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Abstract.   This paper intends to present an application of isogeometric analysis in crack problems. An 
isogeometric formula is developed based on NURBS basis functions - enriched and adopted via X-FEM 
enrichment functions. The proposed method which is represented by the combination of the two above-
mentioned methods, first by using NURBS functions models the geometry exactly and then by defining 
level set function on domain, identifies available discontinuity in elements. Additional DOFs are allocated to 
elements containing the crack and X-FEM enrichment functions enrich approximate solution. Moreover, a 
subelement refinement technique is used to improve the accuracy of integration by the Gauss quadrature 
rule. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and 
accuracy of the proposed method during calculation of crack parameters. 
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1. Introduction 

 

In the past decade, several numerical methods such as finite difference, boundary element and 

meshless methods have been innovated to remove the weaknesses of finite element method such as 

time consuming meshing process of the domain and large number of calculations. Because of low 

rate of convergence, finite difference method can hardly be used in solid mechanics in comparison 

with other methods. Notwithstanding the boundary element method (Cruse 1988) has many 

advantages in modeling discontinuities; we can’t use it in nonlinear problems like plasticity or 

nonlinear geometry. Several meshless methods including element-free Galerkian method (EFG) 

(Belytschko 1994) were developed to remove difficulties of meshing, but those could not model 

the geometry exactly. Also, they have difficulties with integration and imposing boundary 

conditions and lack desired accuracy. 

Dynamic crack propagation is a major challenge in numerical analysis.  Because of the 

singularity existing in the crack tip, we have to use special elements abundantly which make the 

analysis slow. Also, the meshing must be correct to match with the crack propagation. One method 

which is regarded as the advantage of finite element and reduces the above problems is the X-

FEM. This method is the product of using partition of unity in finite element method. The method 

                                                           
Corresponding author, Ph.D., E-mail: saeed.shojaee@mail.uk.ac.ir 



 

 

 

 

 

 

S. Shojaee, M. Ghelichi and E. Izadpanah 

of unity partition was proposed by Melenk and Babuska (1996). Oden et al. (1998), Duarte et al. 

(1998) Used partition of unity in finite element as a Generalized Finite Element Method (GFEM). 

The so-called X-FEM was primarily proposed by Belystchko and Black (1999). In their proposed 

method, discontinuities were modeled as a set of continuous and discontinuous functions called 

enrichment functions. In the proposed model, discontinuity was incompatible with the mesh. Moes 

et al. (1999) represented that we can use generalized Heaviside function to model cracks excluding 

crack tips. 

Dolbow et al. (2001) modeled discontinuities and crack propagation trough frictional contact in 

2D space. Duax et al. (2000) studied branched and intersecting cracks. Sukumar et al. (2001) 

proposed a methodology to model arbitrary holes and material interfaces, coupling the level set 

method with the extended finite-element method. The extended finite element in 3D space was run 

by Moes et al. (2002), Gravoil et al. (2002), Areias and Belystchko (2005). Moving phase 

boundary problems have been modeled by coupling the X-FEM with Level set function by Chessa 

et al. (2002), Ji et al. (2002), Zi and Belystchko (2003), Mergheim et al. (2005) studied cohesive 

crack problems. The Extended Finite Element Method uses the same basis and the same meshing 

method of classical finite element method to represent the geometry.  This method has difficulty 

with modeling complex geometries. To improve modeling accuracy of the geometry and 

subsequently, to produce an accurate analysis, the isogeometric analysis is represented. 

Recently, Hughes et al. (2005) proposed isogeometric analysis to improve the modeling 

accuracy of geometry in finite element method. Bazilevs, Hughes, and co-workers (2008, 2010) 

employed NURBS-based isogeometric analysis for the computation of laminar and turbulent flows 

as well as fluid–structure interaction in (2008, 2009). Hughes et al. (2008) studied the performance 

of NURBS-based isogeometric method for structural dynamics and wave propagation problems 

and proposed the efficient integration method for NURBS-based finite element. The mesh 

refinement and approximation continuity of isogeometric analysis was studied by Cottrell and 

Hughes (2007). Cottrell et al. (2006) also employed the isogeometric analysis in vibration 

problems. Benson et al. (2010) proposed a shear deformable shell formulation based on the 

isogeometric analysis methodology. Echter and Bischoff (2010) analyzed the efficiency and 

locking issues for NURBS-based analysis. The robustness of isogeometric discretizations was also 

investigated by Lipton et al. (2010). More recently, the isogeometric analysis was enhanced by T-

splines with local refinement capability (Bazilevs et al. 2010, Döfel et al. 2010). Cottrell and co-

workers (2009) represented details of isogeometric method. Also, dynamic analysis of fixed cracks 

in composites by the extended finite element method was represented by Motamedi (2010). 

Shojaee and Valizadeh (2012) studied NURBS-based isogeometric analysis for thin plate 

problems. 

The XFEM with Lagrange basis functions cannot model complex geometries perfectly, but in 

isogeometric modeling with NURBS-based functions, it is capable of exact modeling of complex 

geometries and so represents more accurate solution. The XFEM needs classic finite element 

meshing that is considered quite time-consuming in the analysis process. But in isogeometric 

analysis the basic functions and so geometry of the problem have been modeled simply with knot 

vectors and control points. 
 Lately, Benson et al. (2010) introduced a generalized finite element formulation for arbitrary 

basis functions  and combine the XFEM approach to linear fracture analysis with the higher-order 

NURBS based functions of isogeometric analysis. Lucker et al. (2011) presented a formula to 

combine XFEM and IGA and to study the convergence rate and relative error.  
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Table 1 Differences between XFEM and Xisogeometric 

 XFEM Xisogeometric 

Meshing Finite element mesh Knot values in knot vectors 

Geometry Approximate Exact 

Assign variables Node Control point 

Basis functions Polynomials NURBS basis 

Kind of elements Polygon Polygon & Curve 

Crack element integration Triangulation Local refinement 

 

 
In this paper, we propose an isogeometric formulation based on NURBS basis functions 

(Xisogeometric), which have been enriched and adopted via XFEM enrichment functions and 

coupled with level set to solve the problems of fracture mechanics and reduce the weaknesses of 

numerical analysis methods. Several problems with linear and curved cracks are analyzed and then 

the crack propagation angle would be calculated. Some differences between XFEM and 

Xisogeometric are listed in Table 1.
   

 
2. Isogeometric analysis 
 

The traditional finite element formulations is based on interpolation schemes with Lagrange, 

Legendre or Hermite polynomials to approximate geometry, physical field and its derivatives. This 

approach often requires a substantial simplification of the geometry, particularly for curved 

boundaries of the analysis domain. Generally, adaptive refinement of the discretized domain is 

applied to better approximate the boundary and to achieve sufficient convergence. The main idea 

of the isogeometric analysis is to apply the same interpolation scheme that is used accurately to 

describe the geometry for the approximation of the physical variables. Since NURBS-based 

functions have become a standard basis for describing and modeling the geometry in CAD and 

computer graphics, they are used to describe both of geometry and solution spaces.  

 

2.1 NURBS basis function 
 

NURBS are a generalization of piecewise polynomial B-splines curves. The B-spline basis 

functions are defined in parametric space on a knot vector . A knot vector in one dimension is a 

non-decreasing sequence of real numbers 

                      (1) 

Where ξi is the i
th
 knot, i is the knot index, i = 1, 2,…, n+p+1, p is the order of the B-spline, and 

n is the number of basis functions. The half open interval [ξi, ξi+1]
 
is called the i

th
 knot span and it 

can have zero length since knots may be repeated more than one, and the interval [ξi, ξn+p+1]
 
is 

called a patch. In the isogeometric analysis, often open knot vectors are prefered. A knot vector is 

named open if it has p+1
 
repeating knots at the two ends. With a certain knot span, the B-spline 

basis functions are defined recursively as 

 1 2 1
  

 
  , , ...,

n p

127



 

 

 

 

 

 

S. Shojaee, M. Ghelichi and E. Izadpanah 

 

                                               (2) 

 

 

and 

                                      

 

(3) 

 

 

A B-spline curve of order p is defined by 

                                

 

(4) 

 

 

where Ni,p(ξ)
 
is the i

th

 B-spline basis function of order p and T are control points, given in d-

dimensional space R
d
. 1-D B-spline basis functions, built from open knot vectors, are interpolatory 

at the ends of parametric space. Fig. 1 shows the quadratic B-spline basis functions. In two 

dimensional space, B-spline basis functions are interpolatory at the corners of the patches. The 

non-uniform rational B-spline (NURBS) curve of order p is defined as 
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Here Ri,p
 
is the NURBS basis functions, Ti is the control point and wi is the i

th
 weight that must 

be non-negative. In the two dimensional parametric space [0, 1]
2
, NURBS surfaces are constructed 

 

 

 

Fig. 1 Quadratic basis functions for an open knot vector Ξ={0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1.1} 
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by tensor product through knot vectors Ξ={ξ1, ξ2, …, ξn+p+1}
 
and Ψ={ψ1, ψ2, …, ψm+q+1}. It yields 

to 

   

,

, ,

1 1

( , ) ( , )

n m

p q

i j i j

i j

S R T   
 

  (7) 

where Ti,j is the (i, j) -th of n×mcontrol points, also called the control mesh. The interval [ξ1, ξn+p+1] 

×[ψ1, ψm+q+1] is a patch and [ξi, ξi+1) × [ψj, ψj+1)
 
is a knot span.  ,

, ( , )p q

i jR    is the NURBS basis 

function in two dimensional space 

   

, , ,,

,

,

( ) ( )
( , )

( , )

i p j q i jp q

i j

i j

N M w
R

W

 
 

 
  (8) 

and 

   
, , , ,

1 1

( , ) ( ) ( )
n m

i j i p j q i j

i j

W N M w   
 

  (9) 

The derivative of ,

, ( , )p q

i jR    and Wi,j(ξ, ψ) with respect to ξ is derived by simply applying the 

quotient rule to Eqs. (37) and (38) 

, ,
, , , , , , ,
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  

 


  

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(10) 

and 

   

, ,

, ,

1 1

( , ) ( )n m
i j i p

j q i j

i j

W N
M w

  

  

 


 
  (11) 

The domain of problem is divided into patches and each patch is divided into knot spans or 

elements. Patches play the role of sub-domains within which element types and material models 

are assumed to be uniform (Hughes et al. 2005). Nevertheless, many complicated domains can be 

represented by a single patch. 

 

2.2 NURBS based isogeometric analysis formulation 
 

Consider a 2-D linear elasticity problem with the presence of body force b and traction force t . 

Implementing the virtual displacement method, the following weak form equation is obtained 

0
t

T T Td d d  
  

     ε σ u b u t  (12) 

where σ is the stress tensor and ε is the strain tensor. In isogeometric approach, the discretization is 

based on NURBS. Hence, the geometry and solution field are approximated as 

      
( , ) , patch    x RP  (13) 
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( , ) ,h

patch    u Rd
 

(14) 

where  1 1 1 1( , ) , , ,patch n p m q          
         

. The matrix-form of Ri,j 
and Pi,j 

can be 

changed into vector-form by mapping from i, j
 
subscripts to kby 

    ( 1) , with 1,2,..., .k i j n k n m     (15) 

So, the control points are defined as 

                                 1,1 1,1 2,1 2,1 ,( , , , ,..., )x y x y y T

n mP P P P P P
                                              

 (16) 

The values of solution field at the control points, also called control variables, in the IGA 

formulation are displacements and can be arranged similar to the control points in a vector-form 

                                 1,1 1,1 2,1 2,1 ,( , , , ,..., )x y x y y T

n md d d d d d
                                               

(17) 

The matrix R is obtained from NURBS basis functions 

                    

1,1 2,1 ,

1,1 2,1 ,

0 0 ... 0

0 0 ... 0

n m

n m

R R R

R R R

 
  
 

R                            (18) 

Next, the stiffness matrix for a single patch is computed as 

                                   
( , ) ( , )T

patch
t d   


 K B DB J

%

%                                      (19) 

where t is the thickness, % is the parametric space, ( , ) B  is the strain-displacement matrix, and 

J is the Jacobian matrix which maps the parametric space to the physical space. D is the elastic 

material property matrix for plane stress state. The force vector on a single patch in the presence of 

body forces b and traction forces t is obtained as 

                                        

T T

b b
d d

 
   f R b J R t J

% %

% %                                           (20) 

where % is the traction boundary in the parametric space, Rb is the NURBS basis function 

evaluated on the traction boundary and Jb is the Jacobian that maps the traction boundary into a 

part of physical space boundary. The control variables can then be solved by the following 

discretized equilibrium equation 

                                                                     Kd = f                                                                         (21) 

 

2.3 Imposition of essential boundary condition using Lagrange multiplier method 
 

Due to the non-interpolating nature of NURBS basis functions, the properties of Kronecker 

Delta are not satisfied, and as a consequence, the imposition of essential boundary conditions 

needs special treatment. In this study, the Lagrange multiplier method is employed as a scheme for 

treatment of essential boundary conditions. Considering the problem of minimizing the total 

potential energy functional of stress field problem given by 
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11 1

22 2

1
minimize :

2

subject to :

.

.

.

N

T T T

b t

D

D

mm Dm

t d t u f d u f d

g u u on

g u u on

g u u on

  
  

   

  

  

  

  

                           (22) 

where u={ux, uy}
T

 
is the degrees of freedom vector of system, { , }T

i xi yiu u u is the known value 

of displacement on 
Di boundary, and m is the number of Dirichlet boundaries. For the inclusion 

of the constraints into the variational problem, using Lagrange multiplier method, instead of 

seeking the minimum of π subjected to constraints, the Lagrange method seeks the stationary 

points that satisfies Eq. (23) 

1

1
minimize : ( )

2 N Di

m
T T T

ib t i

i

t d t u f d u f d u u d   

   


           (23) 

where λi  is the Lagrange multiplier vector, corresponding to 
Di and is defined by 

ix

i

iy






  
  
  

                                                                       (24) 

Now with approximation of i and ,u exact solution space will transform to approximate solution 

space, 

hu u Rd                                                                      (25) 

where R and d are defined in Eqs. (17) and (18) respectively. Then Lagrange multiplier vector is 

discretized for obtaining matrix form of problem 

1,2....,ii iL i m                                                        (26a) 

1

1

0 0

0 0

i i

nl

i i i

nl

L L
L

L L

 
  
  

                                                  (26b) 

 1 1 ......
T

i i i i
i x y nlx nly                                                  (26c) 

Substituting  Eqs. (25) and (26a) into Eq. (23), we have 

1

1
( )

2
N Di

m
TT T T T T T T

i ib t i

i

td B DB d d td R f d d R f d L Rd u d 

   

                  (27) 
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The required solution of the problem is obtained by setting d    and i    to zero 

1

0

N Di

m
T T T T

ib t i

i

t B DBd d t R f d R f d R L d 
   

                                      (28) 

1,2,....,
Di Di

T T
ii iL R d d L u d i m

 
                                                   (29) 

Then we obtain the system of algebraic equations 

 
0T

dK G f

G q

     
    

         

                                                  (30)   

 where 

TK t B DB d


                                                        (31a) 

 1 ,

Di

T

m i iG G G G R L d


                              (31b) 

 1 ,
T

i

Di

im iq q q q L u d


   
                         

 (31c) 

N

T T

b tf t R f d R f d
 

                                                   (31d) 

                       
 1 2

T

m                                                     (31e) 

 

 

3. The extended finite element method 
 

Extended finite element method increases the accuracy and improves the convergence rate of 

FEM for singular problems. The basic concept of XFEM is to enrich the approximat space so that 

it be capable to reproduce certain features of the problems in particular discontinuities such as 

cracks or interfaces. Although it is a local version of the partition of unity finite element 

enrichment applied only in a certain local subdomain, it strongly relies on the development of 

extrinsic enrichments for crack simulations by a number of meshless methods such as EFG and 

Hp-clouds. Naturally, the first XFEM approximations were also developed for simulation of strong 

discontinuities in fracture mechanics. This was later extended to include weak discontinuity and 

interface problems. XFEM can be assumed to be a classical FEM capable of handling arbitrary 

strong and weak discontinuities. In the extended finite element method, first, the usual finite 

element mesh is produced. Then, by considering the location of discontinuities, a few degrees of 

freedom are added to the classical finite element model in selected nodes near to the 

discontinuities to provide a higher level of accuracy. Thus discontinuity is modeled without being 

considered in mesh explicitly. Assume that x be a point in ¡
2
 (2D space) or ¡

3
 (3D space) in finite 

element model and N be a nodal set of values like as Nel={n1, n2, …, nm}, that m is number of  

132



 

 

 

 

 

 

Combination of isogeometric analysis and extended finite element in linear crack analysis  

J

J '

influence domain

of enriched node J'

enriched

interior node

enriched node

 

Fig. 2 Influence domains of an edge node J and an internal node J’ in an arbitrary finite element mesh 

 

 

nodes in one element, thus enriched approximate displacement for this point is defined as follows 

(Sukumar et al. 2001)  

    

( ) ( ) ( ) ( )

g
I J

h FEM Enr

I I J J

I J
n n

u x u u R x u R x Q x a

  

      
(32) 

 The first term is approximation of classical finite element to determine displacement, whereas 

the second term is enriched approximation to model the effect of existence of any discontinuity. uI 
is vector of nodal DOFs in classical finite element, aJ 

is a set of additional DOFs to modeling 

discontinuity, RI 
is basis function related to node I in classical finite element, Q(x) is a 

discontinuous enrichment function and ϕ
g

 
is a set of points defined as 

      
 : ,g

J J J gn n N       (33) 

ωJ 
is the influence domain of basis function of NJ 

in node nJ, Ωg
 
is the domain depending on 

geometry of discontinuities such as surface or crack tip. Therefore, determination of enrichment 

function Q(x), depends on type of discontinuity. Influence domain for node J is shown in Fig. 2. 

To examine whether the Eq. (32) is an interpolation, the value of the field variable u(x) on an 

enriched node i can be obtained as 

     
( ) ( )h

i i i iu x u Q x a   (34) 

Which means that it is not an interpolation and the nodal parameter ui 
is not the real displacement 

value on the enriched node i. A simple remedy to this shortcoming is to shift the step function 

around the node of interest 

      

 
1 1

( ) ( ) ( ) ( ) ( )

g
I J

n m
h

I I J J J

I J
n n

u x R x u R x Q x Q x a

 

 
 

     
(35) 
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C

A

B

A: Enriched element

B: Non-Enriched element

C: Blending element

 Crack tip enrichment

 Heaviside enrichment

 

Fig. 3 Nodes selection for enrichment in XFEM 

 

 

The enrichment function depending on the kind of discontinuity can change widely. But typical 

enrichment functions used in XFEM are the Heaviside functions, introduced by Krongauz and 

Belytschko (1998). This step function introduces a strong discontinuity in solution space and 

permits cracks to be incompatible with the mesh. The tip enrichment function define in polar 

coordinates (radius and angle), than the crack tip. There have been different approaches for the 

selection of nodes to be enriched by the Heaviside function. The procedure discussed in this 

section is only related to the Heaviside enrichment, and crack tip enrichments are separately 

applied to all nodes of the element that contains the crack tip. Fig. 3 illustrates the procedure of 

node selection for enrichment based on this formulation and also we can find three kinds of 

elements, enriched elements, nonenriched elements and blending elements.  

 

 

4. Combining isogeometric with enrichment functions and level set 
 

By introducing the XFEM enrichment functions in isogeometric analysis method and coupling 

with level set, the advantages of XFEM and isogeometric are combined. Thus, complex 

geometries can be represented exactly. Also, only by considering a few additional DOFs, accurate 

solutions are obtained in problems containing discontinuity or singularity and crack propagating 

problems can be analyzed.  

 

4.1 Control points selection for enrichment 
 

In the proposed method, we primarily select knot vectors and control points in such a way that 

we can be able to model the geometry exactly. Next, by defining level set function in any element, 

it can be determined whether this element splits with the crack or not. Split elements will enrich 

with Heaviside function and elements containing the tip of crack enrich with tip enrichment  
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 Control point

 Crack tip enrichment

 Heaviside enrichment

 

Fig. 4 Control points selection for enrichment in Xisogeometic 

 

 

functions and additional DOFs allocated to control points belonging to these elements. For this 

proposed method, because always ther is at least a discountinuity in the problem, it is better to use 

more control points than what it’s needed for modeling the geometry. In Fig. 4, control points in 

split elements are enriched with Heaviside enrichment function and are marked by triangle. Also, 

control points in crack tip elements are enriched with crack tip enrichment functions and are 

marked by square. 

 

4.2 Crack modeling 
 
4.2.1 Heaviside enrichment 
Crack modeling process consists of two main parts, crack faces and crack tips. The difference 

between these parts in relation to stress is very high around the crack tips but not around crack 

faces whereas the displacement is discontinuous between above and below of crack faces. 

Therefore, it is obvious that it’s essential to use two different types of enrichment functions to 

model these parts 
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1 1 1 1
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(36) 

n is the number of control points, m is  the number of control points in split element, mt1, mt2 are  

the numbers of control points sets associated with in crack tips element 1 and 2, uj
 
is the 

displacement of control points (standard DOFs), ah, bk
1
, bk

2
: are vectors containing additional 

DOFs for modeling tips and faces of crack. H(ξ) is the generalized Heaviside function that is 

positive if x be at the top of crack and otherwise is negative. If en 
be the unit vector normalized to  
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Fig. 5 Normal and tangent unit vector in generalized Heaviside function 
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Fig. 6 Local polar axis defined in crack tips 

 

 

crack direction and es 
be the unit vector tangent to crack direction and x

*
 be the nearest point to x 

(Fig. 6), Heaviside function is defined as 

                                          

1 ;( ). 0
( )

1 ;( ). 0

n

n

x x e
H x

x x e





  
 

                                                   

(37)

  

Additional degrees of freedom are considered for any degree of freedom which is belong to 

elements containing the crack. In a tip free crack, in the influence domain of an element, the 

control points which belong to this element will be enriched via the function Eq. (37). 

 

4.2.2 Enrichment functions near the crack tip 
The enrichment functions near the crack tip play an important role in modeling and calculating 

displacements and stresses especially in near crack tip. Take local polar axes (r, θ) in crack tips 

(Fig. 6), the displacement relations in near crack tip can be defined as 

   2 2cos( / 2)[ 1 2sin ( / 2)] sin( / 2)[ 1 2cos ( / 2)]
2 2 2 2

x

K r K r
u

G G
     

 
        (38) 
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   2 2sin( / 2)[ 1 2cos ( / 2)] cos( / 2)[ 1 2sin ( / 2)]
2 2 2 2

y

K r K r
u

G G
     

 
      

 

(39) 

where KI 
and KII 

are the mode I and II stress intensity factors, respectively 
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and G is shear module and    is 

    

3 4

3

1

for plane strain

for plane stress
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 

 (42) 

where  is Poisson’s ratio. Thus, we need to model the displacement space as well as Eq. (38) and 

Eq. (39). It is needed some functions that span all of possible displacements in these relations. We 

can find and select these functions in Dolbow (1999) 

    

 
4

1
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 (43) 

In these functions (r, θ) are calculated in local coordinates on crack tip. These functions are 

enrichment functions for crack tip. Enrichment is done for elements which crack tip is in their 

influence domain. Therefore, we need four functions to model crack tip. In plane stress and strain 

state, for each control point, we consider two degrees of motional freedom and no rotational 

degree. In each control point that needs the crack tip enrichment we must consider eight additional 

degrees of freedom to represent the effect of four functions in each direction.  An approximate 

solution can then be constructed by blending the classical term and terms enriched with Heaviside 

and tip enrichment functions. The shifting techniques are used to transform approximate solution 

to interpolate approximate solution and more compatibility between enriched and non-enriched 

area 
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(44) 

 

4.3 Numerical element integration 
 

For numerical integration, the standard Gauss quadrature gives poor accuracy in the problems  
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(a) (b) (c)
 

Fig. 7 Integration strategy. (a) initial; (b) almost polar in sub-cells in XFEM; (c) local refinement 

in Xisogeometric 

 

 

with discontinuity or singularity. To overcome this issue, in the XFEM the elements containing the 

discontinuity are subdivided. Subdividing split elements into rectangular elements from crack 

direction and spread Gauss points in subelements and then it may be integrated. The best results 

were obtained by using almost polar integration (Laborde et al. 2005) for the element containing 

the crack tip enrichment. This integration method splits the quadrilaterals into triangles to 

concentrate the Gauss points near the tip and giving a regular distribution of integration points in 

terms of radius and angle (the polar coordinates relative to the tip), Fig. 7(b). 

Generally, in isogeometric analysis, there are curved elements and it is difficult to use 

triangulation for crack element integration. Thus, it is necessary to modify the elements and 

quadrature points to accurately evaluate numerical integrations. An appropriate procedure is 

performed for elements located in crack tip. First, the parametric coordinate of crack tips ( , ) is 

determined using an inverse mapping from physical space. Then, by imposing local refinement to 

crack tip element, it is divided into subelements. Therefore, subelements have the same shape as 

original elements. Finally, spread Gauss points are divided into subelements according to Fig. 8. 

(c). It is essential to mention that these subelements are only generated for numerical integration.  

 

 

5. Stress intensity factor evaluation, k 
 

Knowledge of the displacements, strains, and stresses of a fracture model is useful, especially 

when interpreted by a post-processing program. However, these measures of a model’s response 

consist of large amounts of tabulated data which are difficult to grasp as a whole. Stress intensity 

factors (SIFs) (Griffith et al. 1920, Irwin 1957) condense such data into an easily understood form 

and lend themselves more readily to analyze and design. Numerous techniques have been 

developed to compute SIFs, such as the displacement extrapolation method, the virtual crack 

extension method, and the interaction integral method. In the current work the last method is used. 

Specifically, the domain forms of contour interaction integral. 

The interaction integral consists of superimposing auxiliary fields onto the actual fields 

produced by the solution of the boundary value problem. When the auxiliary fields are chosen in 

the proper form, the general 2D crack tip contour integral may be transformed into the contour 

interaction energy integral 

                                
1 ,1 ,1( )aux aux aux

ik ik j ij i ij i jI u u n d    


   
                                     

(45) 
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Where  aux
iu , aux

ik  and aux
ij  are, respectively, the auxiliary displacement, strain, and stress  fields, 

the domain form of this interaction integral changes the evaluation of a line integral into the 

calculation of an integral over an area. 

1 ,1 ,1 ,( )aux aux aux

ik ik j ij i ij i jI u u q dA    


   
                                   

(46) 

Where q is a smooth scalar weighting function that is unity at the crack tip and becomes zero at the 

edge of the domain area. The interaction integral can be related to the SIFs as follows 

1 1 2 22

2
[ ]

cosh ( )

aux auxI K K K K
E 

 

                                         

(47) 

where auxK1 and auxK2 are the auxiliary SIFs for the chosen auxiliary  fields. With auxK1 =1, auxK2 =0
 

and with I = I1, K1 and K2 can be obtained as 
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(48) 

 
 

6. Crack propagation path 
 

In this paper for predicting the crack propagation angle, the maximum hoop (circumferential) 

stress criterion is utilized. Stresses in this criterion for a crack under mixed mode loading are 

calculated in polar coordinates with the center on crack tip 
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The stress intensity factors in local coordinate system x’ – y’, located in crack direction
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Crack propagation angle is calculated such a way that the value of σθ would be maximum 
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Fig. 8 Local coordinate system located in crack tip and mixed mode loading representation 
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Fig. 9 Geometry of the plate with edge crack 

 
 

So, to predict the crack propagation path, in each step of crack growth, it is quite sufficient to 

calculate stress intensity factors in mode I , II and then with the Eq. (53), the crack propagation 

angle is calculated, (Fig. 8). 

 
 

7. Numerical examples 
 

In this section, the validity and the accuracy of proposed approach are demonstrated. Different 

numerical examples with various conditions are presented. The results obtained by the proposed 

Xisogeometric analysis are also compared with XFEM solutions. 

 

7.1 Tension plate with a hole and edge crack under distributed loading 
 

In this example, a tension plate is considered which has a central hole with two cracks on the 

left and right edge. Because of symmetry, only half of the plate for analyzing is considered as  
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(a) (b)  

Fig. 10 Stress in X direction (a) XFEM (b) Xisogeometric 

 
Table 2 Comparison between results of XFEM and Xisogeometric method 

Method 
Number of 

DOFs 

Maximum of 

displacement 

Maximum of stress 

(in crack tip) 

Stress intensity 

factor 

Time of 

analysis (s) 

XFEM 3600 0.72 674 1.164 267 

Xisogemetric 1800 0.72 682 1.167 28 

 

 

shown in Fig. 9. The left edge is fixed in X direction and other sides are free. The half of the plate 

length is 8 and the width is 4. Also, the radius of hole is 1 and the length of the crack is 2. The 

magnitude of the distributed loading (f) is 100. The comparison between the results of XFEM and 

Xisogeometric in this problem has been represented in Table 2. In Fig. 11, the distribution 

contours of stress in X direction for both XFEM and Xisogeometric is presented. 

From Table 2, it can be concluded that Xisogeometric results are very close to XFEM even if 

the lower number of DOFs were used. The accuracy of Xisogeometric is higher than XFEM and it 

represents the fact that the proposed method for numerical integration in crack elements is 

acceptable. Also, time of Xisogeometric analysis is very lower than XFEM and it is a very fast 

method. 

 

7.2 Plate with a central crack under concentrated loading  
 

The next example refers to a rectangular plate with rigidly fixed bottom edge in the X and Y 

direction under concentrated loading. The length of plate (b) is 10 and its width (L) and thickness 

are 5 and 1, respectively. A horizontal concentrated loading f=100 is applied at the top left corner, 

as shown in Fig. 11. Young’s modulus and Poisson ratio are considered 1500 and 0.25, 

respectively. The length of the crack (a) is 2. The distribution of Gauss quadrature points near the 

crack is shown in Fig. 12.  
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Fig. 11 Geometry of the plate with a central crack 
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Fig. 12 Selection of enrichment and position of Gauss points around the edge crack (a) XFEM (b) 

Xisogeometric 

 

(a) (b)
 

Fig. 13 Displacement in X direction (a) XFEM , (b) Xisogeometric 

 
Table 3 Comparison between results of XFEM and Xisogeometric method 

Method 
Number of 

DOFs 

Maximum of 

displacement 

Maximum of stress 

(in crack tip) 

Stress intensity 

factor 

Time of 

analysis (s) 

XFEM 12800 0.74 387 1.045 288 

Xisogemetric 4000 0.74 382 1.037 34 
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Fig. 14 Modeling of the plate with double internal crack 
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Fig. 15 Displacement in X direction (a) XFEM (b) Xisogeometric 
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Fig. 16 Stress in X direction (a) XFEM (b) Xisogeometric 

 

 

In Fig. 13, the distribution contours of displacement is shown in X direction using XFEM and 

Xisogeometric. In Table 3, remarkable agreements can be observed between results of XFEM and 

Xisogeometric. In order to present the computational efforts involved in numerical simulation, the 

time of analysis also is given in Table 3.  

 

7.3 Plate with double internal crack under distributed loading  
 

In this example, a rectangular plate with rigidly fixed left edge in the X and Y direction under 

distributed loading in plain strain is modeled with Xisogeometric method and XFEM. The length 

of plate (b) is 10 and width (L) and thickness are 5 and 1, respectively. A vertical distributed  
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Fig. 17 Convergence diagram of XFEM and XISO 

 
Table 4 Comparison between results of XFEM and Xisogeometric method 

Method 
Number of 

DOFs 

Maximum of 

displacement 

Maximum of stress 

(in crack tip) 

Stress intensity  

Factor (Average) 

Time of 

analysis (s) 

XFEM 15000 3.14 2561 0.782 303 

Xisogemetric 5000 3.14 2542 0.777 31 

 

 

loading (f) is applied at the top edge as shown in Fig. 14. The magnitude of f is considered 100. 

Young’s modulus and Poisson ratio are considered 1500, 0.25 respectively. The length of the each 

crack (a) and distance between them are 2. 

The distribution contours of displacement and stress in X direction for both XFEM and 

Xisogeometric are shown in Fig. 15 and Fig. 16. 

The accuracy of proposed method in comparison with XFEM is shown in Fig. 18. It can be 

seen from this example in Table 4 that because of the two cracks, Xisogeometric analysis results in 

better time of analysis. Relatively complete agreement can be observed between the XFEM and 

Xisogeometric method in maximum of displacements, maximum of stresses and average of stress 

intensity factors. 

 

7.4 Disk with a hole and curved crack 
 

This example is a tension disk with a central hole and two asymmetric curved cracks on the left 

and right internal edges as shown in Fig. 18. The internal and external radiuses are considered 2 

and 4, respectively. The magnitude of tension loading (f) is 100. Young’s modulus of material and 

Poisson ratio are 1500 and 0.25, respectively.  

In Figs. 20 and 21, the distribution contours of displacement and stress in Y direction using 

Xisogeometric and XFEM are indicated. In Table 5, good agreements can be observed in the 

results from XFEM and Xisogeometric. This example adequately demonstrates the capability of 

the proposed approach in modeling problems with curved cracks. 

144



 

 

 

 

 

 

Combination of isogeometric analysis and extended finite element in linear crack analysis  

f

f

 

Fig. 18 Geometry of the disc with double edge crack 
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Fig. 19 Displacement in Y direction (a) Xisogeometric, (b) XFEM 
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Fig. 20 Stress in Y direction (a) Xisogeometric, (b) XFEM 
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Fig. 21 Convergence diagram of XFEM and XISO 

 
Table 5 Comparison between results of XFEM and Xisogeometric method 

Method 
Number of 

DOFs 

Maximum of 

displacement 

Maximum of stress 

(in crack tip) 
Time of analysis (s) 

XFEM 

Xisogemetric 

14000 

4000 

0.88 

0.88 

2221 

2246 

257 

38 
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Fig. 22 Double cantilever beam with an edge crack 

 
 

It can be seen that the convergence value is 0.88, so the proposed method would reach to this 

value much quicker than extended finite element method. Thus, using the proposed method, crack 

analyzing problems will be done with the minimum number of DOFs and also analysis duration 

will decrease remarkably.   

 

7.5 Double cantilever beam with an edge crack 
 

In this example, a crack in a double cantilever beam propagates in a quasi-static state.  As 

shown in Fig. 22, the geometry and loading specifications are: a=60 mm, b=20 mm, f=1.0×10
5
 N, 

E=3×10
7
 N/mm

2
, υ =0.3. An initial crack with the length of s=20 mm is placed slightly off the 

mid-plane (∆S=0.14 mm). The mixed mode SIFs are computed using the domain form of the  
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Fig. 23 The near crack tip integration domain for SIFs computation 

 
Table 6 Mixed mode SIFs and crack inclination angle in the local crack tip and global coordinate systems for 

each step of crack propagation 

Step KI KII θc(°) α(°) 

1 2032204.81 -5166.41 2.0181 2.0181 

2 300549.35 -7827.18 2.9898 5.0079 

3 312732.60 -9010.08 3.2951 8.3030 

4 328327.78 -15221.38 5.2865 13.5895 

5 344832.20 -26711.72 8.7555 22.3450 

6 369742.88 -30384.36 9.2726 31.6176 

7 408041.16 -46464.16 12.6748 44.2924 

8 491816.86 -61558.34 13.8517 58.1441 

9 563412.67 -47398.67 9.4860 67.6301 

10 760009.40 -51844.11 7.7337 76.3638 

11 939907.63 -36301.03 4.4104 79.7742 

 

80,13

 

Fig. 24 Initial crack path as a red line and crack propagation path as a blue curve 

 

 

interaction integral in a circular domain with radius rj=0.15×s. Fig. 23 shows the selected elements 

for the domain integration in computing SIFs. It should be emphasized that the control points and 

elements distribution are fixed in the whole crack propagation process without any re-meshing. 

To predict the crack propagation path with the Xisogeometric method, eleven steps are 

considered with a crack increment of length 1 mm. The resulting path (Fig. 24) is very similar to 

the crack growth path reported by Sukumar (2003) where XFEM was used to simulate crack 

propagation (without mentioning the exact value of). In Table 6, mixed mode SIFs and crack 

inclination angle is presented in the local crack tip and global coordinate systems. 
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8. Conclusions 
 

The present paper introduced isogeometric modeling of cracks in fracture mechanics. The 

Xisogeometric formulation was developed through implementation of the enrichment functions to 

approximate the displacement fields of elements located on crack tip. A modified technique was 

used for the improvement of the integration accuracy by the Gauss quadrature rule.  

The applicability of proposed formulation was finally demonstrated through several numerical 

examples. The Xisogeometric modeling decreases the time of analysis and can analyze the 

complex geometries with a coarse mesh incompatible with the crack. The simulation of the 

deformation as well as the distribution of stresses was shown and the results were compared with 

those obtained by the XFEM analysis. The results clearly indicate that the proposed method can 

efficiently be used to analyze crack problems and predict the crack path. 
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