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Rate-sensitive analysis of framed structures
Part I: model formulation and verification

B.A. Izzuddint and Q. Fang$

Department of Civil Engineering, Imperial College, London SW7 2BU, UK

Abstract. This paper presents a new uniaxial material model for rate-sensitive analysis addressing
both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-
sensitive response, and employs a three-parameter representation of the overstress as a function of the
strain-rate. The third parameter is introduced in the new model to control its transient response characteri-
stics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since
the governing visco-plastic differential equation cannot be integrated analytically due to its inherent
nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels
of accuracy almost independent of the size of the integration time-step. The new model is implemented
within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples
and comparison with other experimental and numerical results. The companion paper extends the three-
parameter model to trilinear static stress-strain relationships for steel and concrete, and presents applica-
tion examples of the proposed models.
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1. Introduction

Recent advances in computational methods, coupled with the emergence of powerful computers,
have provided a tremendous opportunity for the realistic assessment of the response of structures
subject to severe dynamic loads, such as earthquakes and explosions. Although it is well establi-
shed that the rate of straining can affect significantly the material response, it is still common
practice to use material models which do not account for the strain-rate effect when assessing
the dynamic response of structures.

The most notable outcome of experiments undertaken on structural steel is that the yield
stress increases with the rate of straining, and hence a distinction can be made between static
and dynamic yielding. Several ‘material models were proposed to reflect the effect of the strain-
rate on the elasto-plastic material response (Malvern 1951, Bodner and Symonds 1960, Perzyna
1966, Chang, et al. 1989, Manzocchi 1991). Amongst these models, the elastic/visco-plastic model
incorporating the so-called overstress concept, which was developed by Malvern (1951) and Perzyna
(1966), received much attention mainly due to its simplicity. Since overstress models are established
within the framework of the classic theory of plasticity, different hardening rules can be readily
incorporated to represent the material response more accurately under general loading.

In this paper, a new elastic/visco-plastic model is proposed, which is based on a bilinear
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static stress-strain relationship with kinematic strain hardening. The new model employs a three-
parameter rate-function, which is an extension of the two-parameter function used by Manzocchi
(1991). Apart from the additional flexibility that this provides in fitting experimental data, the
third parameter is shown to control the transient response of the model, particularly with regard
to sudden transitions between high and low strain-rates.

The new three-parameter model is implemented within the nonlinear analysis program ADAP-
TIC (Izzuddin 1991), where it is utilised by an elasto-plastic beam-column formulation (Izzuddin
& Elnashai 1993a) accounting for the spread of plasticity within the cross-section and along
the element. The response of structural steel to monotonic and cyclic loading, including variable
strain-rates and stress relaxation, is investigated using the proposed model, and comparisons
are made against available experimental and numerical results. The companion paper (Fang
& Izzuddin 1997) extends the proposed model to trilinear static stress-strain relationships for
steel and concrete, and presents several application examples of these models.

2. Elastic/visco-plastic theory

The proposed rate-sensitive model is based on the general elastic/visco-plastic equations, propo-
sed by Malvern (1951) and Perzyna (1966). According to Perzyna (1966), the response of an
elastic/visco-plastic material consists of an elastic part, which develops instantaneously, and a
time-dependent visco-plastic part, which is related to the overstress. For a uniaxial stress state,
the visco-plastic rate-sensitive response is hence described by the following equations:

=g +é, ()
5=2 @)
. X
=L .
X=o0—g(¢) @

where (¢) is the total strain, (&) is the elastic strain, (g,) is the plastic strain, (o) is the stress,
(E) is Young's elastic modulus, (X) is the overstress, the dot (+) denotes the rate of variation
with respect to time, and g(e) represents the static stress-strain relationship in the plastic range.
The function f{X) is the rate-function, which reflects the rate-sensitivity of the material. In this
function, the bracket { ) implies that the expression is activated only when (X >0), that is when
the stress point is outside the plastic limit curve.

For analytical purposes, it is more convenient to combine Egs. (1)-(3) into the following expres-
sion:

Ee—o=f{X> &)

In the case of a bilinear static stress-strain relationship, shown in Fig. 1, the plastic limit curve
is given by:

gle)y=o,TuE(e—¢g) (6)

where (u) is the hardening parameter of the material.
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Fig. 1 Bilinear stress-strain relationship.

The combination of Eq. (4) and Eq. (6) leads to the following relationship between the stress-
rate, overstress-rate and strain-rate:

s=X+g(e)=X+uE& 7)

which can be substituted in Eq. (5) to provide a first-order differential equation for (X), given
a prescribed strain-rate (&):

X+f{(X>=E(1—uge 8)

For a constant strain-rate (&), the overstress (X) can be shown to achieve a steady-state value
(ie, X=0) which is obtained from the inverse of the rate function:

X=f"E(1—wey=F{& ©

The rate-function f{X) also affects the mransient variation of overstress (X), which can be
determined through the integration of the differntial equation in Eq. (8). Depending on the
choice of f{X ), the integration may be performed analytically, as with Manzocchi’s two-parameter
function (1991), but for the majority of rate-functions the integration can only be evaluated nume-
rically.

3. Rate-functions for steel

Experiments conducted on structural steel demonstrate that the yield stress increases with
the strain-rate, and that the plastic plateau region is more rate-sensitive than the strain-hardening
region. This behaviour is often idealised by assuming a bilinear static stress-strain relationship,
with the rate-sensitive response determined from a series of experiments at constant strain-rates.
Essentially, these experiments are concerned with the determination of values for the steady-
state overstress (X) at prescribed constant strain-rates (£), which can be used to establish the
rate-function f<{X), or its inverse F<{&, which best fit the experimental results.

Several forms of F{&), have been proposed for structural steel, such as the empirical expression
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given by Soroushian and Choi (1987), which is valid for strain-rates ranging from (107° sec™ )
to (10 sec™'):

X=0,[(046—0451X107%5,)+(0.0927—92X 1077 5,) logs (£) ] (10$)

where (o,) is the static yield strength of steel in (psi).
Another expression recommended by the CEB (1988) for steel is given by:

X=c 1n<.£> 11)
where (¢) and (&) are material constants, with suggested values of (¢=6 MPa) and (=5X10"°
sec™ ).

Alternative descriptions of the steady-state rate-sensitive response of steel have been made
in terms of relationships between the dynamic yield stress and the total or plastic strain rate.
Bodner and Symonds (1960) adopted the former description in their proposed expression:

o £\
—=1+{- 12
Oy (5‘0> (12)
where (o,) is the static yield stress, (o) is the steady-state dynamic yield stress, and (@) and
(&) are material constants with suggested values for mild steel of (@=0.2) and (§=40 sec™').

Malvern (1951), on the other hand, related the plastic flow stress (o) to the plastic strain-rate
(¢,) using the following expression:

o=g(e)+s In(1+b &) (13)

in which (s) and (b) are material constants, and g(¢) is the static stress-strain curve in the plastic
range.

It is worth noting that Malvern’s relationship in Eq. (13) is valid for both the steady-state
and transient responses, since it expresses the overstress in terms of the plastic strain-rate, which
is the inverse from of Eq. (3). For a bilinear stress-strain curve, the plastic strain-rate at steady-
state (i.e. X=0) is proportional to the total strain-rate, as can be established from Egs. (3) and

@):
=(1—u)é (14)

Therefore, Malvern’s expression Eq. (13) is equivalent to the two-parameter steady-state function
employed by Manzocchi (1991):

X=S ln(l+—i—> (15)

where (S) and (&x) are material constants.

Comparison of the previous relationships at steady-state shows that the expressions can vary
considerably, as shown in Fig. 2, which may be an indication of the scatter of available experiment-
al data. Whilst the relationship in Eq. (12) utilises a power function, the other proposed relation-
ships are logarithmic functions or they converge to logarithmic funcitions at high strain-rates.
The use of such expressions within rate-sensitive models does not only lead to different steady-
state responses, but it also results in different transient behavior.

The use of two-parameter logarithmic rate-functions, such as the functions proposed by Malvern
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Fig. 2 Comparison of rate-functions for steel (5,=300 MPa).

(1951) and Manzocchi (1991), leads to excessive rates of relaxation, as shown in a later comparison
against experimental results by Chang, ez al. (1989). In addition, the application of such expressions
to other materials, such as concrete, could lead to considerable inaccuracies, since the variation
of overstress with strain-rate may not be logarithmic. As demonstrated later, the overall structural
response can be considerably influenced by the choice of the particular rate-function, and hence
it is important to choose one which describes accurately the variation of overstress over a wide
range of strain-rates.

In the following section, a new three-parameter rate-function is proposed which addresses
the aforementioned issues, and which is used as a basis for formulating a new rate-sensitive
model for uniaxial stress states.

4. Three-parameter rate-sensitive model

A new rate-sensitive uniaxial material model is proposed, which is based on a three-parameter
relationship between the steady-state overstress (X) and strain-rate (&):

X:F<'g>:SNln(1 +{é—i}w> (16)

in which (S), (¢%) and (V) are material constants.
The corresponding rate-function f{X?, which relates the plastic strain-rate (&,) to the overstress
(X) as given by Eq. (3), can be obtained from the inverse of F(& according to Eq. ()

FXO=E(Q—u)F {X)=E(1—u)ex ¥ —1)" 17)

It is noted that the proposed three-parameter relationship reduces for (N=1) to the two-para-
meter expression employed by Manzocchi (1991). The introduction of the third parameter (V) is
shown to control mainly the rate-sensitive response at low strain-rates, and hence enables more
accurate prediction of the transient response, including stress-relaxation upon sudden reduction
in the strain-rate. In addition, the three-parameter relationship provides more flexibility in fitting
experimental data over a wider range of strain-rates, and is consequently applicable not only
to steel but also to concrete and other materials.
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4.1. Numerical integration

The proposed rate-sensitive model is implemented within an incremental procedure, where
the strain-rate (¢) is assumed constant for each time-step (Az). To enable accurate representation
of the transient response, the steady-state value of the overstress (X) corresponding to the strain-
rate (), as given by Eq. (16), is not instantly achieved. Instead, the solution to the viscoplastic
differential equation in Eq. (8) is sought as an initial-value problem, where the overstress at
the start of the time-step (X,) is known, and its value at the end of time-step (X;) is required.

The governing first-order differential equation can be obtained by substituting in Eq. (8) the
rate-function proposed in Eq. (17):

X+E(1—p) ex@N—1)"=E(1—pu) ¢ (18)

The variation of overstress (X) over the time-step (A¢) is illustrated in Fig. 3, where the overstress-
rate (X) is plotted aginst (X). Two forms of the transient response are established for which
the initial overstress (X,) 1s different from the steady-state value denoted henceforth by (X;).
The first, which corresponds to (X,<X;), 1S an overstressing response, since the overstress-rate
is positive (X>0). The second, which corresponds to (X,>X.), is a relaxation response, since the
overstress-rate is negative (X<O0).

Except for the case (N=1), the solution of Eq. (18) can only be obtained numerically due
to its inherent nonlinerity in the time-dependent variable (X). Two numerical integration techni-
ques, based on tangent and secant approximation, are considered hereafter, and a new single-
step numerical integration method combining the advantages of these two techniques is proposed.

4.1.1. Tangent approximation
The tangent approach is concerned with the linear expansion of the differential equation

in Eq. (18) with respect to (X') about (X;), as depicted graphically in Fig. 4. The resulting approxi-
mation leads to a linear first-order differential equation, given by:

X+aX=aX, (19a)

x4

E(1-p)e

Relaxation

Fig. 3 Relaxation and overstressing transient states.
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where,
4= E(1 —:S',g )E * XN (pXo/SN— )N -1 (19b)
X=X+ E( 1a'_ E) [8_ 'g*(gXO/SN — l)N] (190)

Therefore, a tangent approximation for the overstress (X;) at the end of the time-step (A¢) can
be obtained from the exponential solution of Eq. (19)

X=(Xo—X)e a4 +X, (20)

This approachs is relatively accurate for a small time-step (A?); however, if (A7) is not sufficiently
small, significant inaccuracies may result in the transient response prediction. As can be concluded
from Fig. 4, the overstress (X,) could overshoot considerably the steady-state value (X;) in the
overstressing transient phase, since (X;) is much smaller than its tangent approximation (X;).
The same reason may also lead to the underestimation of overstress (X;) in the case of relaxation.

4.1.2. Secant approximation
The secant approach is based on the linearisation of the differential equation in Eq. (18)

with respect to (X) using its values at (X;) and (X;), as depicted graphically in Fig. 5. The resulting
approximation leads to a linear first-order differential equation, given by:

X+aX=a,X, (la)
where,
e N
X, =SNinl 1+y— (21b)
\ Ex
:_&l_—ﬁ)_[é_é*(exo/szv_ HM] (21c)

ST X0
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Fig. 5 Overstress prediction using secant approach.

A secant approximation for the overstress (X;) at the end of the time-step (Af) can be obtained
from the exponential solution of Eq. (21):

Xi=(Xo—X) e s47+X, (22)

Contrary to the tangent approach, the secant approach is accurate for a large time-step (At),
for which the overstress (X,) approaches (X;). However, this approach is inaccurate for small
to moderate (Af), since it leads to slower rates of overstressing and higher rates of relaxation
in comparison with the tangent approach.

4.1.3. Proposed method

It has been shown in the previous sections that the tangent approach is accurate for a very
small time-step (Ar—0), and that the secant approach is accurate for a very large time-step
(Ar—o). In view of this, a new integration method is proposed, which is also based on the
linearisation of the governing differential equation; however, a modified slope (a,) is chosen,
as illustrated in Fig. 6, which depends on (A#):

X+a,X=a,X, (23a)
where.
_ E(— .~ Xo/SN N
X, =X+ p e—ex(e*SN —1)V] (23b)

id

Evidently, accuracy demands that (a,) converges to the tangent slope (a,) when (Ar—0), and
that (a,) converges to the secant slope (a,) when (A7—00). In addition, for the intermediate range
of (At€[0, o), the value of (a,) should be between (a;) and (a,). In the proposed method,
the proximity of (q,) to (a) and (a,) is determined by the relative value of (A7) with respect
to a reference value (Ar,), which is obtained differently for the overstressing and relaxation tran-
sient responses.

For the overstressing response, (At,) is chosen as the value of the time-step for which the
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Fig. 6 Overstress prediction using proposed approach.

tangent approximation of the overstress in Eq. (20) is identical to the steady-state value (X),
as illustrated graphically in Fig. 7a:
—_ L Xs—-Xr
A= a ln( X=X > for (X <X)) (24a)
The dependence of (a,) on (Ar) for overstressing is expressed through a negative exponential
function, as depicted in Fig. &:

a,=a,~(a,—a)e 4" for (Xo<Xy) (24b)

The above function satisfies the accuracy requirements for the limits (A7z—0) and (At—wo),
and is shown to provide very good accuracy for the overstressing response in the intermediate
range of (A¥).

For the relaxation response, (At,) is chosen as the value of the time-step for which the secant
approximation of the overstress-rate, using Eq. (21a) and Eq. (22), is identical to the exact overst-
ress-rate at the tangent steady-state overstress (X;), as illustrated graphically in Fig. 7b:

At‘,:~a%ln<‘;(g':z))—) for (X, >X)) (25a)
where,
X=E(—u) e—f{X,)=EQ—pu) [e—&x (XN —1)V] (25b)

The dependence of (a,) on (Ar) for relaxation is expressed through a negative exponential function
operating on the reciprocal of (Af), which is depicted in Fig &:

a,=a,+(@—a)e 4" for (Xp>X) (25¢)

As for the overstressing case, the above function satisfies the accuracy requirements for the
limits (A#—0) and (Ar—). In addition, the particular choice of (At) and (a@,) according to
Eq. (25) is shown to provide very good accuracy for the relaxation response in the intermediate
range of (Ar).

Once the value of (a,) is established using Eq. (24) or Eq. (25), the overstress at the end
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Fig. 7 Graphical representation of (At) for overstressing and relaxation.
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Fig. 8 Variation of (a,) with the time-step (Af).

of the timestep (X)) is obtained from the solution of the linear differential equation in Eq. (23):
XI = (/Y(J iA’p) e A +Ajp (26)

In the special case when the previous overstress is identical to the current steady-state value
(Xo=X,), the overstess at the end of the time-step is also identical to the steady-state value (X,=X,).

The proposed method is a single-step integration technique, which avoids sub-incrementation
in the material stress calculations when the time-step (Ar) is not sufficiently small. This leads
to considerable computational savings in determining the material rate-sensitive response, which
are reflected by commensurate efficiency in the prediction of the overall structural response.

4.2. Stress and tangent modulus calculation

As pointed out earlier, the proposed three-parameter model is implemented within an incremen-
tal procedure, where the stress and strain at the beginning of the increment, (op) and (&), are
known. In addition, the strain at the end of the increment (&) is established from the iterative
element displacements, as described in the following section, for which the corresponding stress
at the end of the increment (o)) is sought
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Within the current increment or time-step (A¢), the strain-rate (¢) is assumed to be constant,
as given by:

: &~ &

= 27

=17 27
For the case of a plastic stress-state at the beginning of the increment (ie., X,>0), the overstress
at the end of the increment (X,) can be determined using the numerical integration approach
proposed in the previous section. Therefore, the stress at the end of the increment (o)) for a
bilinear static stress-strain relationship can be obtained from (X)) using Eqs. (4) and (6):

O :Xl + O"'+‘ ,UE (81 - Sy) (28)

In order to guide the iterative solution procedure during the current increment, a tangent modulus
(E) is required, which expresses the infinitesimal variation of (o) with respect to (g):

d0'1
d8|

Combining Egs. (27)429). the tangent modulus (E,) can be related to the first derivative of (X))
with respect to (¢), which can be determined from Eq. (26):

E= (29)

_ 1 dX]
E,—-——At de +uE (30a)
LdX_l — {1 —p—a, At dX/’ _ _ —a, Ar dap

The first derivatives of (a,) and (X,) are established from the proposed equations for the overstres-
sing and relaxation transient responses, noting that in these equations (X)), (a,), (X;) and (Ar,)
are dependent on the strain-rate (&).

The companion paper (Fang & Izzuddin 1997) provides full implementation details for the
case of an elastic stress-state at the beginning of the increment as well as the case of plastic-
unloading. In addition, the companion paper discusses the extension of the bilinear static stress-
strain relationship to trilinear relationships for steel and concrete.

5. Beam-column formulation

The proposed three-parameter model can be employed by any formulation requiring the uni-
axial rate-sensitive material response. In the present work, the new model is utilised by a one-
dimensional elasto-plastic cubic formulation (Izzuddin & Elnashai 1993a) derived in a local Eule-
rian system (Izzuddin & Elnashai 1993b), where the effects of large displacements and finite
rotations are accounted for.

The cubic formulation is capable of modelling the spread of plasticity over the cross-section
and along the member, through the use of monitoring areas over cross-sections at two Gauss

integration points. In addition, the cubic formulation is implemented within the nonlinear analysis
program ADAPTIC (Izzuddin 1991), where it is utilised within an elasto-plastic adaptive procedure
(Izzuddin & Elnashai 1993a). Through the application of selective mesh refinement when and
where necessary, during analysis and within the structure respectively, adaptive elasto-plastic analy-
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Fig. 9 (a) Overstressing transient response (Ar=0.05 msec),
(b) Overstressing transient response (Ar=0.025 msec).

sis has been shown to achieve considerable modelling and computational savings, often in excess
of 80% (Izzuddin & Elnashai 1993a).

6. Verification

Several examples are presented hereafter to demonstrate the response characteristics of the
proposed three-parameter rate-sensitive model, as well as to illustrate the effectiveness of the
proposed single-step numerical integration method. For this purpose, ADAPTIC v2.5.1. (Izzuddin
1991) is used to facilitate comparison of the results from the proposed model against those
from other analytical and experimental research work, on both the material and overall structural
levels.

6.1. Numerical integration

In order to demonstrate the accuracy of the proposed numerical integration method, a rates
ensitive material with a bilinear static stress-strain relationship (E=210X10* MPa, ,=300 MPa,
u=001) and rate-function (S=6.7 MPa, £x=53X107° sec™', N=1) is subjected to a constant
strain-rate (¢=10 sec™'). The material constant (N=1) for rate sensitivity is specified to enable
comparison of the proposed integration method against exact integration (Manzocchi 1991), since
analytical integration is only possible for this special case. The results in Fig. 9a, for a time-
step (Ar=005 msec), show that the tangent approach leads to considerable overshooting of
the steady-state overstress, whereas the secant approach underestimates the transient 1esponse
to a greater extent than the proposed approach. The use of a smaller time-step, (A7=0.025 m
sec), improves marginally the predictions of the tangent and secant methods, but leads to superior
accuracy with the proposed integration method, as shown in Fig. 9b.

The accuracy of the various integration methods is investigated for stress-relaxation, where
the strain-rate is reduced at a strain (¢=0.01) from (¢=10 sec™ ") to (=10 sec™!). The results
in Fig. 10 show that the tangent approach predicts a slow rate of relaxation, although the predic-
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tion is marginally improved when the time-step used in the relaxation phase is reduced from
(Ar=1 sec) to (Ar=0.5 sec). The results also demonstrate the accuracy of the proposed integration
method, which provides an exact prediction of the stress-relaxation transient response.

6.2. Stress-relaxation

Chang, e al. (1989) presented the results of experiments on mild steel, where the rate-sensitive
material response was investigated at two constant strain-rates of (107° sec™') and (1072 sec™').
The two corresponding steady-state overstress values in the plastic plateau range, (X=5.5 ksi)
and (X=13.5 ksi), are used in this example to determine the material constants for the three-
parameter rate-function, (S=2.87 ksi) and (ex=3.54X 107" sec™!), assuming that (N==6). The same
two steady-state points can be fitted by the two-parameter function employed by Manzocchi
(1991), for which the resulting material constants would be (S=1.159 ksi) and (ex=8.793 X108
sec™ ).

The two-parameter function and the three-parameter function with (N=6) are plotted in Fig.
11, where they are shown to coincide at the two constant strain-rates, (107° sec™') and (1072
sec™ '), assumed in the experiments (Chang, er al. 1989). However, there are considerable differences
betwen the two functions at very low strain-rates, for which there is no direct experimental
data. The importance of such differences becomes apparent in the transient material response
from high to low strain-rates, which leads to stress-relaxation.

To illustrate the above point, successive programmes, consisting of a constant strain-rate (¢=107*
sec”') followed by (10 min) of stress-relaxation at zero strain-rate, are applied. The resulting
material response, using the proposed three-parameter model and Manzocchi's two-parameter
model (1991), is depicted in Figs. 12a and 12b in the form of stress-strain and stress-time curves,
respectively. Whilst experimental evidence (Chang, er al. 1989) shows that the overstress relaxes
by approximately (60%) by the end of (10 min), Manzocchi’s two-parameter model (1991) achieves
a (90%) relaxation within (5 min), and almost full relaxation within (10 min). The proposed
three-parameter model, on the other hand, is much closer to the experimental evidence, where
a (68%) relaxation is achieved by the end of (10 min).
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6.3. Beam subjected to blast loading

A simply supported beam is subjected to a blast loading, which is simulated by a midspan
force varying according to a triangular pulse, as shwon in Fig. 13. Considering the problem
symmetry, only half of the beam length is modelled, where 10 cubic elements are employed.
The proposed three-parameter function and Manzocchi's (1991) two-parameter function are used
to fit the expression suggested by Bodner and Symonds (1960) for the steady-state overstress,
where the method of least squares is employed to determine the material constants of rate-sensiti-
vity. As shown in Fig. 14, the proposed three-parameter rate-function, with (§=53.05 MPa),
(£%=02445 sec”') and (N=3), enables a more accurate representation of the Bodner and Symonds
expression than the two-parameter function, for which (S=31.19 MPa) and (&x=4.65X 1072 sec™).

The effect of rate-sensitivity on the I-beam response is depicted in Fig. 15, where it is shown
that the midspan displacement is overestimated by approximately (450%) if the strain-rate effect
is ignored. A detailed comparison between the two-parameter model (Manzocchi 1991) and the
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Fig. 15 Effect of rate-sensitivity on the midspan displacement of the I-beam..

proposed three-parameter model is provided in Fig. 16, where three different time-steps are used
(Ar=0.1, 1 and 2 mesc). The results indicate that the maximum midspan displacement predicted
by the two-parameter model is approximately (15%) less than that predicted by the proposed
model. The use of a larger time-step leads to slightly larger displacements with both models,
mainly due to inaccurate integration of the governing equations of motion.

The (15%) discrepancy between the predictions of the two-parameter model and the proposed
three-parameter model (with the original material constants) is attributed mainly to the inability
of the two-parameter rate-function to represent the Bodner and Symonds expression accurately.
As shown in Fig. 17a, the I-beam response is almost quasi-static, where the variation of the
extreme fibre midspan stress with time is similar to the applied pulse, and where only minor
differences are observed between the predictions of the two- and three-parameter models. However,
the results of the two models for the variation of extreme fibre midspan strain with time demonst-
rate considerable discrepancies in Fig. 17b, with the two-parameter model underestimating the
maximum strain by approximately (12%). This is attributed to the two-parameter model underesti-
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Fig. 17 (a) Variation of midspan stress with time,
(b) Variation of midspan strain with time.

mating the plastic strain-rate (g,) for overstresses in the range (100-250 MPa) (Fig. 14), which
is the range of significant overstresses for this problem, as can be inferred from Fig. 17a.

7. Conclusions

This paper presents a new uniaxial material model which accounts for rate-sensitivity according
to visco-plastic theory. The proposed model is based on a three-parameter rate-function, as well
as a bilinear static stress-strain relationship. The three-parameter function subsumes a previous
commonly used two-parameter function, fits experimental data more closely, and enables the
transient response, including stress-relaxation, to be modelled more accurately.
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A new single-step method is proposed for the integration of the resulting visco-plastic differential
equation, which is shown to be fairly insensitive to the size of the integration time-step. The
calculation of stresses from strains at the end of the current incremental step is outlined, and
the incorporation of the proposed model within an elasto-plastic cubic formulation is described.

Several examples are used to show the eftectiveness of the proposed integration method, the
accuracy of the proposed rate-sensitive model in comparison with experimental results, as well
as the ability of the new model to predict stress-relaxation more accurately than the previous
two-parameter model. The last example demonstrates that the three-parameter rate-function enab-
les better fitting of steady-state overstress expressions than the two-parameter function, and shows
that difference between the two rate-functions could lead to considerable discrepancies in the
overall structural response.

The companion paper extends the proposed three-parameter model to trilinear static st-
ress-strain relationships for steel and concrete, providing for steel a more accurate representation
of the rate-sensitive response in the strain-hardening range. The paper also discusses the impleme-
ntation of the rate-sensitive models, and presents several verification and application examples
showing the utility of the proposed models.
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