
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 49, No. 3 (2014) 395-410 

DOI: http://dx.doi.org/10.12989/sem.2014.49.3.395                                                                                       395 

Copyright ©  2014 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 

 
 
 

Horizontal stiffness solutions for unbonded fiber reinforced 
elastomeric bearings 

 

H. Toopchi-Nezhad

 

 
Department of Civil Engineering, Razi University, Kermanshah, 67149-67346, Iran 

 
(Received December 17, 2012, Revised December 12, 2013, Accepted December 27, 2013) 

 
Abstract.  Fiber Reinforced Elastomeric Bearings (FREBs) are a relatively new type of laminated bearings 
that can be used as seismic/vibration isolators or bridge bearings.  In an unbonded (U)-FREB, the bearing is 
placed between the top and bottom supports with no bonding or fastening provided at its contact surfaces. 
Under shear loads the top and bottom faces of a U-FREB roll off the contact supports and the bearing 
exhibits rollover deformation. As a result of rollover deformation, the horizontal response characteristics of 
U-FREBs are significantly different than conventional elastomeric bearings that are employed in bonded 
application. Current literature lacks an efficient analytical horizontal stiffness solution for this type of 
bearings. This paper presents two simplified analytical models for horizontal stiffness evaluation of U-
FREBs. Both models assume that the resistance to shear loads is only provided by an effective region of the 
bearing that sustains significant shear strains. The presented models are different in the way they relate this 
effective region to the horizontal bearing displacements. In comparison with experimental results and finite 
element analyses, the analytical models that are presented in this paper are found to be sufficiently accurate 
to be used in the preliminary design of U-FREBs. 
 

Keywords:  fiber reinforced elastomeric bearing; preliminary design; horizontal stiffness; seismic isolator; 

vibration isolator; bridge bearing; unbonded application 

 
 
1. Introduction 

 

Elastomeric bearings are used extensively in a variety of Structural and Mechanical 

Engineering Applications where a flexible structural support and/or vibration isolation is required. 

Typical applications for these bearings include, but not limited to, bridge bearings and 

vibration/seismic isolators. The main expectation from the bearing in these applications is to carry 

vertical loads with a minimum of deflection, and to allow horizontal and rotational movements 

with a minimal resistance.  

Elastomeric bearings typically comprise alternating bonded layers of elastomer (rubber) and 

reinforcement materials such as steel plates or fiber fabric sheets. The elastomer layers provide 

horizontal and rotational flexibility, and the reinforcement layers provide vertical bearing stiffness 

by constraining the lateral bulging of the elastomer layers when the bearing is subjected to vertical 

compressive loads. Although Steel Reinforced Elastomeric Bearings (SREBs) are still the most 

                                                 
Corresponding author, Assistant Professor, E-mail: h.toopchinezhad@razi.ac.ir; toopchi@gmail.com 



 

 

 

 

 

 

H. Toopchi-Nezhad 

common type of bearings, many research studies have shown that Fiber Reinforced Elastomeric 

Bearings (FREBs) are a viable alternative for conventional SREBs (Kelly 2002, Toopchi-Nezhad 

et al. 2008, 2009, Mordini and Strauss 2008, Dehghani Ashksari et al. 2008, and Khanlari et al. 

2010).  

Fiber reinforced bearings can be classified as bonded or unbonded bearings depending on their 

application.  In a bonded (B)-FREB two thick steel mounting plates that are previously bonded to 

the top and bottom surfaces of the bearing are bolted to the top and bottom supports, respectively.  

In an unbonded (U)-FREB, no bonding or fastening is provided between the bearing and its top 

and bottom supports. As such, the shear loads at the bearing contact surfaces are transferred 

through friction only. As a result of unbonded boundary conditions, the horizontal response 

characteristic of a U-FREB becomes more complex and quite different than its B-FREI counterpart 

(Toopchi-Nezhad et al. 2011). A U-FREB exhibits rollover deformation under horizontal loads 

(see Fig. 1). As such, the closed form equations available for the horizontal stiffness evaluation of 

B-FREBs (Tsai and Kelly 2005a, b) are not applicable to U-FREBs. Current literature lacks an 

efficient analytical method that can be used in horizontal stiffness evaluation of U-FREBs. To 

address this lack, the focus of this study is on the horizontal stiffness evaluation of U-FREBs for 

preliminary design purposes. 

Finite element analysis, as a powerful tool, has been employed in the horizontal stiffness 

evaluation of unbonded elastomeric bearings that exhibit rollover deformation (Kelly and 

Konstantinidis 2007, Toopchi-Nezhad et al. 2011, 2012, Gerhaher et al. 2011, Mishra and Igarashi 

2012). The finite element analysis of U-FREBs is challenging and complicated. Challenges arise 

from the incompressibility of rubber material, changes in the boundary conditions of the bearing as 

a result of rollover deformation, and excessive distortion of finite element mesh as the bearing 

deforms horizontally (Toopchi-Nezhad et al. 2011). To address these challenges, the utilized finite 

element mesh should be updated repeatedly consistent with the deformed geometry of the bearing 

during the analysis. This frequent remeshing adds significantly to the costs and challenges of the 

finite element analysis. Since it is difficult to thoroughly incorporate the complex behavior of 

elastomer in the analysis, in most cases a finite element analysis can best serve as a tool for the 

preliminary design of bearing isolators. As a mandate enforced by current seismic codes (e.g., 

ASCE/SEI 7-10, 2010), the final design properties of bearing isolators should be evaluated 

through experimental studies on the bearing prototypes.   

Given the complex horizontal response of U-FREBs, the application of finite element analysis 

may significantly increase the costs of the preliminary design of these bearings. In contrast, the 

availability and usage of a sufficiently accurate and easy to apply analytical model will 

significantly reduce these costs. Reducing the preliminary design costs is essential to the 

promotion of U-FREBs in many applications. This paper introduces two simple analytical models 

that can be used to approximate the horizontal stiffness of U-FREBs with sufficient accuracy. 

These models aim at evaluating the secant horizontal stiffness based on the overall bearing 

geometry, shear modulus of the rubber material, and the level of horizontal displacement imposed 

on the bearing. The main objective is to provide a useful tool for the preliminary design of U-

FREBs.  

 

 

2. The performance of elastomeric bearings: an overview 
  

Steel Reinforced Elastomeric Bearings (SREBs) employ steel plates as the reinforcing material 

396



 

 

 

 

 

 

Horizontal stiffness solutions for unbonded fiber reinforced elastomeric bearings 

 

to provide vertical bearing stiffness. In a horizontally deformed SREB shear is the dominant mode 

of deformation in the elastomer layers as the steel reinforcing plates remain relatively rigid in both 

extension and flexure. If the vertical load that is carried by the bearing is significantly lower than 

its buckling load, the secant horizontal stiffness, K, can be calculated using the following well 

known equation (Kelly 2007).  

  
  

  
                                                                     (1) 

where, G is the shear modulus of rubber, A is the plan area of the bearing, and tr represents the 

total thickness of rubber layers in the bearing. 

In Fiber Reinforced Elastomeric Bearings (FREBs) fiber fabric sheets are replaced with steel 

reinforcing plates to provide the vertical stiffness. In general, FREBs are relatively more flexible 

than SREBs for movements in the horizontal direction (Kelly 2002). This is due to the inplane 

flexibility and lack of flexural rigidity of fiber reinforcement sheets in FREBs. Unlike the steel 

reinforcing plates which remain nearly rigid in a horizontally deformed SREB, in a FREB the fiber 

reinforcement sheets exhibit warping deformations at their ends as the bearing deforms 

horizontally. Tsai and Kelly (2005a, b) developed a stiffness solution that accounts for the inplane 

flexibility and warping deformations of the fiber reinforcement sheets in B-FREBs. Overall, the 

stiffness solution presented by these researchers provides a more accurate estimation for the 

horizontal stiffness of B-FREBs as compared with Eq. (1). However, in many practical cases Eq. 

(1) may still be reasonably employed in the preliminary design of B-FREBs (Toopchi-Nezhad et 

al. 2011). 

In a U-FREB the top and bottom surfaces of the bearing are not bonded to the contact supports. 

Therefore, under shear loads the bearing is held in place by friction. When the bearing is deformed 

horizontally, its top and bottom faces roll off the contact supports as a result of its unbonded 

boundary conditions (see Fig. 1). This at first sight might seem to be a deficiency, but it has the 

advantage that the horizontal bearing stiffness and the level of shear that is transmitted to the 

bearing supports are decreased with increasing horizontal displacements. As another advantage, 

the unbonded application eliminates the presence of tensile stresses in the bearing. The geometry 

of a U-FREB can be selected such that it maintains a positive incremental load-resisting capacity 

throughout its permissible range of horizontal displacements. The rollover deformation in such 

bearing is termed as “stable rollover” deformation (Toopchi-Nezhad et al. 2008).  

The horizontal load-displacement relationship in a U-FREB is nonlinear as a result of rollover 

deformation. Accordingly, Eq. (1) that constructs a linear relationship between horizontal loads 

and displacements is not applicable to U-FREBs. Eq. (1) in its original form will largely 

overestimate the horizontal stiffness of U-FREBs (Toopchi-Nezhad et al. 2008).  

 

 
3. Horizontal stiffness of U-FREBs 

 

Fig. 1(a) contains a sketch of a U-FREB located between two horizontal rigid contact supports. 

When a horizontal displacement δ is imposed, the bearing exhibits rollover deformation due to its 

unbonded application (see Fig. 1(b)). A comparison between Figs. 1(a) and (b) indicates that the 

contact area between the bearing and its supports decreases with increasing horizontal bearing 

displacement. In other words, the boundary conditions of the bearing vary with displacements. The 

full-contact displacement, δfc, in a U-FREB is achieved when the originally vertical edges of the 

bearing completely contact the horizontal supports (Fig. 1(c)).  
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(a) zero displacement (b) horizontal displ. δ, where, 0 < δ < δfc 

 
(c) full contact horizontal displacement, δfc 

Fig. 1 A U-FREB under different horizontal displacements 

 

 

As stated earlier in this paper, in many cases Eq. (1) can be used with sufficient accuracy for 

the preliminary design of B-FREBs. The most important aspects of a horizontally deformed B-

FREB are that the boundary conditions of the bearing remain unchanged regardless horizontal 

displacements, and the profile of shear strain within the bearing remains approximately uniform 

(Toopchi-Nezhad et al. 2011). Since shear is the dominant mode of deformation in the entire 

bearing, the bearing plan area, A, can be employed in Eq. (1) to evaluate the horizontal stiffness. In 

a horizontally deformed U-FREB, however, the boundary conditions are changed with 

displacements. The uniform shear strains are only found at the central region of the bearing that is 

limited to the overlap region between its top and bottom surfaces. The shear strain decreases 

significantly at the bearing rollover regions (i.e., the regions that roll-off the contact supports when 

the bearing undergoes horizontal displacements). In analogy to Eq. (1), an effective plan area, Aeff, 

over which shear is the dominant mode of deformation may be used to approximate the horizontal 

stiffness, K, of a U-FREB. This leads to the following equation. 

  
     

  
                                                                  (2) 

The effective plan area (Aeff) in a U-FREB will depend on the horizontal bearing displacements 

δ. At zero horizontal displacements, Aeff is equal to the original plan area, A, of the bearing. 

However, the influence of horizontal displacements is to decrease Aeff. Using Eq. (2) to evaluate 

the secant horizontal stiffness K of a U-FREB, the problem is reduced to constructing a 

relationship between δ and Aeff.  

 

 

4. Bounds to the effective plan area, Aeff 
 

It can be assumed that in a horizontally deformed U-FREB the free surface of the bearing’s 
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rollover region remains stress free. Therefore, the length of the curved arc of the free surface (i.e., 

s in Fig. 1(b)) will be equal to the horizontal displacement δ that is imposed on the bearing. The 

lower bound to the effective plan area, Aeff, in a deformed U-FREB is the physical net contact area 

(Anet) between the bearing and its top or bottom support. This is given by 

          (   )                                                        (3) 

where, Alb represents the lower bound plan area under horizontal displacement δ, and a and b are 

the width (out of plane dimension) and length (inplane dimension, in the horizontal direction) of 

the bearing, respectively. 

 The use of Aeff = Anet in Eq. (2) results in an underestimate approximation of the horizontal 

stiffness as the contribution of the bearing rollover region in the horizontal stiffness is completely 

ignored.  A previous finite element study (Toopchi-Nezhad et al. 2011) indicates that the profile of 

shear strain in the rollover region of a U-FREB decreases dramatically from its peak value at the 

bearing central region, to significantly smaller values (or even negative values at relatively large 

horizontal displacements) at regions close to the ends of the bearing. Therefore, as a more 

reasonable estimation for Aeff, the portion of the bearing rollover region that sustains significant 

shear strains should be taken into consideration.  

Eq. (4) presents an effective plan area that accounts for the half of the rollover region of 

bearing. Due to the rapid rate of reduction of shear strain in the rollover region (Toopchi-Nezhad 

et al. 2011), shear strains are significant in only a small portion of this region. Therefore, the 

effective plan area given by Eq. (4) that accounts for 50% of the curved surface of the rollover 

region in addition to the net contact area, may be considered as an upper bound limit, Aub, to Aeff. 

The use of Aub in Eq. (2) is expected to result in an overestimate approximation of the bearing 

horizontal stiffness. 

     (  
 

 
)                                                             (4) 

Figs. 2(a) and (b) compare the experimentally obtained horizontal load-displacement hysteresis 

loops of two individual bearings, namely Bearings 1 and 2, with the load-displacement curves 

evaluated using the “underestimate” and “overestimate” models given by Eqs. (3) and (4), 

respectively. The physical and material properties of Bearings 1 and 2 can be found in Table 1. 

The experimental hysteresis loops of these bearings were evaluated through a set of cyclic testing 

during which the fully reversed cycles of horizontal displacements were applied while the bearings 

were subjected to a constant vertical pressure of 1.6 MPa. Since the analytical solutions presented 

in this paper are monotonic, only half of the experimental hysteresis loops are shown in Fig. 2. The 

underestimate-model in Fig. 2 uses Alb to evaluate the horizontal stiffness. In the overestimate-

model, Aub is employed to evaluate the horizontal stiffness of the bearings. Having horizontal 

secant stiffness, K, calculated from Eq. (2) for any given δ, the shear load, F, is then evaluated by 

multiplying K by δ.  

Figs. 2(a) and (b) show the normalized shear load F/GA (where, G and A are the shear modulus 

of the elastomer and the original plan area of the bearing, respectively) versus the normalized 

horizontal displacement δ/h (where, h is the total thickness of the bearing). As seen in these 

figures, the “underestimate” and “overestimate” models bracket the experimentally evaluated 

hysteresis loops of the bearings. 

An examination of the hysteresis loops of Bearing 1 in Fig. 2(a) indicates that the horizontal 

response of this bearing is unstable. This is due to the negative horizontal tangent stiffness values 
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(a) Bearing 1 (b) Bearing 2 

Fig. 2 Comparison between experimental results (Toopchi-Nezhad et al. 2008) and the analytical 

models that bracket the horizontal response 

 
Table 1 Physical and material properties of benchmark U-FREBs 

Bearing 1
a
 2

a
 3

b
 4

c
 5

c
 6

c
 

Plan dimensions (a , b) 200 200 70 250 333 500 

Height of the bearing (h) 105 69 25 100 100 100 

Thickness of individual elastomer layers (te) 4.70 4.70 1.58 4.17 5.55 8.33 

Number of elastomer layers (Ne) 20 12 12 24 18 12 

Notes: 

i.  All dimensions are in mm 

ii. Shear modulus of elastomer, Ge = 0.4 MPa in all of the bearings 
a
 Ref.: Toopchi-Nezhad et al. (2008) 

b
 Ref.: Toopchi-Nezhad et al. (2011) 

c
 Ref.: Toopchi-Nezhad et al. (2012) 

 

 

that occur at extreme bearing displacements. The overestimate-model is unable to capture the 

unstable load-deformation response of Bearing 1 as it maintains positive horizontal stiffness values 

throughout (see Fig. 2(a)). Even though the underestimate-model is able to simulate the unstable 

horizontal load-displacement behavior of Bearing 1, it underestimates the shear loads at horizontal 

displacements larger than approximately 0.2 h. 

As seen in Fig. 2(b), the experimentally-evaluated horizontal response of Bearing 2 is stable. 

This is due to the fact that the horizontal tangent stiffness of this bearing remains positive 

throughout (see the hysteresis loops in Fig. 2(b)). The underestimate-model calculates zero and 

negative horizontal stiffness values for this bearing, which is not consistent with the experimental 

observations. For this bearing the overestimate-model significantly overrates the shear loads at 

horizontal displacements of approximately 0.6 h and above.  

 

 

5. Analytical models to determine Aeff 
  

As mentioned in the earlier section, in a horizontally deformed U-FREB the central region of 

bearing together with a small portion of its rollover region are subjected to significant shear strains 

only. To determine the effective plan area, Aeff, these regions are required to be reasonably taken 
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into account. The other requirement is that the value of Aeff be located between the bound limits 

given by Eqs. (3) and (4). In this section, two different analytical models that satisfy these 

requirements are developed to approximate Aeff. The two models developed in this paper are called 

hereafter as Model 1 and Model 2. The effectiveness of these models is investigated using 

previously conducted experimental studies and finite element analyses on a set of various U-

FREBs. 

The lower bound effective plan area that is given by Eq. (3) accounts for the central region of 

the bearing only. The upper bound effective plan area in Eq. (4) accounts for the central region and 

50% of the rollover region of bearing. Model 1 simply takes the mean of these bound limits as the 

bearing effective plan area. This means that in Model 1 the contribution of 25% of the rollover 

region, in addition to the central region of bearing is taken into account in calculating the effective 

plan area, Aeff,1, as follows  

        (  
 

 
  )                                                         (5) 

The effective plan area given by Eq. (5) is a function of the bearing plan dimensions a and b, 

and the level of horizontal bearing displacement, δ.  

In the 2
nd

 model, the effective plan area, Aeff,2, is calculated from Eq. (6), in which a new 

parameter denoted by d is deducted from the bearing length b to calculate Aeff,2. Parameter d 

physically represents the project of the curved arc of the rollover region along the horizontal axis 

(see Fig. 1(b)). As will be shown later on in this section, parameter d is a function of horizontal 

displacement δ, and the total thickness of bearing, h. According to Fig. 1(b), d is slightly smaller 

than δ (note that δ = s). The term a(b-d) in Eq. (6) can be expressed mathematically as a[(b-s) + (s-

d)], which means that the net contact area of a(b-s) is extended by the amount of a(s-d) to account 

for a small portion of the rollover region in calculating the bearing effective plan area Aeff,2. 

        (   )                                                          (6) 

The effective plan area in Eq. (6) in fact accounts for all of the bearing physical dimensions, 

namely, a, b, and h, together with the horizontal displacement δ. The influence of h and δ is 

embedded in parameter d. Since the value of Aeff,2 that is a function of parameters a, b, h, and δ is 

eventually substituted in Eq. (2), the horizontal bearing stiffness in Model 2 becomes a function of 

these parameters in conjunction with the total thickness of elastomer layers in the bearing, tr, and 

the nominal shear modulus of the elastomer, G. Additionally, due to the presence of both h and tr 

in the analysis, the influences of the thickness of fiber reinforcement layers, tf, and the number of 

elastomer layers in the bearing, n, are taken into account implicitly as h = tr + (n-1)tf. 

The deformed geometry shown in Fig. 1(b) is assumed in order to evaluate the value of d in a 

horizontally deformed U-FREB. This deformed geometry can also be used to estimate the ultimate 

horizontal bearing displacement (i.e., δfc in Fig. 1(c)) that is an essential parameter in the design of 

any U-FREB. As shown in Fig. 1(b), the curved free surface of the bearing rollover region can be 

simulated with a parabolic arc. The equation of this arc in the coordinate system x, y shown in Fig. 

1(b), is   

   [  (
 

 
)
 
]                                                             (7) 

where, h is the total thickness of bearing and c is a constant.  

It is assumed that the location of the origin of the coordinate x, y remains unchanged regardless 

the horizontal bearing displacements. This assumption is consistent with previous experimental 
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observations (e.g., Toopchi-Nezhad et al. 2008 and 2009). The constant c in Eq. (7) is determined 

to be equal to dfc when the coordinate of point D in Fig. 1(c) is substituted in Eq. (7). As seen in 

Fig. 1(c), dfc is the project of the curved arc along axis x at horizontal displacement δfc. Since dfc is 

the ultimate value of d, it can be expressed as a function of the bearing geometry. In order to 

evaluate dfc, it is essential to evaluate the length of the curved arc of the rollover region at full 

contact horizontal displacement, namely, sfc. The length s of the curved arc at any horizontal 

displacement is calculated as follows 

  ∫ √  (
  

  
⁄ )

 

 

 
                                                      (8) 

where, from Eq. (7) with c = dfc 

  
  
⁄  

    

   
                                                                 (9) 

At full contact horizontal displacement shown in Fig. 1(c), the length of the curved arc is given by 

    ∫ √  (
    

   
 )

 

  
   
 

                                                  (10) 

The result of performing this integral is 

    
 

 
*√     

  
   
 

 
   (

  √     
 

   
)+                                           (11) 

where 

     
   

 
                                                                 (12) 

It is assumed that the elastomer material in the bearing is incompressible. Accordingly, the 

volume of bearing does not change with horizontal displacements. At full contact displacement 

(Fig. 1c), the area of the rollover region, Arr,fc, that is enclosed by the curved arc of length sfc is 

evaluated as follows 

       ∫  
   
 

   ∫  [  (
 

   
)
 

]
   
 

                                      (13) 

Taking this integration, Eq. (13) leads to 

       
 

 
     

                                                            (14) 

The constraint of incompressibility requires that the volume of bearing before and after 

deformation be the same, therefore 

   (     )                                                            (15) 

From Eqs. (11), (14), and (15) αfc is evaluated as 

                                                                          (16) 
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Using Eqs. (12) and (16), the constant c = dfc in Eq. (7) is evaluated as 

                                                                        (17) 

Substitute Eq. (16) in Eq. (11), and note that sfc = δfc, the full contact horizontal displacement, δfc, 

is calculated as 

    
   

 
                                                                 (18) 

where,     represents the nominal shear strain in the bearing at full contact horizontal 

displacement.  

From Eqs. (17) and (18) dfc is calculated to be approximately          . Substitute this value in 

Eq. (6), the bearing effective plan area at full contact horizontal displacement, Aeff,2,fc,  is calculated 

as  

           (           )                                                  (19) 

A comparison between Eqs. (19) and (5) indicates that the coefficient of 0.748 in Eq. (19) of 

Model 2 is very close to the constant coefficient of ¾  that is used in Eq. (5) of Model 1.  

Therefore, at full contact horizontal displacement the results of Models 1 and 2 are expected to be 

in an excellent agreement.  

At horizontal displacements smaller than δfc, the length of the curved arc of the rollover region, 

s, is calculated using Eq. (10) in which dfc is replaced with d at the upper limit of the integral. This, 

results in 

  ∫ √  (
    

   
 )

 

  
 

 
                                                      (20) 

where, dfc is given by Eq. (17). The closed form solution of the integral in Eq. (20) is 

    

  
  *  √        (   √     )+                                      (21) 

where 

     
  
     

  
 (
 

 
)                                                          (22) 

The following step by step procedure is followed in Model 2 to evaluate the horizontal stiffness 

and shear load in a U-FREB for a given level of horizontal displacement, δ. 

1. let      

2. use a numerical technique solve Eq. (21) for   

3. from Eq. (22) calculate   
  

  
     

4. from Eq. (6) calculate       (   )  

5. use Eq. (2) calculate horizontal stiffness    
     

  
 

6. calculate horizontal load   (shear load) from      

Notes:  

i. In Model 1, steps 2 and 3 are ignored, and   in Step 4 is taken as  
 
   

ii. Models 1 and 2 are valid for horizontal displacements up to the full contact displacement of 
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          that is given by Eq. (18) 

 

 

6. Condition to achieve stable rollover deformation 
 

A properly designed U-FREI must remain stable throughout its permissible range of horizontal 

displacements by maintaining a positive incremental load-displacement capacity. As such, in a U-

FREI bearing that sustains a rollover deformation of   , a horizontally-stable response is achieved 

if      ⁄   . Using Model 1, this condition is expressed as follows 

  

  
  

 

  
(
  (     ) 

  
)           

 
              

 
                                (23) 

Therefore, in a U-FREI bearing with given physical dimensions, the rollover deformation of the 

bearing remains stable as far as     
 
  . On the other hand, a U-FREI bearing is expected to 

exhibit stable rollover until an extreme deformation of            (see Eq. (18)), if    

 
    , 

which means, if        . The latter condition may be used as a geometrical constraint in the 

preliminary design of U-FREI bearings. 

 

 
7. Examination of models 

 

Table 1 contains the physical and material properties of 6 different benchmark U-FREBs that 

are denoted by Bearings 1 to 6. The horizontal response characteristics of these bearings are 

investigated in previous research studies (Toopchi-Nezhad et al. 2008, 2011, 2013). The 

effectiveness of Models 1 and 2 in approximating the horizontal stiffness and simulating the load-

displacement curves of these bearings is investigated in this section. 

Figs. 3(a) and (b) contain the analytical load-displacement curves of Bearings 1 and 2, 

respectively, that are plotted on their experimental load-displacement hysteresis loops. Bearing 1 

in Fig. 3(a) is a special bearing with unaccepted performance due to its horizontal instability. In 

practice, the designer would revise the details of such bearing to achieve a stable horizontal 

response before the preliminary design is complete.  As such, it is critical for an acceptable 

analytical model to be able to predict the unstable horizontal response of this bearing in the 

preliminary design stage. According to Fig. 3(a) both Models 1 and 2 are able to capture the 

unstable behavior of the bearing as the horizontal tangent stiffness values in both curves approach 

zero at displacements below the full contact displacement. In both models, however, the zero 

tangent stiffness occurs at relatively larger horizontal displacements as compared to the 

experimental loops.  

Fig. 3(b) compares the analytical load-displacement curves and the experimental hysteresis 

loops of Bearing 2. Unlike Bearing 1, Bearing 2 maintains a positive incremental load-

displacement capacity throughout the range of horizontal displacements shown in Fig. 3(b). 

Therefore, it represents an acceptable response behavior as it remains stable horizontally. A 

reasonable simulation of the horizontal load-displacement curve of such bearing is deemed as an 

essential step in the preliminary design. As seen in Fig. 3(b), the load-displacement curves of 

Models 1 and 2 are reasonably consistent with the experimental hysteresis loops of Bearing 2. 

Accordingly, the horizontal stiffness values that are approximated by these models at different 

displacements are expected to be sufficiently accurate to carry out the preliminary design. 
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(a) Bearing 1 (b) Bearing 2 

Fig. 3 Comparison between analytical models and experimental results 

 

 

Fig. 4 Comparison between analytical models and finite element analysis for Bearing 3 

 

 

An inspection of Figs. 3(a) and (b) reveals that the load-displacement curves in Models 1 and 2 

approach to each other at the extreme horizontal bearing displacement. This is due to the fact that 

according to Eq. (19) at the extreme level of horizontal displacement (i.e., at δfc), d in Model 2 (see 

Eq. (6)) approaches to 3/4 δ that is employed by Model 1 (see Eq. (5)).  

To further examine the effectiveness of Models 1 and 2, the horizontal bearing stiffness and the 

load-displacement curves of Bearings 3 to 6, cited in Table 1, are compared with the results of 

finite element analysis. These comparisons are reflected in Tables 2 and 3, and Figs. 4 and 5. 

The analytical load-displacement curves of Bearing 3 that are predicted by Models 1 and 2 are 

shown in Fig. 4. This figure also contains the load-displacement curve of the bearing resulted by 

finite element analysis. In the finite element analysis, an incrementally increasing monotonic shear 

load was applied on the bearing while it was subjected to a constant vertical compression of 1.6 

MPa. Detailed information on the finite element model of this bearing can be found in Ref. 6.  

According to Fig. 4, there is an excellent agreement between the horizontal load-displacement 

curve predicted by Model 1 and that of the finite element analysis.  Model 2 also shows a good 

correlation with the finite element results. However, as compared with the finite element analysis, 

Model 2 slightly underestimates the shear load at intermediate horizontal bearing displacements. 

Table 2 lists the analytically evaluated horizontal secant stiffness values of Bearing 3 at different 

displacements. It also contains the stiffness values calculated by the finite element analysis. As 

seen in this table, there is an excellent agreement between the results of Model 1 and the finite 

element analysis. A good correlation also exists between the results of Model 2 and the finite 

element analysis as the maximum error of approximately 5% in calculating the horizontal secant 

stiffness is achieved. 
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Table 2 Horizontal secant stiffness of Bearing 3 (comparison between the analytical models and FE-

analysis) 

Normalized horizontal 

displacement (δ/δfc
d
) 

FE-analysis Model 1 Model 2 

K  (N/mm) K (N/mm) error % K (N/mm) error % 

0.20 93.30 93.93 +0.67 91.32 -2.17 

0.40 84.23 84.69 +0.55 80.71 -4.36 

0.60 75.27 75.46 +0.25 71.68 -5.02 

0.80 65.72 66.23 +0.77 63.85 -2.93 

0.96 58.76 58.83 +0.12 58.26 -0.86 
d
 δfc = 41.75 mm 

 

  
(a) Bearing 4 (b) Bearing 5 

 
(c) Bearing 6 

Fig. 5 Comparison between analytical models and finite element analysis for Bearings 4 to 6 with 

different aspect ratios, R 

 

 

Horizontal load-displacement curves of Bearings 4 to 6 are shown in Fig. 5. These bearings 

share the same shape factor, S, of approximately 15. Shape factor is defined as the ratio of plan 

area to perimeter bulge-free area of single elastomer layers in the bearing. Although the shape 

factor for Bearings 4 to 6 is identical, these bearings have different aspect ratios, R, ranging from 

2.5 to 5. By definition, R represents the ratio of length (parallel to the direction of horizontal 

displacements) to thickness of the bearing. In the finite element model a zero physical thickness 

has been assigned to the fiber reinforcement layers of these bearings (Toopchi-Nezhad et al. 

2013). Accordingly, the physical thickness of these bearings is limited to the total thickness of 

their elastomer layers, namely, 100 mm. To remain consistent with the finite element model, the 

thickness of the fiber reinforcement layers in the analytical models is taken zero. Therefore, for  
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Table 3 Accuracy of Models 1 and 2 with respect to the FEA in evaluating the horizontal secant stiffness of 

Bearings 4 to 6 

Normalized horizontal 

displacement (δ/δfc
e
) 

Bearing 4 

(X 
f
 = 0.76) 

Bearing 5 

(X 
f
 = 0.90) 

Bearing 6 

(X 
f
 = 0.96) 

FEA 

K (N/mm) 

Model 1 

error % 

Model 2 

error % 

FEA 

K (N/mm) 

Model 1 

error % 

Model 2 

error % 

FEA 

K (N/mm) 

Model 1 

error % 

Model 2 

error % 

0.2 212.72 +5.44 +2.12 387.95 +5.43 +3.14 925.04 +2.62 +1.08 

0.4 186.19 +6.85 +1.28 352.39 +6.50 +2.73 866.94 +3.65 +1.22 

0.6 158.15 +9.54 +3.66 316.55 +7.86 +3.98 812.74 +4.36 +1.93 

0.8 N/A   278.07 +10.36 +7.76 758.61 +5.13 +3.53 

X
f 

134.21 +13.08 +8.54 258.31 +11.96 +10.46 756.36 +0.33 -0.10 

e 
δfc = 167 mm for all of the bearings cited in this table 

f
 X indicates the maximum ratio of δ/δfc achieved in the FEA. 

 

 

each of Bearings 4 to 6 the total thickness of elastomer layers, tr, is the same as the total thickness 

of the bearing, h.  

As seen in Fig. 5(a) for Bearing 4 of R = 2.50 Model 2 is in an excellent agreement with the 

finite element analysis. According to this figure, Model 1 slightly overestimates the shear loads at 

large bearing displacements. It should be noted that the finite element analysis for this bearing 

could not converge to a unique solution at displacements beyond 1.15 h. This was probably due to 

the fact that the horizontal tangent stiffness of the bearing acquired values close to zero at 

displacements greater than this limit (Toopchi-Nezhad et al. 2011). The accuracy of the analytical 

models with respect to the finite element results can be observed in Table 3. As seen in this table, 

the maximum absolute value of errors in evaluating the bearing horizontal secant stiffness is 

approximately 13% in Model 1, and nearly 8% in Model 2. In the load-displacement curve 

constructed by Model 1 the slope of the load-displacement curve, i.e., the tangent stiffness, 

remains marginally positive at the full contact displacement. This indicates that there is only a 

small margin of safety against horizontal instability with the aspect ratio of 2.5 for this bearing. 

The horizontal load-displacement curves of Bearing 5 with R = 3.33 are shown in Fig. 5(b). 

According to this figure at low to intermediate displacements there is a good agreement between 

both of the analytical models and the finite element analysis. However, the accuracy of the 

analytical models diminishes with increasing bearing displacements (see Table 3). The maximum 

error resulted by Models 1 and 2 in evaluating the horizontal bearing stiffness are approximately 

12% and 10.5%, respectively. Overall, the results of Model 2 for Bearing 5 are in a relatively 

better agreement with the finite element analysis results. 

 Fig. 5(c) shows the load-displacement curves of Bearing 6 resulted by the analytical models 

and the finite element analysis in which an excellent agreement between the latter analysis and the 

analytical models can be observed. Table 3 lists the resulting errors in the analytical estimation of 

secant horizontal stiffness at different displacements. As cited in this table, the maximum errors in 

the evaluation of stiffness in Models 1 and 2 are found to be 5% and 3.5%, respectively. 

As seen in Figs. 3 to 5, the level of shear load at the intermediate to large horizontal 

displacements in Model 2 is relatively lower than in Model 1. Additionally, at small horizontal 

displacements as well as at full-contact horizontal displacement both models yield to 

approximately identical results. This indicates that the lower bound limit to parameter d in Eq. (6) 

407



 

 

 

 

 

 

H. Toopchi-Nezhad 

is ¾  δ. Note that this lower bound limit, i.e., ¾  δ is used in Model 1 (see Eq. (5)).  

 
 
8. Limitations of models 

 

The analytical models developed in this paper serve as a tool for the preliminary design of U-

FREBs. Both models assume that the bearing is subjected to a relatively light vertical compressive 

load so that the influences of the vertical load and the vertical bearing deflection in the horizontal 

stiffness can be neglected. The 3D effects are neglected in both models. In both models the bearing 

is treated as a monolithic material with width, length, and height of a, b, and h, respectively. The 

total thickness of the elastomer layers, tr, and the shear modulus of the elastomer material, G, are 

two additional parameters which are accounted for in calculating the secant horizontal stiffness of 

the bearing. Both models simulate the load-displacement response under monotonic lateral loads. 

They both utilize a nominal constant value for the shear modulus G. This value is assumed to be 

independent of the level of shear strain in the elastomer. As such, the stress-softening of the 

elastomer, which occurs under reversal cycles of loading and is known as Mullin’s effect (Mullins 

1969), is not addressed by the simplified models presented in this study.  

The material property and inplane stiffness of fiber reinforcement layers are disregarded in the 

analysis by both models. Results of a previous research study (Toopchi-Nezhad et al. 2013) 

indicate that the properties of fiber reinforcement layers do primarily affect the vertical stiffness of 

a U-FREB. The horizontal stiffness is to some limited extend influenced by the inplane stiffness of 

fiber reinforcement layers. 

Model 1 does not account for the thickness of individual elastomer layers, te, or individual fiber 

reinforcement layers, tf, within the bearing. However, these parameters are embedded in tr and h 

that are employed in Model 2 (note that d in Eq. (6) is a function of h). Nonetheless, an 

examination of Tables 2 and 3 indicates that the results of Models 1 and 2 for the bearings 

considered in this study are comparable. A previous study (Toopchi-Nezhad et al. 2013) suggests 

that in general the thickness of individual elastomer layers, te, is not a critical parameter in 

controlling the horizontal stiffness of a U-FREB. The horizontal stiffness is primarily influenced 

by the total thickness of elastomer layers, tr. 

 

 

9. Conclusions 
 

This paper introduces two simplified analytical models which can be used in the preliminary 

horizontal stiffness evaluation of Unbonded-Fiber Reinforced Elastomeric Bearings (U-FREBs). 

Both models assume that at any given horizontal displacement, only an effective region of the 

bearing that sustains significant shear strain contributes in the horizontal stiffness. This effective 

region includes the central bearing region and a small portion of the rollover region of the bearing. 

The central region of a horizontally deformed bearing is the region that remains in contact with top 

and bottom supports. The rollover region is referred to the region that rolls off the contact support 

when the bearing is deformed horizontally. Since shear is assumed to be the dominant mode of 

deformation, the horizontal stiffness is evaluated using K = GAeff/tr. This equation is similar to the 

well-known equation that is widely used in the stiffness evaluation of conventional steel reinforced 

bearings. However, the bearing’s plan area, A, that is used in the original equation has been 

replaced with an effective plan area, Aeff. The two models presented in this paper differ by the way 
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they evaluate Aeff.  

In both models Aeff is expressed as a function of the bearing length, width, and the level of 

horizontal displacement imposed on the bearing. Model 1 neglects the thickness of individual 

elastomer and fiber reinforcement layers within the bearing. However, Model 2 accounts for these 

parameters implicitly by including the total thickness of the bearing in the analysis. The 

effectiveness of the models is investigated through comparing their evaluated horizontal stiffness 

and the experimental data as well as the results of finite element analysis. The maximum error in 

evaluating the horizontal stiffness values for the bearings investigated in this paper is found to be 

approximately 13% and 10% in Models 1 and 2, respectively. These error values suggest that both 

models in general are sufficiently accurate for the preliminary design purposes. In many practical 

cases the preliminary design may be carried out by implementing either of the models developed 

in this paper. However, for critical applications one may incorporate both of these models in the 

analysis and carry out the preliminary design based on the most critical analysis results.  

Achieving horizontal stability is an important design requirement for U-FREBs. In a 

horizontally-stable U-FREB the slope of horizontal load-displacement curve remains positive 

throughout the permissible range of horizontal bearing displacements. Since the load-displacement 

curve of the bearing can be constructed in both models, the models are capable of examining the 

horizontal stability of U-FREBs. The extreme bearing displacement is achieved when the 

originally vertical faces of the bearing come in complete contact with the top and bottom supports. 

This extreme level of displacement, also called the full contact horizontal displacement, is found to 

be approximately 1.67 times the total thickness of the bearing, h.  

The essential steps in the preliminary design of a U-FREB include, but not limited to: i) 

estimation of the full contact horizontal displacement of the bearing to ensure that it will satisfy 

the displacement demand; ii) evaluation of the horizontal secant stiffness of the bearing at any 

given displacement in order to construct the horizontal load-displacement curve and verify if the 

bearing is sufficiently flexible to meet the design objectives; and iii) verification of the bearing 

horizontal stability by examining the slope of the load-displacement curve throughout the entire 

range of bearing displacements. These essential preliminary design steps are successfully 

addressed by the simplified analytical models presented in this paper.  
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