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Abstract.   An optimization work was developed in this work to provide design information for sandwich 
beam in civil engineering applications. This research is motivated by the wide-range applications of 
sandwich structures such as; slab, beam, girder, and railway sleeper. The design of a sandwich beam was 
conducted by using analytical and numerical optimization. Both analytical and numerical procedures 
consider the optimum design with structure mass objective minimization. Allowable deflection was 
considered as design constraints. It was found that the optimized core to the skins mass ratio is affected by 
the skin to core density and elastic modulus ratios. Finally, the optimum core to skin mass ratio cannot be 
constant for different skin and core materials. 
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1. Introduction 

 

The use of a sandwich panel has become a popular choice in the construction of structural 

elements due to it robust characteristics and strength. Some core materials such as the balsa wood 

and lightweight foam core are soft, and it may be crushed under compression load. Others such as 

honeycomb and trussed-core structure have a high compressive strength but low capacity to hold 

mechanical connections. Skin material has high density, high elastic modulus, and high strength 

than core material. In most applications, skin materials are either metal (steel or aluminum) or FRP 

composite (carbon or glass fiber) (Awad and Yusaf 2012). Recently, a fiber composite sandwich 

panel was developed for civil engineering applications with high core density (850 kg/m
3
) (Awad 

et al. 2012). In this fiber composite panel the ratio of skin to core density is around 2. The flexural 

strength of the sandwich panel depends on the composite action between the skin and the core. 

The separation desistance between them is one of the most significant parameters (Hollaway and 

Head 1999, Awad et al. 2012).  

Economic and lightweight structure design is an important goal for the designer. Many methods 

have been used to find the optimum design of fiber composite structures in different applications. 

Most of the optimization methods are service with continuous design variables. Civil engineering 

structural design involves selection of design variables that satisfy requirements of the practical 

codes. In general, these variables are discrete for most practical civil engineering problems. All 
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optimization techniques try to find the global optimum design and avoid local optimum solution. 

The selected design optimization method might be the right choice to find an economic, 

lightweight and serviceable structure. The designer has to adopt design variables such as 

dimensions, external applied load, and serviceability requirements. In addition, design constrains 

are an important part in the design. Constraints could be in the form of internal stresses and 

deformation (Awad et al. 2012). 

Froud (1980), Li et al. (2011) found that the optimum bending stiffness design is located in the 

point where the core mass is equal to four times the skin mass. Both assumed that the core elastic 

modulus is very low, and it can be neglected. In addition, they assumed that the skin thickness is 

very small compared to core thickness, and it can be neglected as well. 

Optimization techniques have been applied to the design of the sandwich panel by the number 

of researchers (Ashby 2000). Theulen and Peijs (1991) for example, presented an optimization of 

strength and stiffness of a sandwich panel. Their research concluded that the maximum bending 

stiffness occurred at a core to skin mass ratio equal to 2. Walker and Smith (2003) presented a 

multi-objective design optimization of fiber composite structure coupling using FE and genetic 

algorithms (GA). They found that the mass and deflection as a multi-objective could be optimized 

by the GA to suit the design engineer’s requirements. Hudson et al. (2010) presented an 

optimization of sandwich panels using an Ant Colony Optimization method. The procedure was 

applied in the design of rail vehicle floor panel. The variables considered included: facing 

thickness, core thickness, core material, facing material and span (Awad et al. 2010).  

It can be noted from the literature that the previous analytical works assumed that the density 

and elastic modulus of skin part are very high compared to core part (Froud 1980, Li et al. 2011). 

In present work, the analytical solution was found and compared with numerical solution. Both 

solutions considered the effect of skin and core material properties on the optimization results. 

Current research was motivated by the new material’s application in sandwich structures. The skin 

and core materials used in these panels have a density lower than metals and higher than the wood 

and foam cores. Previous works avoid the effect of skin to the core elastic modulus ratio and the 

skin to the core density ratio. In addition, this work focuses on the allowable mid-span deflection 

limit as an important constraint in the design optimization of civil engineering structures. 

In the following, the three point-bending problem and design methodology are explained. 

Analytical solution is presented with the finding and discussion. Then, it is followed by the GA 

numerical optimization for the same problem. Finally, the major finding is summarized in the 

conclusion section.  

 

 

2. Problem description and design methodology 
 

This work considers a single objective optimization to design sandwich beam. The beam 

structure is assumed to be simply supported in three points bending as shown in Fig. 1. The 

sandwich element is made of top skin, bottom skin, and core material. The top and bottom skins 

usually made from stronger and heavier material than core part. The beam has a span (L) and 

single point load at the center. The total applied service load (P) on the beam as shown in Fig. 1. 

The optimization problem is formulated as follows: 

Objective 

                                                                        (1) 
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Fig. 1 Sandwich beam 

 

 

Variables 

                                                                            (2) 

Subject to the constraints 

                                                                       (3) 

The analytical design methodology was developed based on simple flexural and rigidity 

equations. Numerical design used a Genetic Algorithm (GA) method coupled with the Finite 

Element (FE) method. Through the design optimization, material’s density and elastic modulus 

were changed to cover a wide range of sandwich panel applications.  

 

 

3. Analytical mass design optimization 
 

The previous studies used the sandwich beam rigidity equation to find the best core and skin 

thickness with minimum mass. The solution of the bending stiffness equation, and the mass 

equation of the sandwich beam gives values for core and skin thickness (Allen 1969, Araújo et al. 

2009). Murthy et al. (2006) verified Froud’s (1980) research findings by using experimental tests 

on a sandwich beam. Murthy et al. found that Froud’s findings are valid for honeycomb core 

sandwich panels. However, Murthy et al. showed their finding for one type of skin material 

combined with one type of core material. 

Previous studies assumed that the core to skin elastic modulus ratio is very high, and the skin to 

core thickness ratio is very small (Froud 1980, Murthy et al. 2006). The elastic modulus ratio of 

43.75 was used in Li et al. (2011) work. The present procedure adds the deflection equation for the 

simply supported beam and considers the effect of skin to the core elastic modulus to find the 

optimum mass designs of the sandwich. In addition, the maximum allowable deflection is 

considered in the beam design for civil engineering applications. The bending stiffness (EI) is 

calculated by assuming there is full interaction between the skin and core (Froud 1980). The 

procedure for the single objective minimization is described by Eqs. (6) - (15) below 

  
   

     
                                                                   (6) 

where, δ is the mid-span deflection, P is the load, L is the span, and EI is the bending stiffness.  
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Allowable mid-span deflection is equal to 

  
 

 
                                                                       (7) 

where, B is a factor between (250-800) depends on the structure serviceability requirement. 

From Eqs. (6) - (7), the following equation can be found 

                                                                         (8) 

  
 

  
                                                                      (9) 

Bending stiffness is calculated from the following equation 
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)
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                                 (10) 

where, b is the width, Es and Ec is the skin and core elastic modulus respectively. 

The term (b.t
3
/12) is very small and can be ignored from Eq. (10). Substituting EI from Eq. (8) 

into Eq. (10) leads to the equation of skin thickness 

  *
     

    
  

   

   
+                                                            (11) 

 

2.1 Mass objective: 
 

The mass (M) equation is shown below 

                                                                    (12) 

                                                                       (13) 

Substituting Eq. (11) into Eq. (13), and minimizing the mass with respect to c we obtain 

  

  
             * 

    

      
  

   
+                                      (14) 

Simplifying Eq. (14) leads to the optimum value of c 

  [
      

 (  
  
  

   
  
 
)
]

   

                                                      (15) 

From Eqs. (11) and (15), designer can find the optimum solution for the design of the sandwich 

beam under mass minimization. The using of the above equations required material’s properties of 

the skin and core components of the sandwich beam. In addition, allowable mid-span deflection 

factor (b) must be known.  

The effect of the beam span was investigated using the present optimum solution Eqs. (9) and 

(15). Beam span was varied between (100-600 mm). The allowable deflection factor (b) was 

assumed equal to 400, and the external applied load is 400 N. The results of the optimum design 

are shown in Fig. 2 for core to skin density ratio equal to 2.0 and skin to core elastic modulus ratio 

equal to 30.  It can be seen from the results that the relationship of span, skin and core thicknesses 

are approximately linear. In addition, this relation was control by the allowable deflection-span 

relation Eq. (7). Furthermore, the skin and core thickness results are influenced by the change in 

(b) value. 
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(a) Core thickness (b) Beam thickness 

Fig. 2 design results of different beam spans (density ratio = 2.0, elastic modulus ratio = 30) 

 

 
Fig. 3 Effect of mechanical properties on core to skin mass ratio 

 

 

Sandwich beam usually made from a combination of different materials for the skin and core 

parts. These materials have different properties such as density and elastic modulus. The effects of 

material’s mechanical properties of skin and core on the design results were studied in this part 

using above Eqs. (11) and (15). Both equations depend on the material’s mechanical properties to 

calculate the optimum skin and core thicknesses for mass minimization. Effect of skin elastic 

modulus (Es) to core elastic modulus (Ec) ratio on the core to skin thickness ratio was investigated. 
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Wide range of (Es/Ec) ratio was used, and it was between 2.5 to 30. In addition, the effect of skin 

density (Ds) to core density (Dc) was investigated, and the ratio range was between 1.0 to 8.0. 

The results of mechanical properties affect are shown in Fig. 3. It can be seen that the core to 

skin ratio is presented with the elastic modulus ratio and density ratio. The core to skin ratio shows 

a non-linear behavior. The core to skin ratio increases when the skin to core elastic modulus ratio 

decreases. The graph shows that the behavior of core to skin ratio becomes approximately linear 

for the high values of the skin to core elastic modulus ratio. Froud (1980) and Li et al. (2011) 

solutions are presented on Fig. 3 as well, and these solutions consider that the skin to the core 

elastic modulus ratio is very high. Therefore, their findings were indicated that the core to skin 

thickness ratio is constant. On the other hand, it can be seen that the density ratio has a big effect 

on the optimum core to skin results. The optimum core to skin mass ratio increases with the 

increasing of the skin to the core density ratio. The present solution proves that the optimum core 

mass to skin mass becomes constant in different stages based on the elastic modulus ratio (Es/Ec). 

It can be seen in Fig. 3, the core mass to skin mass is constant for the range of (Es/Ec) is higher 

than 15 and density ratio equal to 1.0. In comparison, the core mass to skin mass is constant for the 

range of (Es/Ec) is higher than 25 and density ratio equal to 8.0.  

 

 

4. Numerical mass design optimization  
 

Optimum design of a GFRP sandwich beam is important to avoid any material waste and to 

obtain an economic product (Simoes and Negrão 2005). There are a number of studies discuss the 

optimization of an individual sandwich panel to optimize the cost or mass, and strength (Swanson 

and Kim 2002, Murthy et al. 2006, Meidell 2009). The optimization of the bending stiffness has 

been studied either with the minimum mass or minimum cost to find the best values of the core 

and skin thicknesses for a certain bending stiffness (Froud 1980, Gibson 1984). 

Genetic algorithm (GA) is an efficient method for the optimization, which is based on a 

stochastic approach and relies on a survival of the fittest in the natural process. In the last few 

decades, GA has been widely used for structural design optimization due to its capability to deal 

with complicated and large variable problems. The principle of GA depends on the concept of 

natural selection and natural genetics. The basic idea of the GA is to generate a group of design 

variables randomly within the allowable values of each variable. Two features can be noticed in 

the GA; the first is the stochastic algorithm. This means that the random procedure is essential in 

both selection and reproduction (Falzon and Faggiani 2012). The second is the GA always remains 

all the population of solution in its memory. This allows it to recombine between different 

solutions to find the best one. Robustness makes the GA a great optimization tool and is essential 

for the algorithm success. It gives the method the ability to deal with different type of problems 

without particular requirements for use of the GA. 

This work considers the optimization design of a sandwich simply supported beam with the 

mass minimization objective. The main objective is to minimize the mass while satisfying the mid-

span allowable deflection. The design methodology will explore the effect of; the thicknesses of 

the sandwich beam components at service load, the optimum core to skin mass ratio for the 

sandwich beam, elastic modulus and density ratios of the core to skin. The Genetic Algorithm 

(GA) (Awad et al. 2012) was coupled with ABAQUS, and it was used in the optimization. 

A two dimensional (2D) finite element (FE) model was developed for the simulation of the 

sandwich beam. A 2D plane stress element (CPS8R) was used in the skin and core parts. Total  
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Fig. 4 Scatter chart of mass and cost of the sandwich beams 

 

 

Fig. 5 Scatter chart of mass and total thickness of sandwich beams 

 

 

elements are 384 for core part, and 194 elements for skin part. The behavior of the core and skin 

materials is assumed elastic. In addition, full bond was assumed between core and skin, and no slip 

was allowed. 

The allowable deflection at service load is equal to span/400, and same boundary conditions 

were used as in analytical design. The scatter chart of total mass and core to skin ratio is shown in 

Fig. 4. It can be seen that the mass of the beam decreases as the core to skin ratio increases. In 

addition, the scatter chart of the total beam thickness and the beam mass is presented in Fig. 5. It 

shows how the beam thickness effect on the mass and the mid span deflection of the beam. GA 

optimization solution shows the distribution of design iterations with the Pareto-Frontier as shown 

in Fig. 4. The Pareto-Frontier explains the trade-off between the beam mass and core to skin  

Pareto-Frontier 
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Fig. 6 Numerical optimization results 

 

  
(a) Core to span relation (b) Skin to span relation 

Fig. 7 Comparison between analytical and numerical design results of different beam spans (density 

ratio = 2.0, elastic modulus ratio = 30) 

 

 

thickness ratio. The design solutions with maximum allowable deflections are located on the 

Pareto-Frontier. 

Material mechanical property effects were investigated on the optimum design of the sandwich 

beam. Core to skin elastic modulus and skin to the core density ratio were studied.  Both ratios 

showed a significant effect on the optimum core to skin mass design. The results are shown in Fig. 

6. The numerical optimization showed that the optimum core to skin mass is not constant. 

Comparing the results of Figs. 3 and 6 shows that the numerical results are different than the 

analytical results. The analytical results showed that the core to skin mass ratio is approximately 

constant for the elastic modulus ratio more than 25, and the values of optimum core to skin mass 
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ratio are between 3 to 4 for core to skin density ratio less than 4. Whereas, the numerical design 

showed a large difference between different Core to skin density ratios. The difference is attributed 

to one reason; the analytical solution uses the bending equation while the numerical optimization 

uses the FE method in the analysis of finding the mid span deflection. Finally, both analytical and 

numerical solutions proofs that the designer cannot ignore the contribution of the core density and 

core elastic modulus to the design results. 

From analytical and numerical designs, it can be seen clearly that the analytical solution gives 

higher core to skin mass ratio compare to the numerical solution. The numerical optimization 

shows a core to skin mass ratio around 3.5 for high elastic modulus ratio and density ratio equal to 

1.0. In comparison, the numerical optimization shows that the core to skin mass ratio is below 1.0 

for a high elastic modulus ratio. On the other hand, the difference between the analytical solutions 

for becomes low compare to the numerical solutions in the high elastic modulus ratio. 

The span effect was studied numerically as well, and the results are shown in Fig. 7. This figure 

confirms that the relation between skin thickness, core thickness and span of the beam is 

approximately linear. The numerical solution shows a lower core thickness than the analytical 

solution as shown in Fig. 7(a). In addition, it shows higher skin thickness than the analytical 

solution as shown in Fig. 7(b). Furthermore, the core to skin mass ratio of analytical solution is 

higher than the numerical solution. The reason behind this is the FE method was used in the 

numerical optimization while the flexural equation was used in the analytical solution. In addition, 

there is no approximation in the numerical design optimization calculations. Furthermore, finding 

design variables (core and skin thicknesses) in analytical optimization depends on simplified 

equations and in the numerical optimization depends on GA method. It is expected that using FE 

method allows considering the shear deformation effect in the numerical solution. 

 

 

5. Conclusions 

 
The paper discussed the optimum design of beam using analytical and numerical optimization 

methods. The analytical optimization shows a core to the skin mass ratio is non-linear, and its 

behavior is influenced by the material’s mechanical properties. Both skin to the core elastic 

modulus and density have a big effect on the optimum core to skin mass ratio. The optimum 

analytical and numerical designs confirm that the core to skin mass ratio is not constant as it was 

mentioned throughout the literature. The analytical optimization shows a higher core to the skins 

mass ratio when compared with the one obtained by numerical optimization. Finally, this work 

showed that core elastic modulus, and density should be considered in the design optimization.  
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