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Abstract.   The buckling problem of linearly tapered micro-columns is investigated on the basis of modified 
strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro 
column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered 
cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular 
and circular cross-sections are presented in graphical and tabular form to show the differences between the 
results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress 
and classical theories. From the results, it is observed that the differences between critical buckling loads 
achieved by classical and those predicted by non-classical theories are considerable for smaller values of the 
ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale 
parameters and the differences also increase due to increasing of the taper ratio. 
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1. Introduction 

 

One of the main features that required of engineering structures is to be economical in addition 

to being safety, functional and aesthetic. Therefore, structural members with variable cross-section 

or material properties like beams, columns, plates and shells are frequently used in many 

applications of civil, mechanical and aerospace engineering. As a result of using these type 

structural members, strength and structural efficiency may be increased while total cost and weight 

may be reduced. Buckling analysis of non-uniform or non-homogenous beams/columns has been 

investigated by many researches (Timoshenko and Gere 1961, Gere and Carter 1962, Elishakoff 

and Bert 1988, Eisenberger 1991, Wang et al. 2005, Darbandi et al. 2010). 

Recently, micro- and nano-sized structures and devices such as biosensors, atomic force 

microscope, microactuators, and nano probes, in which their cross-sections can be either constant 

or variable along the longitudinal direction, have been widely used in microelectromechanical 

(MEMS) and nanoelectromechanical systems (NEMS). In these applications, it is observed that the 

size effect has a major role on static and dynamic behavior of material (Fleck et al. 1994, Lam et 

al. 2003). The size effect cannot be taken into consideration by classical continuum theories due to 

lack of any material length scale parameters. Then, higher-order (nonclassical) continuum theories, 
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which include least one additional material length scale parameter in addition to classical ones, 

have been proposed to predict the size dependence of these small-scale structures. 

Using nonlocal elasticity theory (Eringen 1983), Lim and Wang (2007) and Lim (2009, 2010) 

studied static bending problem of nanobeams and obtained governing equation and boundary 

conditions with the aid of a variational principle. In the last decade, on the basis of the nonlocal 

elasticity theory, many studies have been carried out for static and dynamic analysis of small-sized 

structures such as carbon nanotubes (Sudak 2003, Zhang et al. 2004, 2006, Liu et al. 2005, Wang 

and Liew 2007, Zhang and Shen 2007, Liew et al. 2008, Wang et al. 2008, Demir et al. 2010, Lim 

et al. 2010, Şimşek 2011), microtubules (Civalek and Akgöz 2010, Civalek et al. 2010, Civalek 

and Demir 2011,Shen 2010) and graphene sheets (Shen et al. 2010a, b). Zhang et al. (2006) 

investigated buckling analysis of double-walled carbon nanotubes on an elastic medium by energy 

method with considering effect of van der Waals forces. 

Modified couple stress theory is a higher-order continuum theory, has been elaborated by Yang 

et al. (2002) which contains a new higher-order equilibrium relation for moments of couples 

besides conventional (classical) equilibrium relations for forces and moments of forces. 

Furthermore, this convenient theory involves only one additional material length scale parameter 

and a symmetric couple stress tensor. Based on this theory, Şimşek (2010) investigated dynamic 

analysis of an embedded microbeam carrying a moving microparticle. Recently, free vibration 

analysis of axially functionally graded tapered microbeams is studied with modified couple stress 

theory (Akgöz and Civalek 2013a). 

Modified strain gradient theory is another higher-order continuum theory, was developed by 

Lam et al. (2003) which includes two higher-order stress components in addition to classical and 

couple stresses. This theory has been employed to analyze for static and dynamic behaviors of 

linear homogenous microbeams by Akgöz and Civalek (2011a, b, 2012, 2013b). 

The objective of this study is to analyze the buckling problem of linearly tapered micro-

columns in conjunction with Bernoulli-Euler beam and modified strain gradient elasticity theory. 

Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads for different taper 

ratios. Some comparative results are presented in graphical and tabular form to show the 

differences between the results obtained by modified strain gradient elasticity theory and those 

achieved by modified couple stress and classical elasticity theories.  

 

 

2. Formulation 
 

The modified strain gradient elasticity theory proposed by Lam et al. (2003) in which contains 

a new additional equilibrium equation besides the classical equilibrium equations and also three 

material length scale parameters besides two classical ones for isotropic linear elastic materials. 

The strain energy U in a linear elastic isotropic material occupying region   based on the 

modified strain gradient elasticity theory can be written by (Lam et al. 2003) 
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where iu , i , ij , i , 
)1(

ijk  and 
s
ij  denote the components of the displacement vector u , the 

rotation vector θ , the strain tensor ε , the dilatation gradient vector γ , the deviatoric stretch 

gradient tensor (1)η  and the symmetric rotation gradient tensor s
χ , respectively. Also,   is the 

symbol of Kronecker delta and ijke  is the permutation symbol. Furthermore, the components of the 

classical stress tensor σ  and the higher-order stress tensors p , )1(
τ  and sm  defined as (Lam et al. 

2003) 
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where l0, l1, l2 are additional material length scale parameters related to dilatation gradients, 

deviatoric stretch gradients and rotation gradients, respectively. Furthermore, λ and G are the 

Lamé constants defined as 
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Using above equations into Eq. (1) with neglecting Poisson’s effect and some mathematical 

manipulations, we obtain an expression for the strain energy U 
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Fig. 1 Geometry and cross-sections of a tapered cantilever micro-column 

 

 

I and A are the moment of  inertia and cross section area of the micro-column, respectively. 

 

 

3. Buckling problem of a tapered micro-column 
 

Consider a tapered micro-column, in which its thickness, h(x), and width, b(x) for rectangular 

cross-section and its diameter, d(x) for circular cross-section, are linearly varied along longitudinal 

direction, as shown in Fig. 1. h(x), b(x) and d(x) can be defined by  

L

x
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where h1, h2, b1, b2 and d1, d2 are the thicknesses, widths and diameters of the micro-column at its 

lower and upper ends, respectively. Eqs. (15a)-(15c) can be rewritten as 
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where α, β and η are called as taper ratios and are given by 

12 /1 hh             (17a) 

12 /1 bb             (17b) 

12 /1 dd             (17c) 

As an instance, if α, β and η are equal to zero, the model will become a uniform beam/column. 

From Eqs. (16a)-(16c), the usual second moment of cross-sectional area for rectangular and 

circular cross-sections can be expressed as 
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Similarly, the cross-sectional area can be written for rectangular and circular cross-sections 
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where superscripts r and c denotes rectangular and circular cross-sections, respectively. Also, I1 

and A1 are the usual second moment of cross-sectional area and the cross-sectional area of the 

micro-column at x=0, respectively. The strain energy U in Eq. (12) can be rewritten for the linearly 

tapered micro-column shown in Fig. 1 as following 
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I(x) and A(x) are the moment of  inertia and cross-section area of the non-uniform micro-column, 

respectively. 

 

 

4. Solution method 
 

The total potential energy of the micro-column is 
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VU               (22)  

whereU  is the strain energy of the non-uniform micro-column and V  is the potential of external 

applied buckling load as 
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where P is an axial tip load and 
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The total potential energy of the micro-column, Π, is rewritten as 
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Applying Rayleigh-Ritz method with assumed trial function w(x) as 
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where ci are constants and fi(x) is the acceptable function which is necessary to satisfy only the 

essential (geometric) boundary conditions, but not required for satisfying the natural (force) 

boundary conditions. For a cantilever beam/column as shown in Fig. 1, the classical boundary 

conditions are 

0)0( w , 0)0( w , 0)( LV , 0)( LM        (27) 

where V and M are shear force and bending moment resultants, respectively. For non-classical 

boundary conditions, two enable boundary conditions are considered at fixed end as 
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and non-classical boundary condition at free end can be written as 
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where M
h
 is higher-order moment resultant. In the present study, two acceptable functions are 

chosen for depending on the above boundary conditions as following 
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Eq. (30a) satisfies all essential boundary conditions in Eqs. (27), (28a) and (29), while Eq. (30b) 
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satisfies all essential boundary conditions in Eqs. (27), (28b) and (29). The stationary points of the 

total potential energy of the micro-column are the solutions which satisfy equilibrium as 

0




ic
, 10,...,2,1i            (31) 

Eq. (31) involves ten linear homogenous algebraic equations with constant coefficients. For a 

non-trivial solution, the determinant of coefficients matrix must be equal to zero. As a result, ten 

roots of this eigenvalue problem can be assessed and the smallest of them indicates the critical 

buckling load. 

 

 

5. Conclusions 
 

In this section, in order to illustrate size effects on buckling behavior of tapered micro-columns, 

some numerical results are provided for linearly tapered micro-columns that subjected to an axial 

concentrated compressive tip load. The micro-column is considered as one end is clamped (at x=0) 

and other end is free (at x=L). The cross-section of the micro-column is both rectangular and 

circular, in which its thickness and width (or diameter) decrease linearly along the longitudinal 

axis, as shown in Fig. 1. For illustration purpose, following material constants and geometric 

properties are taken into consideration: E=1.44 GPa, v=0.38, L=20h1, b1=2h1, d1=h1, l0=l1=l2=l. 

Furthermore, the cases of material length scale parameters l0=l1=0, l2=l
 
and l0=l1=l2=0 represent the 

micro-column model based on modified couple stress theory and classical theory, respectively. 

In the tables and figures, the results that achieved by classical theory, modified couple stress 

theory and modified strain gradient elasticity theory, are represented as CT, MCST, MSGT-1 and 

MSGT-2, respectively and also the results for the cases of rectangular and circular cross section 

are presented respectively in a and b of each figures. It also should be noted that the results of CT, 

MCST and MSGT-1 are obtained by using Eq. (30a) while the results of MSGT-2 are achieved 

from Eq. (30b). Some benchmark results are presented in Tables 1-3.  

 

 

Table 1 Comparison of non-dimensional critical buckling loads,
*

crP  ( 1
2* / EILPP crcr  ) for the case of the 

thickness, h(x), varies linearly while the width, b, is constant along longitudinal axis of the micro-column 

(l0=l1=l2=0, β=0) 

Taper ratio, α Present Wang et al. (2005) Darbandiet al. (2010) 

0 2.4674 2.467 2.47 

0.1 2.2464 2.246 - 

0.2 2.0233 - 2.02 

0.3 1.7977 1.798 - 

0.4 1.5691 - 1.57 

0.5 1.3364 1.336 - 

0.6 1.0985 - 1.10 

0.7 0.8533 0.853 - 

0.8 0.5968 - 0.60 

0.9 0.3215 0.321 - 
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Table 2 Non-dimensional critical buckling loads,
*

crP  for the case of both )(xh  and )(xb  vary linearly 

throughout the micro-column (rectangular cross-section) (α=β=η, l0=l1=l2=l=h1) 

Taper ratio, η CT MCST MSGT-1 MSGT-2 

0 2.4674 13.1952 40.3875 41.5274 

0.2 1.8835 11.3224 35.2055 36.0447 

0.4 1.3093 9.4163 29.8100 30.3868 

0.6 0.7566 7.4384 24.0483 24.4008 

0.8 0.2644 5.2769 17.5125 17.6787 

 

Table 3 Non-dimensional critical buckling loads,
*

crP  for the case of the diameter, )(xd , varies linearly 

along longitudinal axis of the micro-column (circular cross-section) (l0=l1=l2=l=d1) 

Taper ratio, η CT MCST MSGT-1 MSGT-2 

0 2.4674 16.7712 53.0226 54.3880 

0.2 1.8835 14.4642 46.3045 47.3112 

0.4 1.3093 12.1003 39.2868 39.9799 

0.6 0.7566 9.6255 31.7650 32.1895 

0.8 0.2644 6.8886 23.1951 23.3959 

 

 

Non-dimensional critical buckling loads, *
crP  ( 1

2* / EILPP crcr  ), for the case of the thickness, 

h(x), varies linearly while the width, b, is constant along longitudinal axis of the rectangular micro-

column are given in Table 1. The present results are compared with the previous results obtained 

by analytical and approximate methods for demonstrating the validity and suitability of the current 

analysis. It can clearly be said that there is good agreement between the results. It also should be 

noted that when taper ratio increases, this agreement gradually decreases. It is observed from the 

table that non-dimensional critical buckling loads decrease due to the increase in taper ratio. Table 

2 and 3 exhibit that values of the non-dimensional critical buckling loads, *
crP , for the case of both 

h(x) and b(x) or d(x) vary linearly throughout the micro-column for rectangular and circular cross-

sections, respectively. It is remarkable that non-dimensional critical buckling load values predicted 

by non-classical models for circular cross-section are greater than those values for rectangular 

cross-section while the results obtained by classical model equal to each other with the same taper 

ratio. It is also notable that the critical buckling load values obtained by MSGT-2 are bigger than 

those obtained by CT, MCST and MSGT-1. It can easily be said that the micro-column modeled 

by MSGT-1 and MSGT-2 are stiffer than that modeled by CT and MCST.  

The normalized critical buckling loads versus the ratio of the micro-column thickness (or 

diameter) at its bottom end to the additional material length scale parameters for different taper 

ratios are depicted in Fig. 2. From both Fig. 2(a) and (b), it is found that when taper ratio increases, 

the normalized critical buckling loads decrease for constant values of h1/l or d1/l. Furthermore, an 

increase of h1/l or d1/l gives rise to a decrease of the differences between critical buckling loads 

achieved by CT and those predicted by MCST, MSGT-1 and MSGT-2. However, the additional 

material length scale parameters are more significant on buckling behavior for smaller value of the 

micro-column thickness. In other words, when the internal material length scale parameters of 

micro-sized columns are comparable to its thickness, the use of a higher-order continuum theory  
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(a) rectangular (b) circular 

Fig. 2 Normalized critical buckling loads versus the ratio of the micro-column thickness (or diameter) 

at its bottom end to the additional material length scale parameters for different taper ratios 

 

  

(a) rectangular (b) circular 

Fig. 3 Normalized critical buckling loads with respect to various values of taper ratio with different 

h1/l and d1/l 

 

 

becomes required. It can be clearly seen that the results obtained by CT, MCST, MSGT-1 and 

MSGT-2 are nearly equal to each other for higher values of h1/l and d1/l as this ratio is greater than 

20.  

The normalized critical buckling loads with respect to various values of taper ratio with 

different values of the ratio of the micro-column thickness (or diameter) at its bottom end to the 

additional material length scale parameters are plotted in Fig. 3. The figure illustrates that due to 

the increase in the values of h1/l and d1/l also increases the values of normalized critical buckling 

load for same taper ratios. In addition, an increase in taper ratio leads to an increase in differences 

between critical buckling loads predicted by classical and non-classical models. It is remarkable 

that the amount of this increment rises rapidly when taper ratio is greater than 0.7. 
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