and is:

2
per= T Q1)

The finite element analysis results using both the consistent and lumped mass matrices have
been calculated and are shown following. As the exact solution is known, an error for the eigenva-
lue can be calculated.

Consistent mass matrix:

_ 12FE4

Ac= oL (22)
&= +21.585% (23)
Lumped mass matrix:
8EA
A= v (24)
g=—18943% (25)

The + and — signs indicate the error is above or below the exact solution respectively. The
errors for this coarse model are highly significant in magnitude.

An element with a higher order polynomial shape function is a three node truss element.
The finite element polynomial shape function for this element is:

Nh:a1+a2x+ a;xz (26)

with a corresponding displacement vector:

U
{u}‘;{ U } (27)

Where u, and u, are the nodal displacements at the ends of the element. The nodal displacement
u, is for the additional node. If the additional node is in the middle of the element the elastic
stiffness matrix becomes:
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7 1-8
[k]:% 1 7 -8 (28)
-8 —8 16

There are three types of mass matrices that can be calculated for this element.
Consistent mass matrix.

[mc]=% -1 4 2 29)
2 216
Lumped mass matrix: _ _
100
[m;,]:% 010 (30)
| 002 |
HRZ lumped mass matrix: _
" [100
[myl= o | 010 (31)
| 004 |

For the two node truss element, the HRZ mass matrix is equal to the lumped mass matrix.

The eigenvalue and eigenvector solution for a two element model is using the three node
truss element and for the various types of mass matrices has been calculated. The eigenvalue
error is also calculated and shown is Appendix A. As expected, the eigenvalues are much more
accurate for all three mass matrices used than the two node truss elements.

As there is only one extra degree of freedom in the three node truss element, the unknown
quantity can be calculated in terms of the eigenvalue and end displacements of the two node
truss element. This has been done using the three types of mass matrices available.

Consistent mass matrix:

__40EA+Aph?
U R(10EA— A ph?)

(w1t uy) (32)

Lumped mass matrix:

B 16EA4 .
Up— (32EA_3AMZ) \U]"‘"Mz) (33)
HRZ mass matrix:
N 4FA
Up— (8EA_Am2) (ul+u2) (34)

This produces a different relationship to the linear interpolation of the two node truss element
shape function. However as A limits to zero all three relationships limit to the linear interpolation
solution.

The nodal displacement for the additional nodes can be calculated. As there are two elements,
there are two additional nodes to calculate. However, as the displacement of the structure is
symmetric only one term needs to be calculated. The unknown nodal displacement is calculated
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for each mass matrix type. Also the new eigenvalue and the eigenvalue error is also calculated
for each mass matrix. The results are as follows:
Consistent mass matrix:

43
Un= 3¢ 35
6504EA4 EA
* —_—— —
Ac 647> 10.0526 PE (36)
&*=1.854% 37
Lumped mass matrix: ‘
8
Un=13 (38)
2896FA EA
* —_— em—— T ——
AL 2970l 9.75094 oL (39)
&*=—1203% (40)
HRZ mas matrix:
2
U= ? (41)
248EA EA
* —_ ——— S
Ay 2500 9.92000 oL 42)
e*=—0.511% 43)

The eigenvalue in all three cases has been significantly improved from around 20% error
to 1% error.

4.2. Beam element

The standard two node beam eclement has four degrees of freedom, being one translational
and one rotational displacement at each node. Introducing an additional node in the centre
of the beam element and letting this node have a translational displacement component only,
the shape function will now be a quartic instead of the standard cubic function.

The new elastic stiffness matrix for a beam element with five degrees of freedom is:

316 94 196 —34h —3512

94h  36h* 34h  —6h> —128h

196 34h 316 —9%4h 3512 44)
—34h —6h> —94h 36k 128h

=512 —128h 512 128n 1024

The geometric stiffness matrix:

EI

Lke]= E?



392 D.B. Stephen and G.P. Steven

P

&=

\
® L

E,|l

g

Fig. 2 Finite element model of a simply supported column.

508 29 4 137 —512
20n  16h> —13h 5h* —16h
4 —13n 316 —29h 512 (45)
13n  5h* —29h 16h* 16k
=512 —16h 512 16h 1024

P

Lka)=F10n

Optimising the eigenvalue from the Rayleigh quotient using Eq. (15) for the unknown nodal
displacement results in:

_(1344ET— 324 Ph*)u,+u;)+ (336EI — A Ph)A(6,— 6;)

”h 6MA2EI— API) o)
Limiting 4 to zero limits the additional nodal displacement to:
lim uy =+ 02) + 46— ) @)
=0 2 8

which is the equation derived from the standard two node beam element shape function.
Examining a two element finite element model representing a pin-ended column buckling
shown in Fig. 2, using two standard beam elements the eigenvalue for the buckling load is:

16, _ET
A==(13 2,/31 P (48)

The exact buckling load is known:
_mEl

EX —
A P2 49)
Hence the finite element analysis eigenvalue error can be calculated as:
e=+0.752% (50)

There is a total of four degrees of freedom in this model being two end rotations plus the
middle node lateral displacement and rotation. The eigenvector solution for this problem is:
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{x}= 30 (51)

Using three node beam elements, there is two additional nodes. As the displacement pattern
is symmetric both the new nodes have a calculated displacement of:

_ 7937+878\/31
U= 96037+ 4/3T) © (>2)

Using this value in the calculation of the Rayleigh quotient using three node elements, the
new eigenvalue becomes:

A*=98711 ;Eé (53)

and has an error or:
&= +0.015% (54)

This is a significant improvement on the original eigenvalue from an error of 0.752% to 0.015%.

4.2 Portal frame

2 units

2 units

Fig. 3 Finite element model of a portal frame.

Fig. 4 Displacements for the vibrating portal frame for the first three modes.



3% DB. Stephen and G.P. Steven

A portal frame was analysed for the first three natural frequencies using combined beam
and truss elements finite. A consistent mass matrix was used for this example. This frame had
values of elastic modulus E, cross sectional area 4, second moment of area I, and mass per
unit length p all equal to one. The structure was analysed for a various number of mesh refine-
ments to extrapolate the exact solution. One particular mesh for this structure is shown in Fig
3. The displacements for the first three modes, along with the original shape are shown in
Fig. 4.

Mode 1 is the extensional vibration of the columns of the portal frame. Mode 2 is a sway
type displacement and Mode 3 is a combination of the extension or contraction of the columns
with the sway of the portal frame.

The elastic stiffness and consistent mass matrices for the truss elements arc shown in Egs.
(28) and (29) respectively. The additional nodal displacement can be calculated from these matrices
and is shown in Eq. (32). The elastic stiffness matrix for a beam element with five degrees
of freedom is shown in Eq. (44). The consistent mass matrix for this type of element is shown

in Eq. (33) 2600 20n —46 Th 80
00 2 ~Th K 8k

mad=—2L | —46 —7n 20 —200 80 (55)
Th R —20h 2 —8h
80 8 80 -8 512

From these matrices the additional nodal displacement for the beam element can be calculated
as:

. (I6128EI+ 10Ah*)u, +u)+ (O32EI + A1) 6 — 6r)
=

GA(SOAET— A 1) (56)

This again limits to the displacement value predicted by the standard finite element shape function
as h tends to zero.

Using this calculated displacement value with the elastic stiffness matrix for a five degrees
of freedom beam element, and the three degrees of freedom truss element, the numerator of
the Rayleigh quotient in Eq. (1) is similar as that for the standard four degrees of freedom
beam element and standard two degrees of freedom truss element respectively. However the
denominator terms for the Rayleigh quotient for the beam and truss elements are greatly different
to the original finite element solution. The new eigenvalue results are very poor with this method.

The mass matrix using higher order elements does not relate to the mass matrix using the
standard elements. To overcome this problem and derive an improved eigenvalue the new mass
matrix must be scaled to relate to the original solution. An effective and simple way to achieve
this is to calculate the Rayleigh quotient for the higher order elements as A, using the predicted
displacement values from the higher order elements given by Egs. (32) and (56) for the truss
and beam elements respectively. Then second Rayleigh quotient A, is calculated again using
the interpolated displacements from the standard finite element shape functions. Scaling the
mass matrix to relate it to the original solution can be done using the ratio of the two eigenvalues
obtained. The improved eigenvalue for the finite element result can be calculated as:

N
A —,1< M) (57)
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Table 1 Finite element analysis and improved eigenvalue errors
for the portal frame example

Mode 1
DOF FEA Error Error 1 Error 2
15 1.9825% 1.0368% 0.0998%
33 0.4860% 0.2431% 0.0009%
69 0.1026% 0.0415% 0.0195%
Mode 2
DOF FEA Error Error 1 Error 2
15 2.4133% 0.9363% 0.5194%
33 0.5985% 0.2351% 0.1269%
69 0.1513% 0.0616% 0.0281%
Mode 3
DOF FEA Error Error 1 Error 2
15 11.2972% 3.6034% 3.5585%
33 2.7272% 0.9275% 0.8407%
69 0.7063% 0.2634% 0.1776%
One order higher Several orders higher
Exact Solution \ Exact Solution

\Finite Element Solution \Finite Element Solution

Fig. 5 Convergence of finite element functions.

However the consistent mass matrix is calculated from the square of the shape function, so
it is better to have the new eigenvalue as:

A*=2, ( L )2 (58)
Aa

The finite element analysis errors along with the improved eigenvalue errors for both improvement

techniques are tabulated following.

The displacement pattern for Mode 3 is much more complex than the vibrating shapes of
Modes 1 and 2, hence the finite element analysis error is much greater for Mode 3. For the
simple structure the finite element analysis errors are around 2 per cent for Modes 1 and 2
compared to 11 per cent for Mode 3. Similar relationships are encountered for the more refined
meshes.

In all cases the improved eigenvalue is much better than the original finite element eigenvalue.
The second method of the square of the ratio produces even better results than the linear ratio,
and in some cases great improvements.
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5. Comments

The examples in this paper have used only one order higher Lagrange polynomials to develop
a new pair of elastic stiffness and mass matrices (or geometric stiffness matrix). Using functions
of several orders higher than the basic ones does not always lead to an improved result. This
can be seen visually with the aid of the previous Fig. 5.

The much higher order functions can develop waves or oscillations as they attempt to represent
the exact solution, where as using only one order higher polynomials than the original finite
element shape functions tends to produce shapes that better represent the exact solution. This
has been found by Stephen and Stephen (1994) (1995) for a different technique and can justify
the success with this method.

6. Conclusions

Higher order finite element have been used in this paper to obtain a new eigenvalue solution.
The optimization of the eigenvalue via the differentiation of the Rayleigh quotient has shown
that the additional nodes as a result of the higher order elements can be calculated for each
element individually.

This paper shows that by using a finite element with a higher order polynomial shape function
than the original solution an improved eigenvalue can be estimated with out resolving the finite
element model for the increased complexity.
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Appendix A-Solutions for a three node truss element

The one dimensional structure used for the estimation of the natural frequency of a compression
wave is modelled using two element truss elements with three nodes in each element. The structure
is represented following in Fig. Al.

EA, p
%% @ B——. \ g

"V S

Element 1 ., Element2
L

Fig. Al One dimensional structure using truss elements of three nodes each.

The eigenvalue and eigenvector solution for a two element model is using the three node truss element
and for the various types of mass matrices has been calculated. The eigenvalue error is also calculated
and shown following,

Consistent mass matrix:

=16 1 EA
Ac=—3-(13 2\/5)[12 (A1)
&= +0.752% (A2)

{xc;:{ %(2\/137—3)} (A3
1

Standard lumped mass matrix:
AL:%(15—\/129% (Ad)

&= —1.592% (A6)
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HRZ lumped mass matrix:

The errors for the eigenvalues using each type of mass matrix is quite small.

D.B. Stephen and G.P. Steven

/1,,:4(11—\/7_3)%42

&= —0462%

'{xH}:{ %(\/173 - 3)}

|

(A7)

(AT)

(A8)

(A9)





