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Abstract.   The cross sections of multi-span beams are sometimes suddenly increased at the interior 
support of continuous beams to resist high negative moment. An earlier study on elastic lateral torsional 
buckling of stepped beams was conducted to propose new design equations. This research aims to continue 
the earlier study by considering the effect of inelastic buckling of stepped beams subjected to pure bending 
and general loading condition. A three-dimensional finite element-program ABAQUS and a statistical 
program MINITAB were used in the development of new design equations. The inelastic lateral torsional 
buckling strengths of 36 and 27 models for singly and doubly stepped beams, respectively, were 
investigated. The general loading condition consists of 15 loading cases based on the number of inflection 
point within the unbraced length of the stepped beams. The combined effects of residual stresses and 
geometrical imperfection were also considered to evaluate the inelastic buckling strengths. The proposed 
equations in this study will definitely improve current design methods for the inelastic lateral-torsional 
buckling of stepped beams and will increase efficiency in building and bridge design. 
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1. Introduction 

 

Stepped beams are often used in bridges due to economy in materials since the size of the beam 

are reduced abruptly in areas with low moments. Stepped beams used in continuous beams can 

either be doubly stepped beam (DSB), with abrupt increase of cross section at both ends or singly 

stepped beam (SSB), with abrupt increase of cross section at one end. Stepped beams are either 

constructed by increasing the flange thickness of a welded beam or by welding additional flange 

plates to a hot-rolled I-section. 

Although its popularity, only few researchers have studied on lateral-torsional buckling (LTB) 

of stepped beams. Trahair and Kitipornchai (1971) investigated the effect of lateral-torsional 

buckling strengths on simply supported beam stepped at midspan. Lellep and Kraav (2011) made a 

study which focuses on the elastic buckling capacity of stepped beams having piece wise 

dimensions with cracks. Park and Stallings (2003, 2005) wrote researches regarding lateral-
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torsional buckling strength of beams that are stepped at the ends. Design equations for these 

stepped beams were presented to consider general loading cases, stepped conditions, and the effect 

of Lb/h on lateral torsional buckling. All of these researches considered elastic lateral torsional 

buckling of stepped beams. 

This paper investigates to further explore and extend the study on lateral torsional buckling of 

beams with steps at one end and at both ends by considering the effect of inelastic beam. This 

research also presents new design equations that are similar to current lateral torsional buckling 

solutions which use a modifier Cist to consider the effect of the change in cross section and Cibst to 

account for the varying moment along the unbraced length. The design equations were compared 

with finite element analyses results and a calculation procedure using the new equations was 

provided. 

 

 

2. Background and previous studies 
 

Kitipornchai and Trahair (1975) studied inelastic buckling of simply supported steel I-beam 

and presented some limited experimental evidences. Nethercot and Trahair (1976) investigated 

inelastic buckling predictions for hot-rolled prismatic beams with unequal end moments, and 

transverse loads in the unbraced lengths. Trahair (1993) presented approximate methods that have 

been developed for analyzing the inelastic buckling of beams which are prevented from deflecting 

and twisting at their supports and brace points. This simplest method is to ignore the buckling 

interactions which take place between adjacent segments during buckling. A lower bound may 

then be obtained from the lowest of the inelastic buckling load factors calculated for the segments 

of the beam. Mohebkhah (2010) showed the results of his study on nonlinear inelastic lateral 

torsional buckling of hot rolled steel I-beams having a wide variety of overall slenderness under 

moment gradient and subjected to off-shear center loading. Also, Mohebkhah and Chegeni (2012) 

made a study involving the nominal flexural capacity of I-beam sections having compact webs and 

noncompact or slender flanges taking into consideration on the interaction between the flange local 

buckling and lateral torsional buckling. They concluded that the flange local buckling (FLB) and 

LTB limit states for beams in the inelastic range has no significant interaction. On the other hand, 

Li (2007) studied the lateral torsional buckling behavior of general prismatic and tapered steel 

members having doubly and singly symmetric sections. He proposed equations that can calculate 

the inelastic lateral-torsional capacity by using straight-line transition method and for determining 

the limiting unbraced member lengths. Meanwhile, Trahair (2011) made a study on the inelastic 

buckling of monosymmetric steel I-beams under moment gradient and compared it with design 

recommendations. These studies deal with inelastic buckling of beams but do not cover the 

buckling of stepped beams. 

American Institute of Steel Construction (AISC) Specifications (2010) defines inelastic LTB 

moment capacity as below 

     [          (
     

     
)]       (1) 

where Cb is the moment gradient modifier; Mp is the plastic bending strength of a beam; Mr is the 

limiting buckling moment; Lb is the laterally unbraced length; Lp and Lr are the limiting lengths for 

plastic and elastic zone, respectively. Eq. (1) with Cb=1 is the inelastic lateral-torsional buckling 

resistance for an I-shaped prismatic section under the action of constant moment over the laterally 
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unbraced length. 

 The AISC Specifications (2010) and AASHTO LRFD Bridge Design Specifications (2010) 

which is based on the study of Kirby and Nethercot (1979) have incorporated the following 

expression for Cb, which is applicable for linear and nonlinear moment diagrams 

   
        

                   
                           (2) 

where Mmax is the maximum moment along Lb, MA, MB, and MC are the respective moments at Lb/4, 

Lb/2, and 3Lb/4 and Lb is the distance between the braced points. Absolute value is used for all 

moments. 

There are also studies made by Nawaz (2009) and Serna et al. (2006) for the equivalent 

uniform moment factors for lateral torsional buckling of steel members which can be used instead 

of the one given by AISC. However, for this study, the AISC specifications (2005) are followed. 

For studies involving stepped beams, Trahair and Kitipornchai (1971) have previously studied 

lateral torsional buckling of beams with step at midspan. They discussed how steps can affect the 

minor axis flexural rigidity, torsional rigidity, and warping rigidity of beams. A series of studies on 

the LTB capacity of stepped beams were published by Park and Stallings (2003, 2005). All the 

researches focused on two general types of stepped beams, which are doubly stepped beams 

(DSBs) and singly stepped beams (SSBs). Park and Stallings (2003) suggested the following 

equation for the lateral torsional buckling of the DSB and the SSB subjected to pure bending 

 𝑀𝑜𝑠𝑡  𝐶𝑠𝑡𝑀𝑜𝑐𝑟                             (3a) 

            with Cst = C0 + 6α
2
(βγ

1.3
-1)   for DSB    (3b) 

  Cst = C0 + 1.5α
1.6

(βγ
1.2

-1) for SSB                      (3c) 

where Mocr is the LTB strength of prismatic beam with smaller cross section and α, β and γ are the 

ratios of stepped lengths, flange widths and flange thicknesses, respectively. Park and Stallings 

(2003) proposed an equation applicable to various loadings conditions. The presented equation for 

Cbst depends on the number of inflection point (IP). 

 𝑀𝑠𝑡  𝐶𝑏𝑠𝑡𝐶𝑠𝑡𝑀𝑜𝑐𝑟                         (4a) 

with Cbst  
12 5 Mmax

2 5Mmax 3MA 4MB 3MC
 for IP=0                 (4b) 

   Cbst  
10 Mmax

4Mmax MA 7MB MC
 for IP=1 or IP=2                 (4c) 

where Cst is given by Eqs. (3b) and (3c). C0 values for load cases with IP of zero or one are 1.0 

while C0 value for load cases with IP of two is 0.85. All proposed equations from Park and 

Stallings (2003, 2005) can be used for stepped beam within elastic buckling region.  

 

 

3. Inelastic finite element modeling 
 

A finite element computer program ABAQUS (2011) was used to perform the numerical 

analyses of the lateral torsional buckling capacities of inelastic stepped I-beams. A linear, four-

noded shell element, S4R, was chosen to model the beams due to its capability to provide enough 

degrees of freedom to clearly model the inelastic buckling deformations of the beam. Park and 
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Park (2013) presented the comparison study on experimental tests, proposed equations, and finite 

element analyses for monosymmetric stepped beams subjected to a concentrated load on the centre 

of the span having the unbraced length within inelastic strength zone. The study also used the 

program ABAQUS for numerical analyses and showed that the results from the finite element 

analyses were similar to the values yielded by the experimental test. 

Fig. 1 shows the cross section and dimension of the smaller beam. The flange width and 

thickness of the smaller beam were fixed at 305 mm and 25.4 mm, respectively. The thickness of 

the web and height of beam, 16.5 mm and 890 mm, respectively, were kept constant. Figs. 2-3 

show the two general types of stepped beams being studied here, doubly stepped beam (DSB) and 

singly stepped beam (SSB). Both flange thickness and flange width were varied at both ends for 

DSB and at one end for SSB. The material and section properties of the beam shown in Fig.1 are 

modulus of elasticity of 210GPa, shear modulus of 80.77GPa, second moment of inertia of 

1.20×10
-4

m
4
, torsional constant of

 
4.63×10

-6
 m

4
, and warping constant of 2.38×10

-5
 m

6
. Figs. 2-3 

show the elevation and plan view of the DSB and the SSB, respectively. The ratio of the flange 

thicknesses, , the ratio of the flange widths, , and the ratio of stepped lengths, , are also defined 

in these figures. 

Kim et al. (2008) presented the inelastic buckling behaviors of stepped I-beams subjected to 

pure bending and provided the design equations for LTB strengths. The modeling approach and the 

equations presented were reviewed to extend for stepped I-beams subjected to general loading 

conditions. First of all, boundary conditions for three-dimensional modeling were investigated 

based on comparisons between finite element analyses (FEA) and theoretical equations for elastic 

and inelastic LTB strengths of prismatic beams. Second, a convergence test was held to choose the 

optimum mesh for the models. Tables 1-2 show the stepped parameters for doubly and singly 

stepped beams. The parameters used for stepped beams are taken from the geometry of real 

bridges. 

 

 

 

Fig. 1 Cross section for analytical model (unit:mm) 

 

 

(a) Plan (b) Elevation 

Fig. 2 Definition of α, β and γ for doubly stepped beam 
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890
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(a) Plan (b) Elevation 

Fig. 3 Definition of α, β and γ for singly stepped beam 

 
Table 1 Parameters for doubly stepped beams 

   

0.167 1.0 1.2; 1.4; 1.8 

0.167 1.2 1.0; 1.4; 1.8 

0.167 1.4 1.0; 1.4; 1.8 

0.25 1.0 1.2; 1.4; 1.8 

0.25 1.2 1.0; 1.4; 1.8 

0.25 1.4 1.0; 1.4; 1.8 

0.333 1.0 1.2; 1.4; 1.8 

0.333 1.2 1.0; 1.4; 1.8 

0.333 1.4 1.0; 1.4; 1.8 

 
Table 2 Parameters for singly stepped beams 

   

0.167 1.0 1.2; 1.4; 1.8 

0.167 1.2 1.0; 1.4; 1.8 

0.167 1.4 1.0; 1.4; 1.8 

0.25 1.0 1.2; 1.4; 1.8 

0.25 1.2 1.0; 1.4; 1.8 

0.25 1.4 1.0; 1.4; 1.8 

0.333 1.0 1.2; 1.4; 1.8 

0.333 1.2 1.0; 1.4; 1.8 

0.333 1.4 1.0; 1.4; 1.8 

0.5 1.0 1.2; 1.4; 1.8 

0.5 1.2 1.0; 1.4; 1.8 

0.5 1.4 1.0; 1.4; 1.8 

 

 

AISC Specifications (2010) categorize buckling failure based on the unbraced length of the 

beam. The basic relationship between the flexural strength and unbraced length is shown in Fig. 4. 

Beams with unbraced length falling between the limiting lengths Lp and Lr usually fails by 

inelastic buckling. Five length models were considered for inelastic buckling strengths of stepped 

beams subjected to pure bending and three length models were investigated for stepped beams 

subjected to general loading conditions, each picked in sections near plastic, at the middle of 

inelastic zone, and near elastic zone. The three lengths are Lb =3.56m (Lb/h=4.0), Lb =5m 

(Lb/h=5.6) and Lb =8.5m (Lb/h=9.6), respectively, as shown in Fig. 4. 

279



 

 

 

 

 

 

Jong Sup Park and Yi Seul Park 

 

Fig. 4 Nominal flexural strength as a function of unbraced length 

 

  

Fig. 5 Distribution of residual stress Fig. 6 Stress-strain relationship of analytical model 

 

   

(a) LC1 (b) LC2 (c)LC3 

   

(d) LC4 (e) LC5 (f) LC6 

Fig. 7 Load cases for inflection point of zero (IP=0) 

 

 

To have an accurate inelastic model, the effect of residual stresses and geometric imperfections 

must be realistically applied to the model. The linearly distributed residual stress for hot rolled 

section shown in Fig. 5 was adopted from Pi and Trahair (1995). This was modeled in ABAQUS 

using initial conditions option with type=stress. The initial geometric imperfection of the beam is 

set by central displacement and is equal to 0.1% of the unbraced length of the beam suggested by 

Hyundai Steel (2006). This is introduced using imperfection option where the buckling mode 

shape came from the elastic analysis. Fig. 6 shows the stress-strain relationship used, which has a 

yield stress of 280 MPa and a modulus of elasticity of 210GPa. 

Stepped beams were subjected to load cases (LC) of 15 and were divided into groups based on 

the number of inflection points. Fig. 7 shows the load cases with no inflection point (IP=0). There 

are six load cases under this group. Fig. 8 shows the four load cases considered with one inflection 

point (IP=1). Fig. 9 shows the five load cases considered with two inflection point (IP=2). The end  
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(a) LC7 (b) LC8 (c) LC9 (d) LC10 

Fig. 8 Load cases for inflection point of one (IP=1) 

 

   

(a) LC11 (b) LC12 (c) LC13 

  
(d) LC14 (e) LC15 

Fig. 9 Load cases for inflection point of two (IP=2) 

 

 

moments M at LC9 and LC10 are given as 3PL/16 and ωL
2
/12, respectively. For the load cases of 

the Fig. 9, the end moment M is ωL
2
/12. 

 

 

4. Finite element results 
 

4.1 Beams subjected to pure bending 
 

Parametric analyses were conducted to determine the relationship between all the parameters 

discussed previously and the LTB strengths of beams. Doubly stepped beams having 135 models 

and singly stepped beams having 180 models with Lb of 4m, 5m, 6m, 7m, and 8m were 

investigated. The buckling moment results from ABAQUS (2011) were used to compute the 

stepped beam correction factor, Cist, which is defined as the ratio between the moment capacity of 

the stepped beam and the buckling capacity of the prismatic beam having the smaller section 

subjected to pure bending. A regression program, MINITAB (2007), was used for developing new 

equations. 

The proposed inelastic lateral torsional buckling equation for stepped beam subjected to pure 

bending along the unbraced span is 

 𝐢𝐬𝐭   𝐢𝐬𝐭 𝐢𝐜                               (5a) 

  with  Cist= 1 + 4α
2
(βγ

1.1
-1) for DSB                    (5b) 

     Cist= 1 + 0.7α
2
(βγ

1.05
-1) for SSB                        (5c) 

where Micr is the inelastic LTB strength of beam using Eq. (1) and α, β and γ are the stepped length 

ratio, flange width ratio and flange thickness ratio as defined in Figs. 2 and 3 (Kim et al. 2008). 

Fig. 10 presents comparisons between the results of FEA and the proposed equation for doubly 

stepped beams with Lb of 4m, 6m, 8m and total results. The graph shows that the dots represent the 

FEA results and the solid line represents the proposed equation. The maximum difference of the 

conservative estimate is 9.5% with α=0.333, β=1.4, γ=1.0 and Lb =6m. The maximum difference of 

the unconservative estimate is -7.6% with α=0.333, β=1.4, γ=1.8, and Lb =8m. Fig. 11 also shows 
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(a) Lb/h=4.5 (b) Lb/h=6.7 

  

(c) Lb/h=9.0 (d) All 

Fig. 10 Comparisons between FEA results and proposed equation for doubly stepped beams 

 

  

(a) Lb/h=4.5 (b) Lb/h=6.7 

  

(c) Lb/h=9.0 (d) All 

Fig. 11 Comparisons between FEA results and proposed equation for singly stepped beams 
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inelastic LTB strengths for singly stepped beams having Lb of 4m, 6m, 8m and total results. The 

dots and solid line denotes the FEA results and the proposed equation, respectively. The results of 

the analyses show that Eq. (5c) gives conservative results for most cases, with a difference ranging 

from -0.4% to 5.5%. The solution is the most conservative for beams with α=0.5, β=1.4, γ=1.8, and 

Lb =6m and the most unconservative with α=0.333, β=1.0, γ=1.8, and Lb=8m. Figs. 10(d) and 11(d) 

present all results of the models with Lb of 4m, 5m, 6m, 7m, and 8m. The new equations presented 

have results that are either conservative or unconservative as mentioned and shown in Figs. 10 and 

11. However, it is a simple equation that produces reasonable estimates with Cist from 1.03 to 1.74 

for DSBs and from 1.01 to 1.28 for SSBs. 

 

4.2 Beams subjected to general loading  
 

The general equation was developed based on 15 different load cases which were applied to 81 

doubly stepped beams and 108 singly stepped beams with Lb/h of 4, 5.6, and 9.6. The load cases 

were divided by the number of inflection points within the unbraced length. The load cases 

investigated are shown in Figs. 7, 8 and 9. The proposed design equation for inelastic LTB 

resistances of stepped beams is  

Mist  CbistCistMicr                             (6) 

where Micr is the inelastic buckling strength of the beam with the smaller section at mid span 

which is given by Eq. (1), Cist is the correction factor to account for the steps at the ends of the 

beam, defined by Eq. (5b) for DSB and Eq. (5c) for SSB, and Cbist is the correction factor for 

varying moment along the unbraced beam length with respect to the number of inflection points. 

Load cases from LC1 to LC6 shown in Fig. 7 were investigated for stepped beams with IP=0. 

The results of the finite element analyses showed that the Eq. (2) from the AISC Specifications 

(2010) can be used for inelastic LTB strengths of stepped beams with IP=0. Comparisons of FEA 

results and Eq. (2) for doubly and singly stepped beams are presented in Fig. 12. The solid line 

represents Eq. (2) and the dots are the values obtained from the finite element analyses. Fig 12(a) 

shows the results for DSB under pure bending and the Eq. (2) produces a result of Cbist = 1, with 

the difference between the proposed equation and FEM results of -5% to 8%. In Fig. 12(b), the 

results for the SSB subjected to a concentrated load at the midspan are considered with Cbist=1.32 

and the difference between the proposed equation and FEM results is of -3% to 3.5%. Fig. 12(c) 

also presents comparisons of results for DSBs under a distributed load, having a difference ranging 

from -9% to 12%. The Eq. (2) gives the Cbist value of 1.14. Fig. 12(d) shows the results of SSBs 

for LC6 which is subjected to two concentrated loads located at Lb/3 and 2Lb/3. Since most of the 

results for stepped beams with IP=0 show a difference within 10%, use of the Eq. (2) from the 

AISC Specifications (2010) was therefore concluded to be suitable. 

Fig. 13 shows comparisons of the results from the proposed Eq. (7) and FEA results for doubly 

and singly stepped beams with IP=1. The solid lines and dots represent the results of the proposed 

equation and FEM results, respectively. Fig. 13(a) is the result for SSBs subjected to LC7 with 

Cbist=1.66 and a difference between proposed equation and FEM results of -2.5% to 24%. Fig. 

13(b) shows the results for DSBs subjected to LC8 with Cbist=1.69 having a difference of -2.9% to 

15%. The Cbist of the SSB subjected to LC9 is of 1.29 from Eq. (7) and the conservative and 

unconservative differences are of -6% to 12% as shown in Fig. 13(c). Fig. 13(d) shows the 

comparisons for DSBs subjected to one end moment with an uniformly distributed load and the 

difference of each result is of -19% to 18%. For beams under a linear moment diagram such as 
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(a) LC1, DSB (b) LC4, SSB 

  
(c) LC5, DSB (d) LC6, SSB 

Fig. 12 Comparisons between FEA results and proposed Solution with inflection point of zero 

 

  
(a) LC7, SSB (b) LC8, DSB 

  
(c) LC9, SSB (d) LC10, DSB 

Fig. 13 Comparisons between FEA results and proposed Solution with inflection point of one 
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(a) LC11, DSB (b) LC12, SSB 

  

(c) LC14, DSB (d) LC15, SSB 

Fig. 14 Comparisons between FEA results and proposed Solution with inflection point of two 

 

 

  𝐢𝐬𝐭  
      

                     
                         (7) 

LC7 and LC8, FEA results are scattered mostly above the solid line and has a high difference 

between the proposed equation and FEA results. The Eq. (7) can be simply used for stepped beam 

design. Another simple and easy method can be used for stepped beam with IP=1. The moment 

gradient factors can be conservatively obtained using Eq. (2) multiplied by 0.8 for the load cases 

of LC7, LC8, and LC10 and by 0.9 for the load case of LC9.  

  𝐢𝐬𝐭  
 𝟎    

𝟖     𝟎        𝟎    
                         (8) 

Fig. 14 shows comparisons of the results of proposed Eq. (8) and the FEA results for load cases 

with IP=2. The results of four load cases were shown in Figs. 14(a) to (d). Fig. 14(a) presents the 

results for stepped beams with two end moments and uniformly distributed load. The difference 

between the results is of -9% to 11%. Fig. 14(b) shows results for LC12 with Cbist=1.08 and the 

distributed difference of -6% to 8%. The results for DSBs subjected to LC14 are shown in Fig. 

12(c) having a difference of -5% to 11%. For SSBs subjected to LC15, the analytical results and 

proposed equation are shown in Fig. 14(d). The difference between the proposed solution and the 

FEM results is of -3% to 10%.  
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5. Conclusions 
 

This research presents the inelastic lateral torsional buckling strengths of stepped beam 

subjected to pure bending and general loading condition. A finite element program ABAQUS 

(2011) was used for parametric analyses and a statistical program MINITAB (2007) was used to 

develop the new design equations. First of all, stepped beams subjected to pure bending were 

considered to evaluate inelastic lateral torsional buckling strengths. Two design equations of Cist 

considering stepped ratios were developed and extended for stepped beams subjected to general 

loading conditions. The general loading conditions were categorized according to the number of 

inflection points. The Cb formula suggested by AISC Specifications (2010) can be used for stepped 

beams with inflection point of zero. For load cases with inflection point of one and two, some 

modifications were applied to develop new equations for more accuracy. The proposed equations 

produce results that are either conservative or unconservative depending on the load cases and 

variables involved. The proposed equations will definitely improve current design methods for the 

inelastic lateral-torsional buckling of stepped beams and will increase efficiency in building and 

bridge design. 
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Appendix. example problem 
 

 

Fig. 15 Three-span continuous beam 

 
 

Two example applications of the proposed equation, Eq. (6), are illustrated in the Appendix. 

Eq. (6) provides an estimate of the resistance for the limit state of lateral-torsional buckling. 

Current design codes generally provide separate methods that should be used for evaluating the 

resistance to other limit states such as local buckling and yielding. The example uses a three-span 

beam with uniform loading where bracing is initially assumed to be provided only at the supports. 

Hence, the center span is a doubly-stepped beam with inflection points of two (Model A) and end 

span is a singly stepped beam with inflection points of one (Model B).  

Determine the LTB capacity of the center span of the continuous beam shown in Fig.15 during 

the construction of the concrete slab. Steps in the cross section are shown in Fig. 15.  

(1) Doubly-stepped beam (model A)  

Lb = 8 m, Lb/h = 10.39, ry = 67mm, Sx = 7.06mm, Zx = 7.9mm, J = 4.210
-3

mm
4
,  

Cw = 1.7510
-2

 mm
6
, X1 = 1.3610

13
, X2 = 2.5910

-13
, E = 210 GPa, v = 0.3, Fy = 280 MPa,  

Fr = 68.9 MPa,    (     )   = 1,491.2 kN-m,         √
 

  
 = 3.23m,    

    

  
√  √      

  = 9.17m,        =2,210kN-m,  

α= 2/8= 0.25, β= 302/300= 1.01, γ=30/26= 1.15, 

      (     ) (
     

     
) =1,634kN-m 

 𝐢𝐬𝐭       (       ) = 1.04,   𝐢𝐬𝐭  
 𝟎    

𝟖     𝟎        𝟎    
=1.15 

 𝐢𝐬𝐭    𝐢𝐬𝐭 𝐢𝐬𝐭 𝐢𝐜 =1,954kN-m 

The difference between the proposed equation and finite element result of 1940kN-m is of -1.07%. 

6m8m6m 2@2m2@2m

H792x300 H808x302 H800x300 H808x302

Model A

H792x300

43.7kN/m

122.2 kN-m

228.3 kN-m

99.2 kN-m

228.3 kN-m

99.2 kN-m

Model B
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(2) Singly-stepped beam (model B)  

Lb = 6 m, Lb/h = 7.79, ry = 64.73 mm, Sx = 6.18 mm, Zx = 7 mm, J = 2.8110
-3

mm
4
 ,  

Cw = 1.4710
-2

 mm
6
 , X1 = 1.2110

13
 , X2 = 4.3710

-13
 , E = 210 GPa, v = 0.3, Fy = 280 MPa, 

Fr = 68.9MPa,    (     )  = 1,303.6kN-m,         √
 

  
=3.12m, 

   
    

  
√  √      

 =8.72m,        =1,970kN-m,  

α = 2/6 = 0.4, β = 302/300 = 1.01, γ = 30/20 = 1.5 

      (     ) (
     

     
) = 1,626kN-m, 

 𝐢𝐬𝐭    𝟎    (    𝟎   )    𝟎 ,   𝐢𝐬𝐭  
      

                     
 = 1.86, 

 𝐢𝐬𝐭    𝐢𝐬𝐭 𝐢𝐬𝐭 𝐢𝐜  = 3,085kN-m 

The difference between the proposed equation and finite element result of 2900kN-m is of -6.0%. 
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