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Abstract. Importance sampling methods have been developed with the aim of reducing the computatio-
nal costs inherent in Monte Carlo methods. This study proposes a new algorithm called the adaptive
kernel method which combines and modifies some of the concepts from adaptive sampling and the
simple kernel method to evaluate the structural reliability of time variant problems. The essence of
the resulting algorithm is to select an appropriate starting point from which the importance sampling
density can be generated efficiently. Numerical results show that the method is unbiased and substantially
increases the efficiency over other methods.
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1. Introduction

The basic step of simulation generally consists of simulating the behavior of a system using
specific realization of element random variables and determining whether a system failure occurs
in each simulation. The system failure probability is estimated as the ratio of the number of
failures to the total number of simulations. Because a low failure probability is usually expected
in structural systems, the total number of simulations required to obtain a failure probability
with low variance can be extremely large. To reduce the number of simulations and the statistical
error of the failure probability in the Monte Carlo method for time-invariant systems, various
important sampling schemes have been proposed. Recently, a benchmark study (Engelund and
Rackwitz 1993) was performed to evaluate various importance sampling schemes. A general
conclusion of the study is that for practical applications the selection among the various schemes
should be based on the characteristics of the particular problem. The benchmark study identified
the following 4 major schemes:

(1) direct methods (Ibrahim 1991, Melchers 1989, Schueller and Stix 1987, Maes, er al. 1992)

(2) updating methods (Hohenbichler and Rackwitz 1988),

(3) adaptive sampling (Bucher 1988, Melchers 1990, Karamchandani, et al 1989), and

(4) spherical sampling (Bjerager 1988, Ditlevsen, er al 1990).

For time-variant reliability analysis, various importance sampling methods (Melchers 1994,
Mor and Ellingwood 1993) have been proposed. However, in these methods it is necessary
t Ph.D.

} Professor
1t Ph.D. Student




116 G. S. Wang A. H-S. Ang and J-C. Lee

that the conditional failure probability for a given set of time-invariant variables be derived
in closed form.

As a different importance sampling method, a simple kernel formulation (Ang, er al. 1992)
was proposed to construct the importance sampling density as a weighted sum of kernel functions.
The main drawback of the simple kernel method is the need to perform Monte Carlo simulation
in order to construct the kernel density function. If the probability of failure is very small, the
required Monte Carlo simulations can still be costly. Importance sampling with the kernel samp-
ling density function, however, insures unbiasedness in the results. The objective of this paper
is to employ the technique of adaptive sampling to improve the simple kernel method so that
an effective simulation method, called adaptive kernel method, can be developed to calculate the
system reliability.

In the evaluation of structural reliability under stochastic dynamic loadings, structural parame-
ters such as stiffness, damping and strength, are seldom perfectly known. The effect of these
and other uncertainties may be important in the overall reliability of the structural system. In
order to investigate this effect and demonstrate the ability of the proposed adaptive kernel method
in solving time variant problems, a single degree-of-freedom and a multiple degree-of-freedom
uncertain dynamic systems are investigated. Nonlinear hysteretic models are considered for the
restoring forces of these dynamic systems.

2. Mathematical background

The basic equation for the probability of failure is

= J’ Sx(x)dx (D
by

where Dy is the failure domain, X the vector of basic variables with the joint probability density
function (PDF) fy(x). Eq. (1) can also be written as

pf=f I[gx)] fr(x)dx @

where

[ if g)<0
I[g(")]_{o if g)>0

in which g(x) is the performance function. Then, by Monte Carlo simulation, the probability
of failure is estimated as

p= 21 Late] )

where N is the number of Monte Carlo samples.

If ps is small, however, the number of Monte Carlo sampling, N, has to be very large to
obtain sufficient number of failure samples satisfying g(x)<0. To increase the number of failure
samples for given N and, thus, reduce the variance of the probability estimator, the importance
sampling technique can be used where the sampling is biased toward the failure domain as
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follows:

p= f IEg(x)J—f;—((% (@) ds @

where Ay (x) is the PDF of importance sampling. Accordingly, the estimate of the failure probability
becomes

1 s
=3y 2 e ©

and the variance of the estimator can be also estimated during the sampling process as follows:

) 1 14 X)) .
Var (b)=—x—1 {N 2.1 Lgtx)] {gc)) —pf}

©)

Clearly, the appropriate choice of the importance sampling PDF, Ax(x), is crucial for the proper
estimate of p, with Eq. (5). Observe that the statistical error of Eq. (5) reduces to zero if Ay (x)
is the original PDF, f(x), conditional on the failure domain D;; ie.,

[ gx)] fx(x)
pr

hx(®)=f(xIxED)= ™

It is, however, difficult to find this function. With the simple kernel method, Ang, et al. (1992)
suggested the following for constructing the importance sampling PDF that will insure unbiased-
ness in the result of Eq. (5).

L x—y
I3 2 (xiw)"’(( Ao ) ®

where; y, =failure sample generated from the original joint PDF, fy(x),
M =number of failure samples

K(-) =kernel function satisfying | KO)dy=1,

w  =window width,
A; =scale parameter, and
n  =number of random variables.

Criteria for selecting w and A; are suggested by Ang, et al. (1992) including a Gaussian PDF
for K(-). The above simple kernel method suffers from having to generate the M failure samples
from fy(x) through basic Monte Carlo simulation. This is the main drawback particularly when
the . failure probability is small.

To overcome this weakness, the simple kernel method can be modified by introducing an
adaptive sampling scheme (Bucher 1988) to generate the M failure samples. These failure samples
can be generated by using the original densities of the basic variables shifted to a starting point,
X, and then hy(x) is constructed on the basis of the kernel function in Eq. (8). The starting
point, X,, is obtained by the weighted average (Bucher 1988):

X, = y+ (X — i) npf' ©)
prk

k=1
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where )_(Cl. is the conditional mean value of X; on the failure region with all other variables
kept at the mean value, and p; is the conditional failure probability. Eq. (9) may be interpreted
as the mass center for masses p; located on the axes X; at a distance X.,— ux, from the mean.

For uncertain nonlinear structures under random dynamic loadings, the basic random variables
include:

(1) random variables for structural properties, capacities, and uncertain loading variables (ie.,

the variables defining the power spectral density and duration), X,

(2) the random variables to generate the random load process, V.

If the probability of failure is more sensitive to the random variables X than to the random
variables V, importance sampling is needed only for the variables X while the variables ¥V can
be sampled from the original probability density function. Since the variables X and V are statisti-
cally independent the integral in Eq. (4) is replaced by

= J J 1L »)] f‘x((’f) hx(0) flv) dix (10)

which is computed using the adaptive kernel method of importance sampling. In this case,
the major difficulty is the computation of the conditional means X, and conditional probabilities
pr» which are needed to compute the starting point as given by Eq. (9). One possibility is to
consider a sample of V that results in a particularly severe load process and compute )—(vf and
py. using this sample.

3. Adaptive kernel method

The essence of the proposed adaptive kernel method is the use of the starting point of Eq.
(9) from which the kernel importance sampling density can be constructed efficiently. The propo-
sed method is different from traditional importance sampling methods. Available importance
sampling methods require the determination of the “design point” or “maximum likelihood
point”; in the proposed method this requirement is not necessary.

For the sake of simplicity the following algorithm for the adaptive kernel sampling is described
for uncorrelated random variables. The anslysis for correlated random variables proceeds in
the same way after a transformation to uncorrelated space is performed. The algorithm for the
adaptive kernel sampling can be described as follows:

(1) For each random variable, find a critical value, ay, for X;, from the condition g(ux,, U,
Uy Gy My, . oty My, Yo)=0,where vy is the chosen set of ¥ that gives a strong load
-process. An approximate value of ayx, is sufficient for this method and can be obtained
through a small number of iterations. The conditional failure probability p,=P(X<ax)
or P(X;>ay) can be obtained accordingly and the corresponding conditional mean by
)—(L,,.:E[X,-IX,-<axi] or E[X;|X>ay]. If X; is a normal variate, i.e., M, Oy,), one of the follo-
wing equations is used to obtain the conditional mean:

O
- B €xp! 22,
X(,_E[X|X:< aX,-:] _;uX,-_ O'X,- : \/E@(Z) (11)
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B exp —%—z,-z
X, =ELXI|X> aX,-]:/‘Xf+ o, * \/ECD(—Z,-) (12)
where
= ay.— Uy,
o,
The above process is repeated for i=1, 2, -, n, to obtain the conditional means for all

the random variables X..

(2) Unimportant random variables have been known to have a significant negative effect on
importance sampling. When there are a number of random variables and only a few are
important, the efficiency can be improved if the importance sampling is restricted to the
important variables (Karamchandani, ez al. 1989). Prior information on which of the random
variables are important is not known, but it may be assumed that the important random

variables are those whose p;/max (p,) are greater than 107", Thus, the random varia-
fok=1

bles are divided into a group of n; important random variables and a group of n, unimpor-
tant ones, where n=n,+ny,.

(3) For the n; important random variables, the startmg point X, for the importance sampling
is obtained by Eq. (9). This equation yields X, =puy, when p, is negligibly small which

" is the case for unimportant variables.

(4) Using the adaptive sampling densities for the important variables that have the same forms
and variances as their respective original probability densities but are centered at the starting
point Xj,, M failure samples y, i=1, 2, ---, M, are generated while keeping the unimportant
variables at the mean values. Then, the kernel importance sampling density function / x, (%)
for the »n; important random variables is constructed.

(5) Since the important and unimportant random variables are statistically independent, the
importance sampling density function for the entire set of random variables V¥ is Ay, (x;)fx,,
(xy). That is, the important random variables are sampled from y, (x;) whereas the unimpor-
tant random variables are sampled from the original probability density function Jxyew).
The sample functions of the random process are also generated from the original probability
density function f,(v). From N samples for each of the entire set of random variables
and process the estimate of the entire set of random variables and processs the estimate
of the failure probability and its variance are calculated through Egs. (5) and (6), respectively.

4. Numerical examples

4.1. Example 1

The first example is a single degree-of-freedom structure whose restoring force is governed
by a bilinear hysteresis model. The equation of motion is

d’u

‘TR @) r s, r =al) (13)
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where w, is the natural frequency, { the damping ratio, « the relative displacement of the structure
with respect to the ground, a(f) a Gaussian white noise with spectral density S, and duration
t;, and g is the nonlinear restoring force that is a bilinear hysteresis model as shown in
Fig. 1. If the yield displacement is assumed to be u,=0.594 in., the parameters in the bilinear
hysteresis model may be defined as follows:

r=u,r
n=o,
r3:0.1 r (14)

where r, is the yield strength, r, the initial stiffiness, and r; the post-yield stiffness. Eq. (13)
is first transformed into a set of first-order nonlinear differential equations:

dn _
a7
_éi):t_z =—=28@w,y,—q(u, r, r, r, t)tal) (15)
in which
n=u
_du
Y=

The set of first-order differential in Eq. (15) is then solved by using the fourth-order Runge-
Kutta method with zero initial conditions. Failure is assumed to occur when the structure experie-
nces excessive relative displacement, e.g., lu|>6 in. The parameters, w,, ¢ So and t,, are assumed
to be independent random variables with the distributions and parameters described in Table 1.

The construction of the kernel sampling density function and estimation of p, follow the algori-
thm in the previous section. The important random variables are found to be @, and S,. The

<

-ry L

Fig. 1 Bilinear hysteresis model for Example I.
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Table 1 Statistics of random variables for Example 1

Variable Distribution Mean COVv
w, [ rad/sec] Normal 4n 0.1
'q Lognormal 0.02 04
Sol[in%/sec’] Type Il-largest 36 0.6
ts[sec] Lognormal 10 03
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Fig. 3 Coefficient of variation of P for Example 1.

number of failure samples to construct the kernel sampling density function, M, is 10. Figs.
2 and 3 show the estimates of the failure probability and their coefficients of variation, respectively;
these results are obtained by the proposed method by

(1) limiting the importance sampling to the important variables only and

(2) importance sampling is applied to all the variables in Table 1.

The proposed method is more efficient than the adaptive kernel method involving all the
variables and also gives the same estimated failure probability of 5.5X1077,

The estimates of the failure probability and their coefficient of variation computed by other
available methods are also shown in Figs. 4 and 5, respectively. A direct importance sampling
has been conducted with the original density centered at the starting point. The proposed adaptive
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Fig. 5 Coefficient of variation of P, obtained by various methods for Example 1.

kernel method is superior to the simple Monte Carlo method and the direct method of importance
sampling. The number of simulations, N, to generate the M failure samples in the adaptive
kernel method is 21. This is far smaller than the number required in the simple kernel method
(which required Ny,=1754). The efficiency of the adaptive kernel method is even more promising
when the failure probability of a system is very small

4.2. Example 2

The adaptive kernel method is used to compute the probability of exceeding a given level
of global damage for the shear-beam type structure shown in Fig. 6, for various intensities of
the earthquake ground motion. The equations of motion of the system may be written as

m;
m;—

]~(1—6,~7),‘f1’:l %‘z—ag, i=1,2, . 7 (16)

. qi- qi
ii—(1—6y) mi—‘l +r7,—[1 +(1—6))
where u; is the interstory deformation of the ith floor, u, the ground acceleration, m; the mass
of the ith floor, g; the restoring force, &, and &; are Kronecker deltas. It is assumed that the
restoring force follows a hysteretic model (Baber and Wen 1981) as follows:
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Fig. 6 A 7-story shear-beam structure (Example 2).

Table 2 Structural properties of the 7-story shear-beam structure (Example 2)

Story i 1 2 3 4 5 6 7

m; [kip-sec?/in] 50 49 49 49 49 49 48
¢:Lkip-sec/in] 12.03 19.09 19.09 19.09 16.39 1340 13.26
k:[kip/in] 2896 7436 7436 7436 5481 3664 3664
a 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Blin~7] 0.507 6.848 6.848 6.848 4420 2.530 2.530
y:[in~2] —0.169 —2283 —2283 —2283 —1474 —0834 —0834
8,[in] 225 9.0 70 6.0 50 5.5 6.3
Boi 2.88 1.66 1.66 1.66 1.76 2.03 203
Q,i[kip] 3985 3480 3480 3480 3192 2821 2821

q,-:C,»iii“I"a;k,»u,-'f‘(l—a,-)k,-z,-, = 1, 2, ey 7 (17)

in which ¢; is the viscous damping of the ith floor, k; the initial stiffness of the ith floor, and
z; 18 the hysteretic component of the deformation u,, which is given as

zi=u—(Bluzlzit vz 13, i=1,2, -, 7 (18)

Values of pertinent parameters are summarized in Table 2. The ground acceleration is modeled
as a zero-mean filtered Gaussian white noise and is simulated using the fast Fourier transform
a]gorithm. The power spectral density (PSD) of the ground motion is represented by the Kanai-

Tajimi PSD:
14+4¢2 (/@)
_(w/wg)2]2+4§22(w/a)g)2 (19)

Sff(w):SO [1

where S is the power spectrum ordinate of the stationary unfiltered shot noise. In this case,
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Limit State Probability, P,
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Fig. 7 Fragility curves of the 7-story shear-beam structure (Example 2).

@, and {, are given as 3.2 rad/sec and 0.3, respectively, representing the site soil condition in
Mexico City. To obtain an even more representative process for strong ground motion, the non-
stationary characteristics of actual accelerograms can be considered. This appearance suggests
using a nonstationary process, namely a process u, given by

it =y () £0) (20)

where vl;/(t) is the envelope function having an appropriate form based on statistical analyses
of real accelerograms and is given by

/1)~ t<t,
U/([): 1.0, 5 <l£tz
expl —20—n)t], (21

where t,=1.5 sec, ,=11.5 sec, and ;= the strong motion duration= 10 sec. The structure described
above suffered substantial damage during the Mexico City earthquake of 1985. According to
the Park-Ang model (Park and Ang 1985), the damage index for a structural component can
be expressed in terms of the maximum interstory displacement §,,, and the dissipated hyteretic
energy E as follows:

_ S !dE
D= 3 + 5o 0,6, (22)

where D is the damage index, 8, the ultimate deformation, Q, the yield force capacity, and
By is a constant. The above parameters for each component of the building are also given in

Table 2.
The hysteretic energy associated with each degree-of-freedom is described by the following

differential equation:
E=(1—a)kiz, i=1,2 -, 7 (23)
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The global damage index for a structure is clearly a function of the damage indices of the
component, and may be defined as follows:

P(D,2d)=P[U (D:>d)] (24)

where D, is the global damage index and D; is the damage index of the ith story, The random
variables considered in this system are m;, ¢, ki, @, 6., By, and Q,. Each one of the structural
parameters is assumed to be perfectly correlated between stories and to be lognormally distributed.
The coefficients of variation of these variables are 0.1, 0.5, 0.3, 0.1, 04, 0.6 and 0.2, respectively.
The interstory deformation and hysteretic energy of each floor are obtained by solving Egs.
(16) and (23) simultaneously using Newmark’s constant-average-acceleration method. After obtai-
ning the maximum deformation and hysteretic energy, the damage index for each floor is obtained
through Eq. (22) and the probability that the global damage index D, will exceed a specified
value is evaluated through Eq. (24) by the adaptive kernel method. The fragility curves for the
global damage index exceeding 0.5 (irreparable damage) and 1.0 (collapse), respectively, are obtai-
ned and presented in Fig. 7, where each point is obtained for a given constant Sy. The number
of failure samples used to construct the kernel sampling density function, M, is 20 and the
number of samples generated from the kernel sampling density function, A, is 2000 for all the
points on this fragility curve. Observe that the collapse probability drops to 1.7X107° under
a mean peak ground acceleration of 0.05 g This shows that the adaptive kernel method is
equally effective even for problems involving very low failure probability. It would be difficult
or expensive to apply most other methods, including the simple kernel method for problems

involving such small probabilities.

5. Conclusions

An adaptive kernel method of importance sampling for a class of time-variant problems, ie.,
uncertain nonlinear hysteretic structures under random dynamic loadings, is presented. The exam-
ples presented indicate that the method is effective to evaluate structural reliability for systems
with very small probabilities of failure (e.g., <107%) which are often required in structural problems.
Moreover, with the kernel sampling density function, unbiased failure probability is assured.
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