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Abstract.   In this paper, it has been attempted to present a powerful analytical approach called Homotopy 
Perturbation Method (HPM). Free vibration of an electrostatically actuated microbeam is considered to 
study analytically. The effect of important parameters on the response of the system is considered. Some 
comparisons are presented to verify the results with other researcher’s results and numerical solutions. It has 
been indicated that HPM could be easily extend to any nonlinear equation. We try to provide an easy method 
to achieve high accurate solution which valid for whole domain. 
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1. Introduction 

 

Microelectromechanical systems are widely used in many accelerometers and switches and 

other related systems. Many sources causes a nonlinear behavior of an electrostatically actuated 

microbeam. It is important to study their large deflections, electrostatic actuation and damping. 

The dynamic analysis and stability responses of many engineering models have become more 

interesting by considering the advance knowledge in micro/nanotechnology. 

Generally, it is very difficult to find an exact solution for nonlinear problems. Many analytical 

and numerical approaches have been investigated to solve nonlinear equations such as homotopy 

perturbation (He 2005), energy balance method (Pakar 2013), variational iteration method (He 

1999), Hamitonian approach (Bayat et al. 2013a), max-min approach (Zeng 2009), amplitude–

frequency formulation (Ganji et al. 2010), and other analytical and numerical methods (He 2008, 

Ke et al. 2009, Chen et al. 2009, Bayat et al. 2013b, c, d, Sharma et al. 2011, Fu 2011, Ağirseven 

et al. 2010, Ganji 2006a, Vazquez-Leal 2012, Filobello-Nino et al. 2012, Behiry et al. 2007, Tsai 

et al. 2012). 

Bayat et al. (2012) review lots of new semi-analytical approaches in their valuable review 

paper.  

Ghasemi et al. (2012) provided very accurate benchmark results for further analytical analysis 

of engineering problems. They explicitly studied the convergence of series solutions by applying 
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homotopy analysis method on forced magneto-hydrodynamic (MHD) Hiemenz flow against a flat 

plate with variable wall temperature in a porous medium. Their results confirmed the accuracy of 

the HAM method as they compared them with their numerical solutions. 

Ganji et al. (2006b) applied homotopy perturbation to sole nonlinear problems which arises in 

Heat transfer nonlinear problems. 

Barania et al. (2011) used homotopy perturbation method (HPM) and the Padé approximation a 

full cone subjected to wall temperature boundary conditions gives us a nonlinear ordinary 

differential equation (ODE). Their results also indicated that HPM-Padé can provide a convenient 

way to control and adjust the convergence region. They considered Nusselt number, which is an 

important parameter in heat transfer calculated by HPM-Padé.  

In this study homotopy perturbation method is used to find analytical solutions for the large-

amplitude vibration of electrostatically actuated microbeams. Some captions are presented to show 

the accuracy of the proposed method with exact solution and other analytical methods. 

 

 

2. Nonlinear vibration of an electrostatically actuated microbeam 
 

Fig. 1 represents a fully clamped microbeam with uniform thickness h, length l, width b  

(b>>5h), effective modulus  21E E    , Young’s modulus E , Poisson’s ratio   and density  .  

By applying the Galerkin Method and employing the classical beam theory and taking into account 

of the mid-plane stretching effect as well as the distributed electrostatic force, the dimensionless 

equation of motion for the microbeam is as follow (Fu et al. 2011) 

         
     4 2 3 5 7

1 2 3 4 5 6 7 0, 0 , 0 0,              q q q q q q q q A q  (1) 

Where q is the dimensionless deflection of the microbeam, a dot denotes the derivative with  

respect to the dimensionless time variable 4( )t EI bhl   with I and t being the second moment  

of area of the beam cross-section and time, respectively.  

In Eq. (1), the physical parameters αi (i = 1−7)
 
are given by (Fu et al. 2011) 
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Fig. 1 Schematics of a double-sided driven clamped-clamped microbeam-based electromechanical resonator 

 

 

  
1 1 25

7
0 0

d d          (8) 

In which, the following nondimensional variables and parameters are introduced 

       

2 4 22
20 0

2 3 3

0

6 g 24 l Vx Nl
, , N , V

l EIh Eh g


      (9) 

While a prime (' ) indicates the partial differentiation with respect to the coordinate variable
 
ξ.  

The trial function is ϕ(ξ)=16ξ
2
(1−ξ)

2
. The parameter N denotes the tensile or compressive axial 

load, g0 
is initial gap between the microbeam and the electrode, V the electrostatic load and ε0  

vacuum permittivity. The complete formulation of Eq. (1) can be referred to Fu et al. (2011) for 

details. 

 

 

3. Concept of homotopy perturbation  
 

The homotopy perturbation method is a combination of the classical perturbation technique and 

homotopy technique. To explain the basic idea of the homotopy perturbation method for solving 

nonlinear differential equations, one may consider the following nonlinear differential equation 

(He 2005) 

       
    0F q f r     r   (10) 

That is subjected to the following boundary condition 

       
, 0

q
B q

t

 
 

 
   r  (11) 

Where F is a general differential operator, B a boundary operator, f(r) is a known analytical 

function, Γ is the boundary of the solution domain (Ω), and ∂q/∂t denotes differentiation along the 

outwards normal to Γ. Generally, the operator F may be divided into two parts: a linear part L and 

a nonlinear part N. Therefore, Eq. (10) may be rewritten as follows 

       
      0L q N q f r      r  (12) 
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Homotopy Perturbation structure is shown as follows 

        
           0, 1 0H v p p L v L q p A v f r             (13) 

Where 

        
   , : 0,1v r p R   (14) 

In Eq. (13),  0 ,1p   
is an embedding parameter and 0q  is the first approximation that satisfies 

the boundary condition. One may assume that solution of Eq. (13) may be written as a power 

series in p, as the following 

       
2

0 1 2v v pv p v     (15) 

The homotopy parameter p is also used to expand the square of the unknown frequency of ω as 

follows 

       
2 2

0 1 2 ...p p        (16) 

or 

       
2 2

0 1 2 ...p p        (17) 

where ω0 
is the coefficient of u(r) in Eq. (12) and should be substituted by the right hand side of 

Eq. (13). Besides, ωi (i=1,2, …)
 
are arbitrary parameters that have to be determined. 

The best approximations for the solution and the frequency are 

       1 0 1 2limpq v v v v      (18) 

      
2

0 1 2 ...      
 

(19) 

when Eq. (13) corresponds to Eq. (18) and Eq. (19) becomes the approximate solution of Eq. (10). 

 

 

4. Solution using homotopy perturbation  
 

Eq. (1) can be rewritten as the following form 

       
4 2 3 5 7

4 1 2 5 6 7. 0, [0,1].              q q p q q q q q q q p  (20) 

Where  

       

5 6 71 2 4
1 2 4 5 6 7

3 3 3 3 3 3

, , , , ,
    

     
     

       (21) 

To explain the analytical solution, the unknown frequency and q(t) are expanded as follows 

       
2

0 1 2( ) ( ) ( ) ( )q t q t p q t p q t     (22) 

       
2 2

4 1 2 ...p p        (23) 
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Substituting Eqs. (22) and (23) into Eq. (20) and equating the terms with identical powers of p, 

the following set of linear differential equations is obtained 

          
0 2

0 0: 0p q q   (24) 

         
 1 2 4 2 3 5 7

1 1 1 0 1 0 0 2 0 0 5 0 6 0 7 0: ,p q q q q q q q q q q              (25) 

Solving Eq. (24) gives: 0 ( ) cos( )q t A t . Substituting 0 ( )q t  into Eq. (25), yield 

        

1 2

1 1 1

5 2 5 3 2 3

1 2

3 3 5 5 7 7

5 6 7

cos ( ) cos ( )

cos ( ) cos ( ) cos ( )

: cos( ) A t A t

A t A

q t

t t

p q A

A

     

     

    

 






 (26) 

For achieving the secular term, we use Fourier expansion series as follows 
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 
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5 2 5 3 2 3

1 2

3 3 5 5 7 7
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5 2 3 2 3 5

1 1 2 5 6
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s ( )

5 3 3
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5 35

8 4 4

c
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     



 

 

  

 

  

   



   







   
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   

  

    
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n

t A t A t

A t A t A t

A A A A

A t

b n t

b

A

t b t

t d t t

7

7 cos ( )
 
 
 
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 (27) 

Substituting Eq. (27) into Eq. (26) yields 

        
 

5 2 3 2 3 51 2

1

7

1 1 2 71

2

5

1

6

0

5 3 3 5 35

8 4 4 8 64
: cos ( )

cos 2 1

        








 
       

 

    n

n

A A Ap q q t

b n t

A A A

 (28) 

Avoiding secular term, gives 

        

2 4 2 2 2 4 6

1 1 2 5 6 7

5 3 3 5 35

8 4 4 8 64
A A A A A              (29) 

From Eq. (23) and setting 1p  , we have 

        
2

4 1     (30) 

Substituting Eqs. (29) in (30), we can obtain 

        

2 4 2 2 2 4 6

1 7

2

2 5 6 2

5 3 3 5 35

8 4 4 8 64
A A A A A              (31) 

Solving Eq. (31), and Substituting Eq. (21) in it, gives 

        

2 4 6

4 5 6 7

4 2

1 2 3

64 48 40 352

4 5 6 8
HPM

A A A

A A

   

  


  

 
  (32) 
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Solving (28) without secular term and Substituting Eq. (21) in it, we obtain 

 


3

2 2 2 2

1 1 2 5 62

4 2 2 2

7 1 2 5

4 2 2 2 2

7 6 1 6

3

1
( ) 128 cos( ) 96 cos ( ) 96 cos ( ) 128 cos ( )

3072

141 cos ( ) 120 cos (3 ) 96 cos (3 ) 96 cos (3 )

126 cos(3 ) 120 cos(3 ) 8 cos (5 ) 8 cos (5 )

         


         

        


     

   

   



A
q t A t t t A t

A t A t t t

A t A t A t A t

4 4

7 714 cos (5 ) cos (7 )   A t A t

 (33) 

Hence, we can obtain the following approximate solution 


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   

  
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A t A t t t

A t A t A t A

4 4

7 7
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14 cos (5 ) cos (7 )
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    

t

A t A t

 

(34) 

 

5. Results and discussions 
 

In this part, we do some comparisons between the new presented method and other analytical 

and exact solutions. Table 1 show the accuracy of the method for different values of constant 

parameters. We compare it with the Homotopy Analysis Method (HAM), Energy Balance Method 

(EBM) and exact solution. 

Figs. 2 and 3 show the convergence of the method comparing with HAM, EBM and Exact 

solution for two cases. Case 1 is time history displacement comparison and the Case 2 is phase 

plan. Fig. 2 is for N=10, λ=24, V=20, A=0.3 and Fig. 3 is for N=10, λ=24, V=10, A=0.6.  

To have a better understand from the behavior of the system, we consider the effect of V 

parameter corresponded to electrostatic voltage on nonlinear frequency of electrostatically 

microbeam base on amplitude.  

The Fig. 4(a) is shown this influence. The value of V parameters increases the nonlinear 

frequency by its increase. A peak point is seen in the figure in large amplitudes. Fig. 4(b) shows 

the effects of N parameter corresponded to axial force on nonlinear frequency of electrostatically 

microbeam base on amplitude. It is a similar behavior like V parameter is seen with different 

values of N on the nonlinear frequency. 

 

 
Table 1 Comparison of frequency corresponding to various parameters of system 

Constant parameters HPM HAM EBM Exact solution 

A N λ V ωHPM ωHAM (Qian et al. 2012)
 
ωEBM (Fu et al. 2011)

 
ωExact (Qian et al. 2012)

 
0.3 10 24 0 26.8262 26.8329 26.3867 26.8372 

0.3 10 24 20 16.6422 16.6460 16.3829 16.6486 

0.6 10 24 10 28.3441 28.4440 26.5324 28.5382 

0.6 10 24 20 18.5162 18.5574 17.5017 18.5902 
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Fig. 2 Comparison of homotopy perturbation method (HPM), homotopy analysis method (HAM), 

energy balance method (EBM) and exact solution. (a) time history response, (b) phase plane for N=10, 

λ=24, V=20, A=0.3 
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Fig. 3 Comparison of homotopy perturbation method (HPM), homotopy analysis method (HAM), energy 

balance method (EBM) and exact solution. (a) time history response, (b) phase plane for N=10, λ=24, 

V=10, A=0.6 
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Fig. 4 Effect of  (a) V parameter and  (b) N parameter on nonlinear frequency of electrostatically 

microbeam base on amplitude 
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Fig. 5 Sensitivity analysis of nonlinear frequency for (a) N=10, λ=24, 5<V<20, 0<A<1
 
(b)

 
5<N<20, 

λ=24, V=10, 0<A<1 

 

 

Fig. 5 is a Sensitivity analysis of nonlinear frequency by considering the amplitude for two 

important parameters of N and V. The accuracy of the HPM has been demonstrated in comparison 

of EBM, HAM and exact solution for different values of forces and voltages acting on the 

microbeam. The HPM can easily extend to any nonlinear problem with high nonlinear term. HPM 

is valid for a wide range of amplitude. 

 

 

6. Conclusions 
 

In this study, homotopy perturbation method was applied to nonlinear governing equation of an 

electrostatically actuated micro beam. The effect of different parameters on the nonlinear 

frequency of the systems was considered. The results of HPM compared with the HAM, EBM and 

exact solutions. The accuracy of the HPM shows that it could be applied to nonlinear conservative 

problems easily. The HPM results converge to the exact solution by only its first iteration. 

Therefore we can suggest the HPM as a novel method to achieve accurate results in nonlinear 

vibration equations.  
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