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Abstract.   Metallic annular discs with their outer boundary fully constrained are studied with newly derived 
semi-analytical solutions for the effects of thickness variations under thermal loading and unloading. The 
plane stress and axisymmetric assumptions were adopted, and the thickness of the disk depends on the 
radius hyperbolically with an exponent n. Furthermore, it is assumed that the stress state is two dimensional 
and temperature is uniform in the domain. The solutions include the elastic, elastic-plastic and plastic-
collapse behavior, depending on the values of temperature. The von Mises type yield criterion is adopted in 
this work. The material properties, Young’s modulus, yield stress and thermal expansion coefficient, are 
assumed temperature dependent, while the Poisson’s ratio is assumed to be temperature independent. It is 
found that for any n values, if the normalized hole radius a greater than 0.6, the normalized temperature 
difference between the elastically reversible temperature and plastic collapse temperature is a monotonically 
decreasing function of inner radius. For small holes, the n values have strong effects on the normalized 
temperature difference. Furthermore, it is shown that thickness variations may have stronger effects on the 
strain distributions when temperature-dependent material properties are considered. 
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1. Introduction 

 

A metallic thin disk under thermal loading and unloading is of particular importance in 

engineering design. Under cycling loading, residual stress may accumulated in the material, 

causing pre-mature failure (Withers 2007). Continuum level modeling requires a choice of 

constitutive relationships. Various plasticity models have been proposed, and they can be viewed 

as plasticity theorems with different definition of internal variables (Horstemeyer and Bammann 

2010). Popular models, such as the Tresca and von Mises yield criterion, are widely adopted in the 

theoretical and numerical studies to model the mechanical behavior of materials beyond elasticity.  

In this work, we adopt the von Mises yield criterion for its superiority in modeling metal plasticity. 

In the literature, Thompson and Lester (1946) studied the stress in rotating disks under high 

temperatures. Vivio and Vullo (2010) studied residual stresses in rotating disk having the 
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hyperbolic profile for estimating its service life under overspeeding. In addition, the thermal yield 
of a rotating hyperbolic disk is discussed (Alujevic et al. 1993). The elastic-plastic stress analyses 
have been conducted in rotating disks without considerations of elevated temperature and 
thickness variations (You and Zhang 1999, Rees 1999, Gamer 1984). Orcan and Gamer (1994) has 
also investigated the growth of plastic regions in annular discs with a shrink fit assemblage. 
Furthermore, Lenard and Haddow (1972) solved the plastic collapse of rotating cylinders with the 
plain strain assumption. Alexandrov et al. (2012) studied residual stresses and pressure 
dependence on the yield criterion in a thin disk. In addition, anisotropic effects in rotating disk 
have been analyzed with inclusions of plastic deformation (Alexandrova and Alexandrov 2004). 
As a closely related research area, Zimmerman and Lutz (1999) studied the thermal stresses in 
functionally graded material under uniform heating. 

Most aforementioned studies in the past do not consider material properties depending on 
temperature. Temperature-dependent (TD) material properties are important in analyzing the 
thermal stresses in materials (Noda 1991, Argeso and Eraslan 2008). Neglect of the effects of 
material properties being functions of temperature may lead to catastrophic failures in engineering. 
Considerations of temperature-dependent yield strength are widely conducted in the literature 
(Lippmann 1992, Kovacs 1994, Bengeri and Mack 1994), since the yield strength is a somewhat 
more sensitive material property when varying temperature. All of these solutions involve 
intensive numerical treatment, as well as the Tresca yield criterion is adopted. However, none of 
these works deals with the system of loading and constraints studied in the present paper. 
Furthermore, in this work, we develop analytical solution with considerations of all material 
properties to be temperature dependent, except for Poisson’s ratio, in the framework of the von 
Mises yield criterion for elastic-perfectly plastic materials.  

In addition, Eraslan (2003) studied the rotating disk with rigid inclusion and nonlinear 
hardening variable thickness has been studied for its plastic stresses with von Mises yield criterion. 
With similar ideas, the disk under external pressure has been analyzed (Eraslan et al. 2005). In 
addition, solid disks under concave profiles under rotation have been investigated (Eraslan and 
Orcan 2002). Furthermore, Eraslan has investigated annular disks with various boundary 
conditions under rotations. In addition to annular disks, elastic-plastic stress in a disk containing a 
rigid inclusion has been analyzed (Güven 1998). And, Güven and Altay (1998) has also studied 
the hardening of a solid disc with confined outer displacement under uniform heating. 

Theoretical developments in the annular disk problem under various loading and boundary 
conditions with different material models have long been conducted to better predict the 
mechanical behavior of the disk. However, most of the approaches in the literature do not provide 
analytical solutions for the combined effects of temperature-dependent (TD) material properties 
and thickness variations. Hence, in this work, analytical solutions, that include the temperature 
dependent material properties and hyperbolic thickness profiles, are derived under the plane stress 
assumption with the von Mises type yield criterion. The exact solutions developed here may be of 
use in benchmark tests for future numerical studies. 
 
 
2. Theoretical 
 

In this section, the preliminary setup of the mathematical derivation is described in Section 2.1. 
Subsequently, Section 2.2 contains the elastic solution, Section 2.3 the elastic/plastic stress 
solution, and Section 2.4 the elastic/plastic strain solution. Finally, in Section 2.5, solutions for 
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Fig. 1 Schematic of the annular disk (blue) with the inner radius a0 and outer radius b0, fully 
constrained at the outer boundary (thick black) 
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Fig. 2 Thickness profile calculated from Eq. (1) 
 
 

fully plastic deformation are presented at high temperatures.   
 
2.1 Mathematical setup 
 
It is assumed that the initial thickness (before loading) of the disk varies according to the 

equation 

h  h
0

r

a
0








n

,                                                            (1) 

where h0 is the thickness at the inner rim, r = a0, and h the thickness at the outer rim, r = b0 , of the 
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thin hollow elastic-plastic disc, as schematically shown in Fig. 1. The disc is inserted into a rigid 
container of radius b0, which provides complete displacement confinement, and subjected to 
thermal loading by an uniform temperature field throughout the disc. The exponent n is a 
parameter to control the thickness profile of the disc.  A graphical demonstration of the effects of 
the exponent n, with respect to normalized radius  = r/b0, is shown in Fig. 2, with the assumption 
of a = a0/b0 = 0.3. We remark that when r = a0, h/h0 = 1, regardless of n. It can be seen that for n = 
0 the disc has a uniform thickness everywhere. For n > 0, the thickness close to the disc center is 
smaller, and vice versa.  

The disc has no stress at the initial instant. The increase in temperature from its initial value, T, 
and the constraints imposed on the disc affects the zero stress state. It is natural to introduce a 
cylindrical coordinate system (r, θ, z) with its z- axis coinciding with the axis of symmetry of the 
disc. Symmetry dictates that the normal stresses in this coordinate system, σr, σθ  and σz, are the 
principal stresses and the circumferential displacement vanishes everywhere. The radial 
displacement is denoted by u. It is supposed that the state of stress is plane (σz = 0) and the strains 
are infinitesimal. Plastic yielding is controlled by the von Mises yield criterion. In the case under 
consideration this criterion can be written as 

2 2 2
r r Y        ,                                                       (2) 

where Y  is the yield stress in uniaxial tension. The classical Duhamel-Neumann law is adopted. 

In particular, the elastic portions of the total strains are related to the stresses as  

 
, ,e e e rr r

r zE E E
 



       
 

    ,                           (3) 

where E is Young’s modulus and   is Poisson’s ratio. The thermal portions of the total strains are 
given by  


r
T  

T  
z
T T  ,                                                      (4) 

where  is the coefficient of linear thermal expansion in units of meter per meter and per ˚C, or 
1/˚C. The total strains in plastic regions are 

, ,T e p T e p T e p
r r r r z z z z                          ,                      (5) 

where ,p p
r    and p

z  are the plastic portions of the total strains. In the case under consideration, 

the total radial and circumferential strains are 

,r

u u

r r 
 


 ,                                                       (6) 

The flow theory of plasticity is adopted. Therefore, the associated flow rule connects stresses 
and strain rates rather than strains. Since the strains are infinitesimal, the components of the strain 
rate tensor are obtained as the local time derivatives of the corresponding components of the strain 
tensor. However, since the material model is rate-independent, these time derivatives can be 
replaced with the corresponding derivatives with respect to any other monotonically increasing 
parameter. Denote this parameter by p. Then, 
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, , ,

, , ,

, , .

r z
r z

e e e
e e er z
r z

p p p
p p pr z

r z

p p p

p p p

p p p










    

    

    

  
  
  

  
  
  

  
  

  

                                        (7) 

The associated flow rule gives 

     2 , 2 ,p p p
r r r z r                     ,

                     
(8) 

where λ ≥ 0. It is supposed that σY, E and γ are dependent of temperature whereas ν is not. 
Temperature-independent (TI) Poisson’s ratio is a reasonable assumption for many materials 
(Noda 1991). The temperature-dependent properties are represented as 

E  E
0

f
E

T ,  
0

f T , 
Y


0
f T  ,                                 (9) 

where E0, α0, and σ0 are constants whereas fE(T), fα(T), and fσ(T)
 
are prescribed functions of T. 

With no loss of generality, it is possible to put fE(0) = fα(0) = fσ(0) = 1. 
It is convenient to introduce the following dimensionless quantities 

0

r

b
       and     0

0

a
a

b
 .                                                   (10) 

Using (1) the only non-trivial equilibrium equation is 

 1r
rn 

  



  


 .                                                  (11) 

The boundary conditions are 

0r  ,                                                                (12) 

for ρ = a and u = 0 for ρ = 1. It is evident from (6) that the latter is equivalent to 

0   ,                                                                (13) 

for ρ = 1.  
 

2.2 Elastic solution 
 
In the following, the elastic solution and the initiation of plastic yielding are developed. In the 

case of axisymmetric plane stress problems the general thermo-elastic solution is 

   1 2 1 2
1 2, 1 1r

Y Y

A B A n B n         
 

       
  

.
                

(14) 

843



 
 
 
 
 
 

Yun-Che Wang, Sergei Alexandrov and Yeau-Ren Jeng 

   

   

   

1 2

1 2

1 2

1 2

1 2

1 2

1 1 1 1 ,

1 1 ,

2 2 .

r

z

A n B n
k

A n B n
k

A n B n
k

 

 

 

       

       

      

              

        

         

                    (15) 

where A and B are constants of integration and 

k 


Y

E
,   T

k
,


1
  1

n

2








1

2
2  n 2

 4n 1 ,


2
  1

n

2








1

2
2 n 2

 4n 1 

                                    (16) 

When the entire disc is elastic, A and B are determined from (12) and (13) as 

   

   

2

2 1

1

2 1

1 2

1 2

,
1 1

.
1 1

e

e

a
A A

n a n a

a
B B

n a n a



 



 


   


   

  
      

 
      

                           

(17) 

Substituting (14) at ρ = a into (2) and using (17) it is possible to find the value of τ corresponding 
to the initiation of the plastic zone as 

   
 

2 1

1 2

1 2

1 2

1 1
e

a n a n

a a

 

 

   


 
      




.                               (18) 

Then, substituting (17) and (18) into (14) yields the following value of the stress σθ at ρ = a and τ 
= τe 

Y   .                                                              (19) 

 
2.3 Elastic/plastic stress solution 
 
As for the elastic/plastic stress solution, the yield criterion (2) is satisfied by the following 

substitution 

2sin sin
, cos

3 3
r

Y Y

    
 

      ,                                   (20) 

where ψ is a new unknown function of p and ρ. The plastic zone propagates from the hole toward 
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to outer rim. Therefore, the stresses given in (20) must satisfy the boundary condition (12), and 
substituting (20) into (11) gives 

 2 cos 3 cos 1 2 sin 0n
   



   


.                                  (21) 

Using (12) and (19) it is possible to find from (20) that ψ = 0 at ρ = a. Solving (21) with the use of 
this boundary condition results in 

 
 

 

2

2

1 23
exp cos sin ,

2 1 3

1 2

2 1

n

a n n

n

n n


   



   
        


 
 

                           

 (22) 

Let ψc be the value of ψ at the elastic/plastic boundary, ρ = ρc. Then, it follows from (22) that 

 
 

2

1 23
exp cos sin

2 1 3
c c

c c

n

a n n


   

   
        

.                          (23) 

Both σr and σθ are continuous across the elastic/plastic boundary. The distribution of the stresses in 
the elastic zone is given by (14). Then, combining (14) and (20) results in 

A
c

 1  B
c

 2  
2sin

c

3
,

A 1 n 
1 c

 1  B 1 n 
2 c

 2  
sin

c

3
 cos

c
.

                      (24) 

These equations along with (23) are used to express A and B in terms of ψc as 

 

 

1

2

2

2 1

1

2 1

3 cos 1 2 2 sin1
,

3

3 cos 1 2 2 sin1

3

c c
c

c c
c

n
A

n
B





  


 

  


 





   
  

  
   

   
                                

 (25) 

Here ρc should be eliminated by means of (23). Combining the boundary condition (13) and the 
solution (15) for εθ gives 

   1 21 1n A n B             .                                    (26) 

Eliminating A and B in (26) by means of (25) leads to 
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  
1 n  

1 
3

3cos
c
 1 2n  2

2 sin
c


2


1














c

 1 

                     
1 n  

2 
3

3cos
c
 1 2n  2

1 sin
c


2


1














c

 2

.               (27) 

The entire disc becomes plastic when ρc = 1. The corresponding values of ψc and τ are denoted 
by ψp and τp, respectively. The equation for ψp follows from (23) as 

 
 

2

3 1 2
1 exp cos sin

2 1 3
p

p p

n
a

n n


 

   
        

 .                         (28) 

The value of τp is determined from (27) at ψc = ψp 
as  

   

   

21

2 1

12

2 1

3 cos 1 2 2 sin1

3

3 cos 1 2 2 sin1
                                

3

p p
p

p p

nn

nn

   


 

   
 

     
   

  
     

  
  

.          (29) 

The normalized temperature is defined as follows to measure the difference between elastic-
reversible and plastic-collapse temperatures. 

 
Tp Te

T
e

.                                                             (30) 

When T < Te, purely elastic responses can be obtained when the thermal loading is removed. When 
T = Tp or T > Tp, the whole disc is plastically deformed. The normalized temperature indicates the 
range of temperature for the disc to go from purely elastic deformation (T = Te) up to plastic 
collapse (T = Tp).  
 

2.4 Elastic/plastic strain solution at e p     (or 0 c p   ) 

 
Consider the plastic zone. Eliminating λ in Eq. (8) and using Eq. (20) yield 

   2cos 3sin cos , 2cos cos 3sinp p p p
r z            

          
(31) 

or 

2cos


r
p

p
 3sin  cos  

p

p
, 2cos


z
p

p
  cos  3sin  

p

p
.      (32) 

It is evident from Eq. (22) that ψ is independent of p. Therefore, the above equations can be 
readily re-written as  
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   2cos 3 sin cos , 2cos cos 3sinp p p p
r z             .           (33) 

This solution satisfies the condition that all the plastic strains vanish simultaneously. In particular, 
it is evident that the condition that all the plastic strains vanish at the elastic-plastic boundary is 
equivalent to the condition that one of these strains vanishes. It is seen from Eq. (31) and Eq. (33) 
that there is no difference between the deformation and flow theories of plasticity in the case under 
consideration. It follows from Eq. (6) that the equation of strain compatibility is 

r         . Using Eq. (4) and Eq. (5) this equation transforms to 

e p
e p e p
r r

 
 

      
 

 
    

 
.                                          (34) 

Substituting Eq. (20) into Eq. (3) gives the elastic portion of the strain tensor in the form 

   

 

2 1 2
cos sin , cos sin ,

3 3

cos 3sin .

e e
r

e
z

k k

k



 
      

   

    
       

   

 
              

(35) 

Substituting Eq. (33) and Eq. (35) into Eq. (34) and replacing differentiation with respect to ρ with 
differentiation with respect to ψ by means of Eq. (21) yield 

 
 

 

 
   

 
 

3 sin 3 cos
,

3 cos 1 2 sin

2 1 cos 3 cos sin 1 2
cos sin

33 3 cos 1 2 sin

p
p k

n

n




   
  

    
  

 


  

  

  
   

    .

                (36) 

This is a linear differential equation for p
 . Therefore, its general solution can be found by well 

known methods, as follows. The general solution of the first-order ordinary differential equation 
with the form of 

            


e


 f   

p


 g  , (37)

where f() and g() are arbitrary functions, can be written as 


e    e

 f x dx g x e f x dx dx
 c



  c





 .                               (38) 

Here c is a to-be-determined constant with boundary condition, x is a dummy variable of 
integration, and  = c is the lower bound of the integration domain. Further manipulations yield 
that the solution of Eq. (36), in which the c coefficient is determined from the boundary condition 
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0p
   for ψ = ψc, is 

   

   
     

 

     
     

 

 

2

2

2

, , ,

2 3 cos 1 2 sin3
, exp ,

2 1 3 cos 1 2 sin

2 3 cos 1 2 sin3
, exp ,

2 1 3 cos 1 2 sin

3

2 1

c

p
c c

c c

c c

c c
c c

kV U

n n
V

n n n

n n
U x x dx

n n x n x

n

n n










    

 
   

 

 
  





     
     

        

     
     

        


 


  (39) 

Here x is a dummy variable of integration. The other plastic strain components may be determined 
from Eqs. (33) and (39). Using Eqs. (16) and (27), Eq. (4) can be rewritten in the form 

     

     

1

2

1

1 2 2 1

1

2 1 2 1

sin
1 cos 2 1 2

3

sin
1 cos 2 1 2

3

T T T c
r z c c

c
c c

k n n

k n n






         

      





              
           

. (40) 

It is seen from Eqs. (5), (35), (39) and (40) that all the strain components are proportional to k. 
Thus, simple scaling of a single solution for a disc of given a – value and Poisson’s ratio supplies 
the solutions for similar discs of material with the same Poisson’s ratio but any temperature-
dependent yield stress and Young’s modulus. Also, the value of  is not involved in the solution in 
terms of τ. However, both k and α are necessary to find the physical temperature according to Eqs. 
(9) and (16). The solution found provides the radial distribution of strains in the plastic zone in 
parametric form with ψ being the parameter varying in the range 0 ≤ ψ ≤ ψc. In particular, the total 
strains are found from Eqs. (5), (33), (35), (39), and (40). In the elastic zone, the total strains are 
given by Eq. (15) where A and B should be eliminated by means of Eq. (25).  
 

2.5 Elastic/plastic strain solution at p  . 

 
Eqs. (22), (33), (35) and (36) are valid in the range a ≤ ρ ≤ 1. Using Eq. (16), Eq. (4) can be 

rewritten in the form 
T T T
r z k      .                                                       (41) 

Let ψb be the value of ψ at ρ = 1. Then, substituting Eqs. (35) and (41) into Eq. (5) and the 
resulting expression for εθ into the boundary condition Eq. (13) give the following algebraic 
equation. 

0     1    k cos
b


1 2
3

sin
b






 

p 
b  .                        (42) 
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Re-ordering the above equation yields the plastic hoop strain at the outer rim. 

 1 2
cos sin

3
p

b bk k


   

 
   

 
,                                      (43) 

at ρ = 1 (or ψ = ψb). Moreover, it follows from Eq. (22) that 

 
 

2

3 cos 1 2 sin31
exp

2 1 3
b bb

n

a n n


     

   
      

.                        (44) 

Thus the value of ψb does not change with temperature at τp ≤ τ. Since ψb = ψp 
is the initial 

condition at τp = τ, it is evident that ψb = ψp in the range τp ≤ τ. The solution of Eq. (36) satisfying 
the boundary condition Eq. (43), with the help of general solution Eq. (38) to determine the c 
coefficient, is 

     1 2
, , cos sin

3

p

p p p pV U
k
        

 
    

 
.                    (45) 

This solution replaces the solution Eq. (39). The other plastic strain components are determined 
from Eqs. (33) and (45). Thus the radial distribution of the plastic strains has been determined in 
parametric form with   being the parameter varying in the range 0 ≤ ψ ≤ ψp. Having the solution 
for the plastic strains the total strains are immediately found from Eqs. (5), (33), (35), (41), and 
(45).  
 
 
3. Examples and discussion 
 

In our numerical examples of the above derived analytical results, the high-strength low-alloy 
steel is chosen, and its time-dependent material functions fE(T), fα(T), and fσ(T)

 
in the range 0 ≤ T ≤ 

400 ˚C are as follows. 

fE T   1
T

2000ln T 1100  ,

f T   1
T

600ln T 1630  ,

f T   1 2.56 104T  2.14 107T 2 ,

                          (46) 

where the temperature difference T is in ˚C and the initial temperature is 20˚C (Argeso and Eraslan 
2008). In other words, when T = 0, the temperature is the initial temperature. In addition, E0 = 
200GPa, σ0 = 410MPa, ν = 0.3, and α0 = 11.7 × 10−6

 meters per meter and per ˚C (i.e., 1/˚C). We 
remark that temperature-dependent material properties are assumed throughout the calculated 
examples, except stated otherwise. 

Using these functions the temperature variation, Fig. 3 shows the normalized temperature  
versus normalized radius a, as calculated from Eq. (30), for various hyperbolic profile n. The  
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Fig. 3 Normalized temperature, δτ versus normalized radius, a, for various hyperbolic 
profile n, calculated from Eq. (30) 
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Fig. 4 Stress distribution along the radius for the n = 0 and n = 0.5 case. (a) Radial stress, and (b) 
circumferential stress. The normalization was with respect to σ0. Solid circular dots indicate the plastic-
collapse case (i.e., T = T2). Blue diamonds are finite element solutions for comparison 

 
 

physical meaning of the normalized temperature is the temperature range of the disc will 
experience above Te (upper temperature limit for purely elastic deformation) but smaller than Tp 
(plastic collapse, i.e., plastic deformation everywhere in the disc). It can be seen that for large hole 
size (a greater than about 0.6),  linearly decreases as a increases, regardless of the n value. In 
other words, thickness variations do not play a role for discs with a large hole in the middle. For 
small holes, a less than about 0.4, positive n values will lead to large , while negative n values 
reduce the temperature range. Physically, negative n values result in larger thickness around the 
hole, and once it is in plastic zone due to temperature increase, the whole disc will go into plastic 
deformation with a slightly additional temperature increase. 
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(c) 

Fig. 5 Demonstration of strain distributions along the radius for the n = 0 case. (a) Radial strain, 
(b) circumferential strain and (c) axial strain, i.e., the strain along the thickness direction 

 
 
Figs. 4 and 5, respectively, show the stress and strain distribution to delineate how the stress 

and strain vary along the radial direction. In Fig. 4, both n = 0 and n = 0.5 case are shown for 
demonstrating profile effects. Three temperature differences are adopted, T1 = 104.26˚C, T2 = 
139.95˚C and T3 = 350˚C. For n = 0, the Te and Tp are 68.57 ˚C and 139.95˚C, respectively. Hence, 
when Te < T1 < Tp, an elastic-plastic boundary may exist in the disc. When T = T2, plastic collapse 
of the whole disc occurs, and filled circular dots are placed on the curves. The radial and 
circumferential stress, normalized with respect to 0, are plotted in Figs. 4(a) and (b), respective. It 
can be seen that both stresses are compressive. For radial stress, as  increases, the stress 
magnitude increases, i.e., the radial stress becomes more negative. However, this monotonicity 
does not occur for the circumferential stress. To somewhat justify our analytical solutions, finite 
element results (blue diamond markers) for the hoop stress are shown for the T = T1 case. In the 
finite element analysis, the yield stress is modified in accordance with Eq. (42); all other material 
properties were assumed to be temperature independent. The progression of the hoop stress is 
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consistent between our analytical solution and finite element results. Finite element data for the 
trend of the radial stress versus radius is identical to that obtained by our analytical solutions, and 
they are not shown here for clear presentation of Fig. 4(a).  Detailed of our finite element analysis 
can be found later in the text before the Conclusion section. We emphasize that finite element 
solutions contain numerical and discretization errors.  

When T = T1, part of the disc is still in the purely elastic state, and the elastic-plastic boundary 
is at about  = 0.45, where the radial stress is continuous through the elastic-plastic boundary, but 
the circumferential stress around the elastic-plastic boundary becomes non-differentiable. In 
addition, if the material’s yield stress is temperature independent, the normalized hoop stress at the 
inner rim of the disc is equal to -1. As for the thickness profile effects, it can be seen in Figs. 4(a) 
and (b), the radial stress is reduced in this particular choice of the n = 0.5 profile due to additional 
material around the outer rim to lower stresses. Furthermore, the elastic-plastic boundary moves 
toward outer rim as n increases from 0 to 0.5, as shown by the turning point in the hoop stress for 
the T = T1 case. Hence, larger plastic zone in the n = 0.5 case. 

The total radial strain, circumferential strain and axial strain (i.e., along the Z axis) are shown 
in Figs. 5(a), (b) and (c), respectively, for the n = 0 case. It can be seen that the total 
circumferential strain reaches zero at  = 1, as expected. Larger temperatures result in larger 
magnitudes in all strain components.   

In order to examine the effects of the thickness variations with the derived analytical solutions 
here, Fig. 6 shows the comparisons on circumferential strain for two different temperatures, 
namely T = 106.3˚C and T = 350˚C. Three n values are calculated, n1 = -0.2, n2 = 0 and n3 = 0.5. It 
is noted that the plastic collapse temperature Tp depends on the n values. Hence, the three n’s lead 
to the following three plastic collapse temperatures 132.49˚C, 139.95˚C and 150.31˚C for n = -0.2, 
0 and 0.5, respectively.  The corresponding Te’s are 71.69˚C, 68.57˚C, 62.28˚C also for n = -0.2, 0 
and 0.5, respectively. In Fig. 6(a), T > Te, but less than Tp for all n’s. It can be seen that as n 
increases from negative values to positive values, the circumferential strain becomes more 
negative. In other words, the strain for n > 0 is more negative, i.e., larger, than the strain for n = 0. 
However, the strain for n < 0 is less negative, i.e., smaller than the strain for n = 0. When 
comparing Fig. 6(a) and (b), this relationship is reversed. In other words, when T = 350˚C, which 
makes the disc plastically deformed everywhere, n < 0 results in an increase in strain.  

As for the effects of the temperature-dependent (TD) material properties, Figs. 7(a) and (b) 
show comparisons on the circumferential strain for n = 0 and n = 0.5, respectively, at the three 
temperatures. It can be seen that when n = 0, the disc has uniform thickness, the effects of the 
temperature dependent material properties are minor. However, the combined effects of the 
thickness variations and temperature-dependent (TD) material properties show stronger effects, 
particularly at high temperatures, i.e., T = T3. Therefore, in real-world applications, the 
considerations of temperature-dependent (TD) material properties are crucial when thickness 
variations are present. 

In both of Figs. 6 and 7, as well as Fig. 4(b), numerical data, shown as blue diamonds, were 
obtained by the finite element analysis with the commercial software COMSOL (2013) for the T = 
T1 case with n = 0 and 0.5. The assumption of temperature-independent (TI) material properties 
was adopted in the numerical analysis, along with the von Mises yield criterion in the elastic-
perfectly plastic material model. Reasonable agreements are obtained between our analytical 
solution and the finite element results. We remark that the finite element model was three-
dimensional with  axisymmetric assumptions for the annular plate under a uniform temperature 
increase. Its inner and outer radius are 0.3 m and 1 m, respectively. The plate thickness at the inner  
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Fig. 6 Effects of the thickness variations for (a) T = 106.3˚C < Tp, and (b) T = 350˚C > Tp 
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Fig. 7 Effects of the temperature-dependent material properties for (a) n = 0 and (b) n = 0.5 
 
 

rim is 0.05 m. The chosen geometry is to mimic the two-dimensional plane stress theoretical 
solutions developed here. A quadratic triangular element was adopted, and the total number of 
elements was 1559 with the average quality of 0.9852. The difference between the finite element 
model and our theoretical model is acknowledged, and comparisons between them should only be 
made qualitatively, due to model differences, as well as numerical and discretization error 
inherently in the finite element method.  

As pointed out by many authors (Lippmann 1992, Kovacs 1994, Bengeri and Mack 1994) that 
temperature-dependent yield stress is the most sensitive material property, and hence many 
reported works in the literature consider only yield strength to be temperature dependent, and set 
all other material properties to be temperature independent. Metallurgically speaking, all 
mechanical properties of metallic materials are temperature dependent, but the strengths of their 
dependences are not on the same magnitude. As temperature increases, changes in the mechanical 
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properties increase due to heavily altering the microstructures of metallic materials, such as 
dislocation density, grain boundaries, and possible formation of new phases. In this work, we put 
forward theoretical developments to obtain analytical solutions that include temperature-dependent 
Young’s modulus, yield strength and thermal expansion coefficient, as well as thickness 
variations. The functional forms used in this work have the largest temperature sensitivity for  
yield stress, as illustrated by Argeso and Eraslan (2008). In Fig. 4(b), the finite element solutions  
(blue diamonds) only consider the temperature-corrected yield stress for T = T1. It can be seen that 
the finite element results are very close to our analytical solutions, which includes three TD 
material properties, indicating that considering only temperature-dependent yield strength can 
capture most of the behavior of the hoop stress. However, from Fig. 7(b), we can see the largest 
deviation between TD and TI results occur at highest temperature and n = 0.5. Therefore, it is 
conjectured that for moderate or less temperature elevation, considering only TD yield stress may 
be sufficient. But, for higher temperatures, reductions of elastic constants and changes in thermal 
expansion coefficient may have significant influences on the stress and strain distributions. Hence, 
considerations of all material properties to be temperature dependent may be necessary for high-
temperature applications. In addition, different materials may have different temperature-
dependent material functions, which may have different weights on the strength of the temperature 
dependence. Therefore, with the theoretical solutions developed here, one can explore a material 
search to see which materials are better modeled with more material properties being assumed to 
be temperature dependent. 
 
 
4. Conclusions 
 

Analytical solutions, in the purely elastic, elastic-plastic and fully plastic situation, of the 
hollow disk with hyperbolic thickness profile under uniform temperature field have been obtained, 
including temperature-dependent material properties. The Poisson’s ratio of the material is 
assumed to be temperature independent.  

This assumption follows from direct experiment (Noda 1991). On the other hand, it has been 
hypothesized in (Lippmann 1992, Kovacs 1994, Bengeri and Mack 1994) that it is most important 
to take into account the effect of temperature on the yield stress whereas other mechanical 
properties may be assumed temperature-independent. Even though this may be a reasonable 
assumption for many materials, it is desirable to have a simple method to quantitatively evaluate 
an additional effect due to the temperature dependence of other thermo-mechanical properties on 
elastic/plastic solutions. The present solution provides such a benchmark problem. A distinguished 
feature of this solution is that the dimensionless quantities have been chosen such that the general 
solution is independent of temperature dependence of thermo-mechanical properties. Indeed, even 
the solution to Eq. (36), which is the most difficult one among all equations to be solved, is only 
affected by these properties because of k which is just a multiplier. Therefore, for any given 
thickness profile of the disc numerical integration can be carried out just one time for all possible 
variations of thermo-mechanical properties with temperature. The effect of temperature-dependent 
thermo-mechanical properties is then revealed when the dimensionless quantities are transformed 
into physical quantities. 

In summary, in this work, it is found that the thickness variations, controlled by the n value, 
have strong effects on the stress and strain distribution, as well as the normalized temperature 
difference . A critical change of  behavior is when the normalized hole size a is about 0.6. 
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When a > 0.6, the curves of  versus a are identical regardless of thickness profile. Furthermore, 
it is shown that the combined effects of thickness variations and the temperature-dependent 
material properties may cause notable deviations from simple analysis that does not include the 
two effects, in particular, at higher temperatures. 
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