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Lateral buckling of thin-walled members
with openings considering shear lag

Quanfeng Wangt
Department of Civil Engineering, National Huaqiao University, Quanzhou 362011, Fujian, China

Abstract. The classical theory of thin-walled members is unable to reflect the shear lag phenomenon
since it is based on the assumption of no shearing strains in the middle surface of the walls. In this
paper, an energy equation for the lateral buckling of thin-walled members has been derived which
includes the effects of torsion, warping and, especially, the shearing strains which reflect the shear lag
phenomenon. A numerical analysis for the lateral buckling of thin-walled members with openings by
using Galerkin’s method of weighted residuals has been presented. The proposed numerical values and
the predictions by experiment for the lateral buckling loads are to agree closely in the paper. The results
from these comparisons show that the proposed method here is capable of predicting the lateral buckling
of thin-walled members with openings. The fast convergence of the results indicates the numerical stability
of the method. By the study, a very complex practical eigenvalue problem is transformed into a very
simple one of solving only a linear equation with one variable.
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1. Introduction

When a thin-walled member is transversely loaded in the plane of its greatest flexural rigidity,
it may buckle laterally at a critical load, provided the flexural rigidity of thin-walled member
in the plane of bending is large in comparison with the lateral bending rigidity. The lateral
buckling is accompanies not only by some torsion of the member but also by some warping.
Therefore, the buckling of thin-walled member differs from Euler’s classical theory of lateral
buckling and is much more complex than that. This lateral buckling is of important in the
design of the member because thin-walled structures have widely been used in civil engineering,
especially in tall buildings and bridges.

Although numerous investigations of static and dynamic problems of thin-walled members
have been made during the past, ther¢ are a lot of problems, especially buckling problem, required
to be further studied. In the previous analytical methods, the finite element method (Barsoum
and Gallagher 1970, and Krajcinovic 1969) is now recognized as an effective tool for predicting
buckling loads for thin-walled members. Initially, one-dimensional finite element models were
used for lateral-torsional stability of beams. To provide for more generality, a three-dimensional
assemblage of thin plate elements was developed (Jonson and Will 1974). However, this method
requires large storage computer and much computing time, therefore, its application to practical
design for complex structure is greatly limited.
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In recent years, many research efforts were all focused on developing some simple and accurate
analytical method for thin-walled structures. In the classical analyses of the lateral buckling
of thin-walled beam-columns (Vlasov 1961, Timoshenko and Gere 1961), the buckling is assumed
to be dependent of the closed form solution of simply supported thin-walled member under
equal and opposite end moments, modified by a so-called “moment modification factor” to
allow for the nonuniform in-plane moment distribution. But, these analyses may result in unneces-
sary conservative design (Pandey and Sherbourne 1990). Among numerical simplified approaches,
the energy method is an effective method (Thevendran and Shanmugam 1991).

It must be emphasized that the previous analyses are approximate because they neglect the
deformation effect of the secondary shearing stresses due to warping restraint which reflect the
shear lag phenomenon. Although the problem of shear lag in its manifestations has been recogni-
zed for several decades and has been studied in detail both analytically and experimentally
for thin-walled closed member, relative few studies have been made on the effect of the shearing
strains along the middle surface of the walls on the lateral buckling of thin-walled open member.
The reason is that when the shearing strains are taken into account, the mathematical aspect
of the problem becomes considerably complicated as it leads, for example, to an integro-differential
equation in partial derivatives in the unknown warping function, for which no closed form
solution is available (Mentrasti 1987).

If the effect of the shearing strains on the buckling is significant, a quick evaluation of the
possible shearing strain effect is of importance to a practising engineer at the early stage of
the design of thin-walled structures with open cross section. A computer run at this stage is
neither feasible nor economical as even the cross section itself might be changed in further
studies. In this paper, the writer developed a simplified approach to evaluate the effect of the
shearing strains in thin-walled open members. To reduce the amount of numerical work in
developing the approach, a simply supported thin-walled member subjected to a lateral point
load at midspan, as shown in Fig. 1, is used to illustrate the approach developed to solve for
the lateral buckling, in which s is a currilinear abscissa; ¢ is the tickness of the wall and ¢
is the shear center.

The present study is focused on establishing a simple numerical procedure, based on energy
principle, to estimate the lateral buckling capacity of thin-walled members. A formula for the
lateral buckling involving the warping, shear and torsional modes is derived using Galerkin’s
method of weighted residuals. The formula is believed to be adequate for practical designs and
to be simple, as will be shown later in this paper. Because it is frequently necessary to cut
openings in the webs of thin-walled members in buildings for the passage of service ducting
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Fig. 1 Simply supported thin-walled member with coordinate system.
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and piping, and in bridge structures for inspection purpose, considerable attention has been
paid to this problem her. A typical I-beam with openings is taken as example to illustrate the
application of the proposed method here. The numerically obtained values are compared with
experimental results (Thevendran and Shanmugam 1991). A good agreement observed in this
paper shows that the method is capable of predicting the lateral buckling of thin-walled members
and the effect of openings on the lateral buckling. Though the formula for the lateral buckling
load of thin-walled members is to deal with simply supported member, it is all suited to cantileve-
red thin-walled members subjected to a lateral point load at free end.

2. Energy equation for lateral buckling

Consider a prismatic thin-walled open member whose cross section is shown in Fig. 1, the
present theory is based on the following three assumptions:
(1) The cross section can be regarded as rigid in its own plane. According to the Vlasov’s
assumption, the tangential displacement of any point on the centric line of the thin wall
of the cross section can be expressed as

d(s 2)=p(s) 9(2) (1)

in which p(s) is the distance from the shearing center of the cross section to the tangential
line of the point s, and @(z) is the twist angle of the cross section.

(2) The membrane stresses of o, and o, parallel to the x and y axes are much smaller than
the longitudinal stress o, and thus by Hooke’s law, the longitudinal strain

Ex O}/E

in which E is the Young’s modulus of elasticity.
(3) Kollbrunner and Hajdin’s assumption for warping displacement is adopted, and thus the
distribution of the warping displacement in the thin-walled member can be written as

ws 2)=—wls) 0@) 2)

in which @(s) is the sectorial coordinate with respect to point ¢; 8(z) is a function represen-
ting the distribution of the warping along the length of the member, and for open cross
section

(s)= f P(s)ds; €)
0
2.1. Longitudinal normal strain
The longitudinal normal strain on the center line of the thin wall due to warping can be
obtained by the kinematic equation of elasticity:
£,=0wW/0z=— @@ @

in which each prime denotes one derivative with respect to z.
The moment of M,, applied to major axis, causes the section to twist and, when coupled
with shears, causes an additional deflection # in the x-direction during buckling. The moment
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creates a longitudinal normal strain given by Youg and Trahair (1992)

”

g=—xu"; ®)
2.2. Shearing strains

Because the shear strains due to bending of the thin-walled member are neglected, the shearing
strains of the thin-walled member consist of ones due to warping and uniform torsion. The
shearing strains in the middle surface of the walls due to warping are

Ye=0d/0z+ Ow/ds=p ¥ —w/ds 0O,
Substituting Eq. (3) into the above equation gives
Ye=P(¢'—6); Q)

When the warping is unrestricted, only the so-called St. Venant stresses and strains are present.
Generally, the distribution of shearing strains in a thin-walled open member may be shown
to be related to the rate of torsion by the expression

Yu=2v @' ()

_in which v is the distance to any point in the cross section measured normally from its center
line. Combining Egs. (4), (5), (6) and (7) gives

e=—xu"~wl'; ®)
Y=2v¢ +p(¢'—0) ©)
The expression for the strain energy stored in the thin-walled open member is
L
Uzij [f (E62+G72)tds] dz (10)
250U,

in which G is the shearing modulus of elasticity.
Substituting Egs. (8) and (9) into Eq. (10) yields

U:—;—J {E[(f xzzds)(u")zﬂf Wt ds) (0
0 Z\ Zs
+2(f xcotds)u"@']+G[(f p*tds) (¢'— 0)
5 5

+(f 4v2t ds) (¢’)2+2(f 2vptds) (¢'—0) ¢} dz; (11)
S5 s
The quantities in parentheses are various geometric properties of the cross section. In particular:

I,= f x*tds the second moment of area about y-axis;
2

I= f w’tds the warping moment of inertia;
2
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J= f 5 4vitds the St. Venant torsiongl constant;
I,= f . ptds the polar moment of inertial of the cross section about the center of twist.
The other terms are zero for the following reasons:
f xwtds=0
2s

because the warping displacements produce no net moment about y-axis
(Gellin 1988);

f 2vptds=0 for a prismatic thin-walled open member;
S5

As a result, Eq. (11) reduces as

L
U= % f ELG Y +EL(O Y+ GI@'Y+ G, (¢~ 07] dz;

(12)
The potential energy of the loading system measured from the straight untwisted state is defined
by

L
V= —f f T Aitdsdz
0J 3

in which T; is a system of conservative surface forces acting on the member in the y-z plane,

and 4, is the displacement components corresponding to the 7;. The sum of the strain energy
of the member and its loading system can be expressed as

n=uv+v

(13)
When the member is in a state of equilibrium, the total potential energy IT of an elastic
thin-walled member is stationary. Hence, the following equation must exist:

S11=0;
Substituting Eq. (13) into the above equation gives

L L
6{%[ LEL (u ”)2+E1w(6’)2+GJ(¢')2+GI,,(¢’—0)2]dz—f f T,-A,»tdsdz}ZO; (14)
0 0 Zs
The present formula of energy equation for lateral buckling can be applied for prismatic
thin-walled member with any kind of open cross section, for any loading system, and for general
end boundary conditions.

3. Governing equation and boundary conditions for lateral buckling

The energy methods are not fundamentally different from the methods based on equilibrium,
compatibility, etc., but they are often more convenient. Furthermore, if it is desired to develop
a second-order theory, the energy theorems become very valuable tools. In this paper the minimum
potential theorem is used to investigate the problem of the lateral buckling. For the sake of
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simplicity, a simply supported member of length 2L having a doubly symmetrical cross section
and subjected to a lateral point load P at midspan is considered. Due to the member symmetry,
half the member was analyzed.

When P is applied at the centroid of the cross section, the potential energy is given by Masur
and Milbradt

L
-—f M. ou" dz (15)
0

in which M, is the internal moment about the x-axis. For a simply supported beam subjected
to lateral point load at midspan, the potential energy becomes

'L
V= —Pf ou"(L—z)dz; (16)
o :
Substituting Eq. (16) into Eq. (14), we have

L
5 % f LEL (u" P+EL(8' Y +GJ®' Y +GI,(¢'— 02 Pou"(L—z)] dZ}ZO; (7
0

For this case of a member subjected to no lateral forces and with both ends “simply supported”,
the lateral curvature of #” in Eq. (17) can be eliminated by the following relation

ELu"—P(L—z) $=0, (18)

to give the following potential energy expression:

L
6{%— f [GJ,(¢' P+EL, (6 Y+GI¢' — 0~ fPIZ— (L—z2y 0] dz] =0; (19)
0 y
The first variation with respect to ¢ and 6, respectively, yields
L
J (GJ ¢' 60" +GIL, (¢’ —6) 5¢'—§(L—z)2¢6¢]dz:0; (20)
0 ¥y
L
f (EL,0'50'—GI,(¢'—8)50]dz=0; (1)
0

Noting that the processes of variation and differential can be permutable, the Eqgs. (20) and
(21), respectively, can be integrated by parts as follows;

[GI ¢’ §6+G1,(9'— )] 5 |

f (GJ ¢"+GL,(¢'— 9)+ (L 2 0] 8¢dz= (22)

L L .
EL9 50| — f [EL,0"+Gl,(¢'— 0)] 50dz=0; 23)
0 0

To satisfy Eq. (14) for any arbitrary values of §¢ and 66, the terms under the integral must
vanish. This condition produces the following governing differential equations for the lateral
buckling:
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GJ 9" +GI,(9" —6) + P*(L—z)/EIL, ¢=0;
EL.0"+GI,(9'— 6)=0;

375

24)
(25)

And, the corresponding natural boundary conditions at z=0 and z=L, respectively, must be

satisfied too
GJ 9’+GI,(¢°—6)=0;
or ¢$=Const,;
EL 6°=0;

or 8=Const,;
Eq. (24) gives

0=uo"+P/(ELGL)(L—zy¢;
Differentiating with respect to z twice gives
0" =ud" +P*[—2(L—z) o+ (L—z)* ¢’ IEIL GL);
0" =pue¢" +P*[20—4L—z) ¢’ +(L—z)’ 0"INEI,GL,)

in which u=1+J/I,
Eliminating (¢’—80) from Egs. (24) and (25) gives

—GJ ¢"+EIl,0"—P*(L—z)/EL,¢=0;
Substituting Eq. (30) into the above equation yields
u" =K @¢"=PUELL) (L —2) ¢— a’[20—HL—2)¢"+(L—2z)¢"]}

in which K*=GJ/El,; and «*=EL,/GI,
Elimination (¢’—6) from Eqgs. (25) and (26) yields

0"—K*¢’=0;,
Substituting Eq. (29) 'into Eq. (33) gives
at z=0,
ue”—K*¢'=— > PAE LY —2L ¢+179’);
at z=L,

ue”—K*¢'=—0;

Substituting Eq. (28) into Eq. (27) again we have
at z=0.

up”'=— asz/(Ezlwly) L*¢,
at z=L,

(26)

27)

(28)

(29)
(30)

(1)

(32)

(33)

(34a)

(34b)

(35a)

(35b)
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Eq. (32) is the differential equation governing the buckling of thin-walled member derived
by the displacement variational method and Eqgs. (34) and (35) are the corresponding boundary
conditions.

When the member buckles laterally, the smallest such value that yields a non-trivial second
solution for the member is known as the critical load called as P,.

Introducing nondimensional quantities

&=(L—2)/L;
A*=P,/P. (36)
(py=(E*L L)L, (37)

Eq. (32) can be rewritten as
H" ()KL ¢"()=(A*y' L9 0= /L2 20+45 O N+ 0" (6); (38)

And, the corresponding boundary conditions will be
(1) At the free end

o" =0, (39a)
ue” —KL*¢'=a*/L*(A*y 20+ ¢’ ]; (39b)
(2) At the fixed end
o=0; (40a)
@' =0; (40b)
(3) At the simply supported end
0=0; 4la)
9"=0; (41b)
(4) At the symmetrical location
O’'=0; (42a)
uo" =K L*¢’= /L (A*) 20+ ¢ ]; (42b)
From Egs. (36) and (37) we have
P, = AXE*I1,)"5/L; 43)

Eq. (38) is an eigenvalue problem of the governing differential equation and can usually be
solved by numerical methods.

4. Numerical solution for lateral buckling equation

Of the available techniques, the Galerkin’s method of weighted residuals is selected to solve
the present problem. This method is proved to be convenient (Wang 1991).
Let the eigenvalue problem be defined by

M, (V)=AN,,. (V) (m>n) 44
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in a bounded domain D, which subjects to m boundary conditions at each boundary point,
and their forms are:

A:(v)=0 (452)
A(V)=AD,(v) (45b)

in which M,, and N,, are linear, self-adjoint, differential operators of the 2m and 2n orders,
respectively. A trial solution is assumed in the form

v/r:ZC]nj j:l’ 29 R r (46)

in which the coefficients C; are undetermined parameters, and values of 7, are independent
known functions. So, it is chosen to satisfy at least the homogeneous boundary conditions of
Eq. (45a).

Substituting Eq. (46) into Eq. (44) will give rise to residuals within domain D

Ri=—M;,,(V,)+AN,,(¥,) (47a)
and on the boundary s
Ry=2T—4:(¥)+AD:(¥)] (47b)

Galerkin’s method requires that the weighted averages of the residuals corresponding to the
weighting functions 7, are identical with the orthogonality conditions (Crandall 1956)

j R, %dD+ZJR2mds=O J=12, = r (48)

D s

and provides a set of r algebraic equations for the determination of the unknown parameters

C,. These equations may then be expressed in the desired matrix form of
(41{Ct=A[B1{C} (49)

in which {C} is a column vector of the unknown coefficients C, and [4] and [B] are the
square matrices composed of elements a; and by given by

ap= f Mo () dD+ . f nA4,(m) ds (50a)

b= f M Now () dD+ 2 f n.D;() ds (50b)
D s

In a self-adjoint eigenvalue problem, the matrices [4] and [B] will always be symmetric.
Further, [4] and [B] will be of positive symmetric form if the operators M,,, or N,,, respectively,
are positive definite. In the present case, the generalized coordinate 7, is chosen from the trigono-
metric family sin m 7 & /2, which satisfied the homogeneous boundary conditions

#(0)=0 and ¢ (1)=0;
The solution of Eq. (38) can be expressed for convenience as

mné

¢)=¥=2.Gn=2 Csin—>— : (51)
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To solve Eq. (38) using the method of weighted residuals the equation is rewritten in the
form of Eq. (44)

M (¢)=AN,(¢); (52)
Ay(0)=AD(0); (53a)
A, (D=AD(1) (53b)

in which M,(®)=u¢"(&)—KL?¢" (&),

N:(9)=E9(E)— a*[20+4£9(E)+E ¢"(E) /LY,
4,(0)=¢"(0); Do(0)=0;
A ()=p¢” ()~ KL2¢'(1); Dy(1)=a*[2¢(1)+¢'(1)I/L*

Substituting Eq. (51) into Eq. (50) gives

ajk:f M) dS+ Z njza{(nk) (54a)

0 ¢=0

bjk:J’ N2 (M) dS+ 3 0D (1) (54b)
0 (=0

From Eq. (49), A is determined to be the smallest positive root satisfying
det [[4]-A[B]I=0 (55)
Taking advantage of the condition of orthogonality

[ n©n@©a=1ta )

It can be shown that

1

) nﬁ{[ némt R n2n2] . nné

az—| sin u—= +KL sin d¢
* J o 2 2 2 2

33
+sin mm§ (—,Uﬂ—ﬂ —K2L2—rﬂ>cos n727§ I
(=1

2 23 2
. omral [ oprmh nn{{
+sin > ( B3 )sm———2 o (57)
Hence, if j#k,
a=0, (58)
and if j=k
ajk:(ﬂm4774/24+K2L2m2 772/22)/2 (59)

in which m=2j—1, and n=2k—1. The matrix [4] is a diagonal matrix. A similar calculation
yields by, then if j=k

bu=[1/6+ 1> T X1+ /L2 123, (60)
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and if j#k
bjkzzz/ﬂz [(__ 1)1/2(m~n)f/(m _n)z_(_ 1)1/2(m+n)/(m+n)2](1 + aZ/Lzmz 772/22)
__2n,la2/Lz|:(_1)1/2(m+n)/(m+n)_+_(_1)1/2(m+n)/(m_,n):|_+_2az/L2; (61)

The matrix characteristic equation may be set up and solved for A. The accuracy of the
solution is determined by the terms of the sine series taken. From the convergence study in
the next section of the present paper, one can see that for a satisfactory accuracy, it is sufficient
to take only the first term of the sine series.

5. Comparison with experimental results

The following example has been investigated by Thevendran and Shanmugam (1991). And,
it can be observed later in the next section that the proposed formula for the lateral buckling
load in this paper is very simple.

Example:

The specimens of simply supported I-beam are of length 2L=940 mm, web thickness 7,=6
mm, overall web depth d=75 mm, flange thickness #/=10 mm, and flange width »=23.5 mm;
The six locations for the openings over the left half of the span are indicated in Fig. 2.

The locations are numbered from the support to midspan, and are symmetric about midspan.
The openings are either rectangular or circular, with their number and sizes varied. Specimens
with the following sets of openings are studied:

1. No opening;

2. One rectangular opening;
3. Three rectangular openings;
4. Six rectangular openings;
S. Three circular opening;

For the sets 2, 3, and 4, two different sizes are considred, 62.5 mmX50 mm and 62.5 mmX25
mm; For 5, two different diameters, 38 mm and 25 mm, are considered.

The Test is carried out using specimens from plexiglass sheets having average value of Young's
modulus E=2860 N/mm’ and Poison’s ratio v=0.36.

Since the presence of openings may be regarded as roughly similar to a reduction in the

Lsi?0
B 4 B 4+ B 4 B 4+ B ¢ 5 NS
M 1 1 | 1 1
=
-3
i
. 2 3 L 3 3

Opesings
Fig. 2 Locations of openings.
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effective thickness, a possible approximate evaluation of the buckling load for a member with
openings may be derived by replacing the thickness by an effective thickness which takes account
of the loss of material. This may be achieved by considering the horizontal portion of the member
containing the openings to act as a segment with a reduced thickness, by “diffusing” the area
of web sections between openings throughout the whole length of the member. In that case,
the reduced coefficient of rigidity due to openings becomes (Coull and Alvarez 1980)

051:(1—bn/d)+[1—Nao/(2L)]3bo/d (62)

in which N is the number of rectangular openings; 4, is the length of opening; b, is the depth
of opening, and d is the overall web depth.

For members with circular openings, a corresponding approximate formula is very complicated
in view of the nonregularity of the web areas between openings. Since the effective width concept
is relatively crude, the derivation of an accurate formula is not warranted, and a simple solution
may be achieved by replacing the circular opening by an equivalent polygonal opening. The
simplest approach is to replace the real circular opening by an octagonal opening, the polygon
being circumscribed in a circle of diameter Dy. The reduced coeflicient then becomes (Coull
and Alvarez 1980).

&=(1—Dy/d)+0.172[N(D, Y/(d 2L)]+(Do/d) [1—ND, /(2L)] (63)
For I’beam, El,, GJ; and EI, (Timoshenko and Gooder 1951) are given by
EL=E/12[2b*t;+ ad (1)) (64a)
GJ=G/3 [2kb(t)* + ak,d(t,)"] (64b)
EL,=E/24 [4;b® (d+1)1] (64c)

in which i is either 1 or 2; G is the shear modulus, which is given by
G=E/[2(1+v)];
k; and k, in Eq. (64b) are constants given by
ki=1—063 r; (65)

in which i is either f or w, and r,=/b, r,=t,/d.

The numerically computed lateral buckling capacity of the member is compared with those
obtained from experimental results (Thevendran and Shanmugam 1991) in Table 1.

From the Table 1, it can be seem that the lateral buckling loads of P, obtained by using
the method of weighted residuals are close to the experimental results (Thevendran and
Shanmugam 1991). And, the relative differences in the results between the two methods are
all under 3.8%.

6. Convergence of the solutions

As mentioned previously, the lateral buckling mode is expressed as a trigonometric series.
To study its convergence, the value of the lateral buckling load was examined by taking the
first one term, or the first two terms, and subsequently the first three terms in the series. The
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Table 1 Comparison of results (N)

Speci Size of Location of P, by P, by PP
pecimen opening (mm) opening experiment  proposed M. o
SIORA - — 707.8 681.0 0962
SIIRC 62.5X50. 6 688.7 6733 0978
SIIRF 62.5X25. 6 698.7 6712 0.969
SI3RA 62.5X50. 1,3, 6 667.1 659.7 0.989
SI3RB 62.5X25. 1,36 684.7 6709 0.980
SI6RA 62.5X50. 1-6 637.7 644.0 1.010
SI6RB 62.5X25. 1-6 6749 664.3 0984
SI3CA D=38. I, 3,6 696.5 6779 0973
SI3CB D=25. 1, 3,6 7009 679.6 0970
Table 2 Effect of number of terms taken on values of P, (N)
Specimen The first The first The first
one term two terms three terms
SIORA 680.9928742 680.9926769 680.9926732
SI1SC 6733127423 673.3125414 673.3125376
SIIRF 677.1856725 677.1854736 677.1854698
SI3RA 659.7131684 659.7129603 659.7129564
SI3RB 670.8727556 670.8725534 670.8725497
SI6RA 644.0022958 644.0020789 644.0020749
SI6RB 664.2474457 664.2472401 664.2472362
SI3CA 677.8739932 677.8737946 677.8737909
SI3CB 679.6137844 679.6135867 679.6135829

381

differences in the results for the three different numbers of terms in the series as shown in
the Table 2 almost disappear. Therefore, in an engineering design for the lateral stability of
thin-walled member it is sufficient to use only the first one term in the Fourier expansion for
the buckling mode. Hence, m=1, Eq. (55) reduces to:

A*Y=an/by.

Substituting the above equation into Eq. (43) gives

P.,= B, {EI,GJ{1+ um*EL, f(a* GN1)*S/a?

in which B,=2m[2(1/6+1/m(1+ &/L>*m*/2%)]°° is a constant.
It is very simple and convenient to use.

7. Effect of shearing strains on lateral buckling

(66)

(67)

If the shear strains along the middle surface of the walls are neglected, Eq. (38) will be reduced

as

O~ KIL O =X £ 0,

(68)
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Table 3. Effect of shearing strains on values of P.(N)

R 20 10 5 2.5
¥,s is neglected 2928.731 15057.136 97353.978 728322428
7:s is considered 2926.676 14956.936 93624.837 622308.838
Differences 0.1% 1.% 4% 15.%

The A* can be solved by the same calculation as the above section, we have

in which (A*y=an/b,
ay=(m/2'+K*L* 1°/2%)/2; (70
b1|:1/6+ l/ﬂz, (71)

The same example as the previous section with one rectangular opening is selected to demonst-
rate the effect. The different results considering the shearing strains in the middle surface of
the walls are compared with the ones neglecting the shearing strains in the Table 3. in which
R is the ratio of height of the member to width. From the example shown in the Table 3,
it can be seen that the effect of the shearing strains in the middle surface of the walls on
the lateral buckling increases significantly as R decreases.

8. Conclusions

From the numerical example above, the following some conclusions can be drawn:

(1) An energy equation for the lateral buckling of thin-walled open members has been derived
in which the effects of torsion, warping and, especially, the shearing strains in the middle surface
of the walls are taken into account. A numerical analysis for the lateral buckling of simply
supported thin-walled member by using Galerkin’s method of weighted residuals has been presen-
ted in this paper.

(2) The proposed numerical values and the predictions by experiment for the lateral buckling
loads are to agree closely in this paper. The results from these comparisons show that the proposed
method in this paper is capable of predicting the lateral buckling of simply supported thin-walled
membe with openings.

(3) The fast convergence of the results indicates the numerical stability of the method.

(4) The method presented in this paper yields the formula for computing the lateral buckling
load that is very simple and straightforward. By the study, a very complex practical eigenvalue
problem is transformed into a very simple one of solving only a linear equation with one variable.

(5) The same method can be applied for other types of load and end constraint conditions.

(6) The effect of the shearing strains in the middle surface of the walls on the lateral buckling
increases significantly as R decreases.
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