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Abstract.   Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear 
velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the 
governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity 
recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is 
used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is 
used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced 
mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and 
brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of 
frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis 
linear response of rectangular liquid tank has been studied. The impulsive and convective components of 
hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are 
quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the 
frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks. 
 

Keywords:  seismic response; frequency content; artificial damping; quantification; mixed Eulerian-

Lagrangian 

 
 
1. Introduction 

 

Sloshing is basically a nonlinear physical phenomenon, characterized by unrestrained free 

surface motion of liquid in a moving container. Understanding sloshing phenomenon is of 

paramount importance to the design of partially filled liquid tank subjected to seismic motion or 

any other motion for that matter. Liquid storage tanks are important components of many life line 

structures, industrial facilities and many other human infrastructures across the board. More often 

than not such tanks remain partially filled. Threat to the structural safety and stability of these 

tanks due to liquid sloshing is of great concern in a broad class of practical problems exemplified 

as ground-supported and elevated liquid storage tanks, fuel tanks of launching vehicles, dynamics 

of liquid transporting vehicles and its control, sloshing in nuclear fuel storage pool, water waves in 

reservoirs, cargo tanks of LNG carriers with liquid storage tank as system component. Of them the 
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seismic response of ground supported liquid tanks deserves a special attention and is the focus of 

the present investigation. The prediction of sloshing behaviour is imperative for structural safety 

and integrity of liquid-tank system. In extreme situations when either the amplitude of external 

excitation is very high or the excitation frequency is very close to the fundamental frequency of 

free sloshing liquid or the supporting structure, the motion of liquid in the container becomes 

violent and creates highly localized impact pressures on the tank wall which may cause structural 

damage. The failure of such structures is not just critical to the huge economic value of the tank 

but has far reaching ramifications in terms of environmental hazards and human health. In fact 

heavy damages have been reported  due to strong earthquakes such as Nigaata in 1964, Alaska in 

1964, Parkfield in 1966, Imperial County in 1979, Coalinga in 1979, Loma Prieta in 1989, Landers 

in 1992, Northridge in 1994,  Kocaeliearthquake in 1999, and very  recently 2010 Maule, 2010-11 

Christchurch and 2011 Tohoku-Pacific earthquake. The seismic design standards have been 

revised several times to improve the performance of tanks during future earthquakes. The dynamic 

response of fluid-structure system is very sensitive to the characteristics of ground motion and 

configuration of the system (Housner 1963, Haroun 1984, Haroun and Ellaithy 1984, Haroun 

1983, Haroun and Tayel 1985).   
Seismic mishap is the most likely and uncalled for threat to the structural safety and integrity of 

the liquid tank. Unlike other natural disasters, earthquakes are neither predictable nor preventable 

and their characteristics are highly nonlinear and complex. Hence the only resort open for the 

engineering community is to accurately predict the dynamic behaviour and properly design the 

fluid-structure system to minimize the effect of earthquake so that the tank-liquid system can stand 

the test of nature. Although the complicated deformed configurations of liquid storage tanks and 

the interaction between the fluid and the structure result in a wide variety of possible failure 

mechanisms, reports from past earthquakes indicate that the damages to the liquid filled tanks are 

either by large axial compression due to beamlike bending of the container wall causing a failure 

characterized as “elephant-foot” buckling or by sloshing of the contained liquid with insufficient 

freeboard. Markedly different failure types have been reported in cases of anchored and 

unanchored tanks (Leon and Kausel 1986, Lau et al. 1996, Malhotra 1996, Bakhshi and 

Hassanikhah 2008). The seismic response of elevated broad and slender liquid storage tanks 

isolated by elastomeric or sliding bearing was studied by Seleemah and El-Sharkawy (2011). 

Most of the earlier researchers have studied the effect of nonlinearity on the sloshing response 

with regard to harmonic excitation and many of them have studied the effect only in term of 

variation in free surface sloshing elevation which although a crucial sloshing behaviour and the 

accuracy of its calculation is a key of estimation of hydrodynamic forces, yet not the complete 

information in the sense of dynamic response of the tank-liquid system in so far as the safety of the 

tank is concerned (Faltinsen 1978, Wu and Taylor 1994, Romero and Ingber 1995, Pal et al. 2003, 

Biswal et al. 2006, Virella et al. 2008, Pal and Bhattacharyya 2010, Cho and Lee 2004, Chen and 

Chiang 1999). The excitation due to seismic motion cannot be characterized by harmonic input. 

Ground shaking resulting from a seismic event is stochastic in nature, and this excitation may 

contain a wide array of frequencies. Very few works on seismic response of liquid tank is 

available. Choun and Yun (1999) used a linear analytical model to study the seismic behaviour of 

rectangular liquid tank with submerged block. Mitra et al. (2007) in their pressure based linear 

Finite Element model studied the dynamic response of rectangular tank with submerged internal 

components. They considered the ground motion of El Centro EW only for the investigation. Chen 

et al. (1996) used finite difference method to study the nonlinear response of rectangular tank 

using seismic ground motion records. Hernandez-Barrios et al. (2007) in their finite difference  
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Fig. 1 Schematic diagram of rigid tank-liquid system 

 

 

schemes studied nonlinear seismic response of cylindrical liquid tanks using semi-implicit and 

Cranck-Nicholson schemes. Chen et al. (2007) in their BEM based three dimensional sloshing 

analysis investigated the sloshing behaviour of rectangular and cylindrical tanks subjected to 

harmonic and seismic excitations. All the above researchers have concentrated their study simply 

on the logic of overall peak hydrodynamic response. The evaluation of absolute maximum 

hydrodynamic response as design parameter is not complete. Not much effort has been put to 

quantify the dynamic response of liquid tank in terms of impulsive and convective response 

components (Chen et al. 1996, Hernandez-Barrioset al. 2007, Chen et al. 2007). Hitherto, 

quantification of nonlinear seismic response in terms of impulsive and convective response 

components vis a vis frequency content of ground motion is not reported in the literature.  

 

 
2. Mathematical modelling of tank-liquid system 
 

Fig. 1 shows the problem geometry for the tank-liquid system. The Cartesian coordinate system 

O-xz for the computational domain of the liquid is defined such that the origin is at the center of 

the still free surface with z-axis pointing vertically upward. The liquid is assumed to be inviscid 

and incompressible and the flow is irrotational. For such an ideal liquid, the velocity distribution 

can be derived from a scalar function called velocity potential )(φ t,y,x  which describes the motion 

of liquid through satisfaction of Laplace (continuity) equation 

 φ2
                                                                   (1) 

which governs the potential flow in the fluid domain Ω . Eq. (1) is elliptic in nature and requires 

both free surface and body surface boundary conditions for simulation of nonlinear sloshing wave 

problem. The boundary conditions are described as follows. 

 
2.1 Nonlinear free surface boundary conditions   
 
On the time dependent free surface boundary Γs, both kinematic and dynamic boundary 

conditions need to be satisfied at any instant and on the exact free surface. The kinematic boundary 

condition requires that the fluid particle once on the free surface remains always on the free 

surface. Based on Eulerian description the free surface kinematic boundary condition is given by 

601



 

 

 

 

 

 

Santosh Kumar Nayak and Kishore Chandra Biswal 

xxzt 















 ηφφη
   on  sΓ                                                     (2) 

where η(x, z, t)
 
is the instantaneous free surface wave elevation. 

The dynamic boundary condition requires that the pressure on the free surface be uniform and 

equal to the external atmospheric pressure. This boundary condition can be obtained from 

Bernoulli equation with the assumption of zero atmospheric pressure. An artificial damping term 

may be suitably introduced into the boundary condition which not only accounts for the effect of 

viscosity in dissipating the momentum by opposing the fluid motion but also brings in numerical 

stability. The damping modified unsteady Bernoulli‟s equation may be expressed as  

φμ-φ∇φ∇
2

1
--

 ∂

φ ∂
.g

t
η    on sΓ                                             (3) 

where g is the gravitational acceleration and µ is the artificial damping term. 

 
2.2 Body surface boundary condition 

 
On the walls of the tank the velocity of liquid is equal to the wall velocity in normal direction 

nV
n


 ∂

φ ∂
           on  wΓ                                                        (4) 

where Vn is the instantaneous velocity of the vertical wall subjected to horizontal ground 

acceleration and n is the normal to the wall surface pointing out of the liquid domain. 

On the rigid bottom supported on rigid foundation, no flux condition needs to be satisfied. 






n

φ
       on  bΓ                                                          (5) 

Thus Eqs. (1) - (5) defines the initial and boundary value problem with nonlinear free surface 

boundary conditions. The nonlinearity in free surface boundary condition is attributed to: (1) a 

priori unknown free surface elevation at any given instant and (2) kinematic and dynamic 

boundary conditions in Eqs. (2) and (3) as they contain second order differential terms.  

The set of Eqs. (1)-(5) are elliptic in space and parabolic in time. Mixed-Eulerian-Lagrangian 

method due to Longuet-Higgins and Cokelet (1976) is used for numerical solution of the system of 

equations. In mixed-Lagrangian-Eulerian the surface nodes called „markers‟ are allowed to move 

with the same velocity as the liquid. In this procedure the spatial equations are solved in Eulerian 

(fixed grid) frame and the integration of the free surface boundary conditions is executed in 

Lagrangian manner. This requires the free surface boundary conditions in Eqs. (2) and (3) to be 

written in Lagrangian form as follows. 

μφ-φφ
2

1
-gη

φ
 .

td

d

    
 on   wΓ                                             (6) 

xt

x

 ∂

φ ∂

d

d
  ;         

zt

z

 ∂

 ∂

d

d 
                                                      (7) 

After obtaining the time derivative of velocity potential, the nonlinear hydrodynamic pressure 

can be calculated by using the following equation 
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












 μφφ

2

1φ
 ρ

2

t
p                                                    (8) 

The base shear Sb and overturning base moment Mb can be calculated by the following 

expression 

wb

w

pS 


d                                                                 (9) 

    

bw

xxpzzpM b



d d

                                                

(10) 

Impulsive pressure may be determined by assuming the whole liquid as a rigid solid block 

without convective mass. This assumption ignores the sloshing of the liquid and hence the 

convective response. As a consequence of this, the pressure at the quiescent liquid free surface 

vanishes at every instant during the motion.  

  00
φ





t,,x

t
                                                            (11) 

 

 

3. Finite element formulation 
 

The entire liquid domain Ω, bounded by body surface Γw,tank bottom Γb and free surface Γwsis 

discretized by four-noded quadrilateral elements for finite element formulation and solution of 

Laplace equation for Dirichlet boundary condition (φ) on the free surface and Neumann boundary 

condition  φ  on the body surface. The velocity potential may be approximated as  

   z,xNt,z,x
n

j

jj



1

φφφ                                                  (12) 

where φj  are time dependent nodal velocity potentials, Nj
 
are shape functions and n is the number 

of nodes. Application of Galerkin‟s weighted-residual method to Laplace equation gives rise to 

0d φ2  Ω

Ω

iN                                                            (13) 

Since 

  iii NNN  φφφ 2

                                                 
(14) 

Eq. (14) may be written as   

   0d φφ  Ω

Ω

ii NN                                                  (15) 

Application of Gauss theorm produces   

 




Ω

i

Γ

i ΩNΓ
n

N d φd 
φ

                                                 (16) 
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where sbw ΓΓΓΓ  , is the boundary of the liquid domain Ω. Substitution of the 

approximation function for the potential and the boundary conditions into the above equation 

yields 

sj

n

i
jj

Ω
in

wΓ
i

sΓjj

n

i
j

Ω
i ΩNNVNΩNN







  dφdφ
11

                        (17) 

where sΓ and bΓ are the free surface and body (vertical wall) surface respectively on which the 

potential and its normal derivatives are prescribed. The potential on the free surface is known from 

the free surface boundary condition and the terms corresponding to the surface nodes have 

therefore been taken to the right hand side. This scheme suggested by Wu and Eatock Taylor 

(1994) was found to be effective in dealing with the singularity at the intersection point between 

the body surface and free surface on account of the confluence of boundary conditions. 

Eq. (17) may be expressed in matrix form as 

    FK                                                               (18) 

where 

                           ΩNNK jiij d                                                           (19) 

sΓj

n

i

jj

Ω

in

wΓ

ii ΩNNVNF




  dφ
1

                                       (20) 

where Kij
 
is the global fluid matrix and Fi is the global right hand side vector. It must be mentioned 

that the matrix Kij in Eq. (19) varies with time for fully nonlinear problem. 

Numerical evaluation of the dynamic and kinematic boundary conditions, Eqs. (6)-(7), requires 

an approximation of velocity at the free surface. Although, direct differentiation of potential 

approximation via shape functions is a convenient option to obtain the velocity, shape functions 

however do not guarantee the continuity of its derivatives at the boundary of the elements and may 

result in lower order, discontinuous velocity with compromised accuracy. The velocity continuity 

can be ensured by use of higher order FE for potential approximation. In the present study, 

however C
0
 isoparametric rectangular element is used. In order to avoid excessive accumulation of 

error in the time stepping procedure, the following method is used for velocity recovery.  

The two dimensional velocity vector, jviuU ˆˆ  may be approximated in terms of the same 

shape functions as used for velocity potential. 

 



n

j

jj z,xNuU
1                                                           

(21) 

Galerkin weighted-residual method is used to approximate the relationship U , in the 

form 

  0d φ  ΩUN

Ω

i                                                         (22) 

Substitution of Eqs. (12) and (21) into Eq. (22) yields 
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ΩUNNΩ
n

N
N jj

Ω

ij

j

Ω

i d d φ  



                                              (23) 

In matrix form the above equation can be expressed as 

     φ1DuC                                                             (24) 

      φ2DvC                                                             (25) 

where 

                             ΩNNC j

Ω

i d                                                            (26) 

  ΩN
x

N
ND j

j

Ω

i d 1



                                                        (27) 

  ΩN
z

N
ND j

j

Ω
i d 2





             
                                       (28) 

and ui 
and vi 

are the components of velocity vector Uj at node j. 

From the velocities thus obtained, the updated position of the free surface at the start of the next 

time step can be found using Eq. (7). The updated value of the velocity potential on the free 

surface can also be determined from Eq. (6). A new finite element mesh is then generated 

corresponding to the updated geometry which requires further solution of Laplace equation in the 

spatial domain, recovery of velocity and time-integration of kinematic and dynamic boundary 

conditions to advance the solution in time domain. 

 
 
4. Implementation of numerical scheme  
 

As stated above the implementation and accuracy of the numerical scheme developed involves 

five steps: (1) mesh generation or discretization of liquid domain, (2) the solution of FE-

discretized Laplace equation in spatial domain, (3) recovery of velocity by global projection 

method, (4) surface tracking and location of the new position of lagrangian free surface nodes by 

effective time-integration scheme, and (5) regridding at each time step or after a certain number of 

time steps in order to avoid inordinate concentration of Lagrangian free surface nodes in the region 

of higher gradients and have control over the minimum grid size for a given time step. Of the five 

steps mentioned above steps (2) and (3) have been discussed in earlier paragraphs and the rest of 

the steps are discussed in the following paragraph. 

 

4.1 Mesh generation 
 
The liquid domain is discretized by four noded isoparametric quadrilateral elements. The entire 

liquid domain in the tank is divided in the x-direction by nx+1 uniformly placed vertical lines at as 

many surface nodes. The liquid depth is divided into mz number of meshes with mz+1 numbers of 

nodes in the vertical direction. Reduced mesh height is provided near the free surface in order that  

605



 

 

 

 

 

 

Santosh Kumar Nayak and Kishore Chandra Biswal 

 
Fig. 2 Typical finite element mesh 

 

 

pronounced sloshing near the free surface can be better captured. The locations of free surface 

nodes change with time due to the Lagrangian characteristics. The total number of nodes and 

elements are computed as (nx+1) × (nz+1) and (nx) × (nz), respectively. A representative finite 

element mesh discretizing the liquid domain is shown in Fig. 2. 

 

4.2 Time integration 

In material node approach )φ(


 v of MEL method the surface nodes move with the fluid 

particles at the corresponding nodes and thus mesh distortion takes place. Fourth order explicit 

Runge-Kutta time-integration scheme is used to trace the moving nodes on the free surface and 

determine the associated velocity potential and other unknown variables of interest. The 

coordinates (x,z) and velocity potential at time t may be represented by a single variable as 

)φ( ,z,xQt and expressed in matrix form as follows.  

T)φ( tttt ,z,xQ   

T
1321 )(  nxt x......................,x,x,xx  

T
1321 )(  nxt z......................,z,z,zz  

T
1321 )φφφφ(φ  nxt ......................,,,  

Where (xi, zj)i, j=1, 2, … nx+1 and (φi)i=1, 2, … nx+1 respectively represent the coordinates and velocity 

potentials of the nodes, along the free surface and nx is the number of liquid elements in the x-

direction. The total derivative of tQ  with respect to time is written as 

)(
D

φD

D

D

D

D

D

D
t

tttt Q,tF
tt

z

t

x

t

Q











    
The coordinates and velocity potential of the free surface nodes at the subsequent time step 

tt Δ  are obtained from the following relation. 

6336

4321
Δ

QQQQ
QQ ttt   

Where 

)(Δ1 tQ,tFtQ   

)2Δ(Δ 12 /QQ,ttFtQ t   

)22Δ(Δ 23 /QQ,/ttFtQ t   

)Δ(Δ 34 QQ,ttFtQ t   
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4.3 Regridding 
 

At the beginning of the numerical simulation, the free surface nodes are uniformly distributed 

in the x-direction on the quiescent free surface with a zero surface elevation. As time elapses, the 

Lagrangian nodes on the liquid free surface move and such movement leads to unequal horizontal 

spacing and gradual concentration of Lagrangian particles in the region of steep gradient close to 

the tank wall. The mesh distortion thus occurs may lead to numerical instability. To eliminate such 

instabilities, a mesh regridding technique is used at every time step. The numerical experiments 

conducted by Dommermuth and Yue (1987) showed that the regridding is extremely effective and 

eliminates the numerical instabilities without the use of artificial smoothing. A cubic spline is 

fitted through the distorted Lagragian nodes on the free surface. Subsequently, the velocity 

potentials and associated boundary values on the new sets of uniformly spaced Lagrangian nodes 

are obtained by interpolation. The liquid domain is remeshed based on the positions of newly 

formed Lagrangian nodes. 

 
 
5.  Model validation 
 

The numerical scheme, based on FEM, developed as above is coded and executed in Matlab 

platform for model validation and evaluation of the seismic response of partially filled rectangular 

liquid-tank system.  

 

5.1 Problem definition and linear model validation 
 
The governing parameters of the two-dimensional tank-liquid system are as follows: 

L = 10 m, d = 5 m, density of liquid, ρ = 1000kg/m
3
, artificial damping (pseudo-viscous damping),

crit   where ξ is the viscous type numerical damping;  2crit  andω is the fundamental 

sloshing frequency of liquid. 

The correct prescription of the value of ξ depends on the dimension of the tank and liquid depth 

and can be found from experimental validation of numerical result. In the present investigation, 

however, the value of ξ has been determined by comparing the present linear numerical result with 

the analytical result due to Choun and Yun (1999). El Centro-EW is prescribed as ground motion 

for computation of time history of sloshing. The result obtained with a prescribed artificial viscous 

damping ξ = 0.0075 is plotted in Fig. 3 along with the analytical result and is found to have 

extremely close matching in all its characteristics such as magnitude and phase etc. The value of ξ 

so obtained is used for subsequent computations and observed to have given numerically stable 

result for all the ground motions.  

 

5.2 Non-linear model validation 
 
In order to validate the nonlinear FEM model developed for the present study, numerical 

simulation of sloshing was conducted in a tank of width L = 30.675 m and liquid depth d = 10.73 

m. A harmonic force of    singat t01.0  is applied as base excitation, where   is taken as the 

fundamental sloshing frequency 1  of the liquid. The comparative result of temporal variation of 

free surface sloshing elevation measured at right end of the tank is presented in Fig. 4. It can be 
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Fig. 3 Time history of free surface sloshing amplitude at left hand wall of tank due to 

horizontal ground motion of El Centro-EW 

 

 
Fig. 4 Time history of the nonlinear sloshing elevation at right hand wall of tank in the first 

sloshing mode for the model with d/L = 0.35 

 
 

clearly observed that the result of the proposed model is in an excellent agreement with the result 

obtained by Virella et al. (2008) using commercial software ABAQUS.  
 
 

6. Seismic response and discussion 
 

Numerical experiment is conducted taking the same tank dimensions and governing parameters 

as in Choun and Yun (1999) for the nonlinear seismic response of tank-liquid system. Four 

different ground motion data presented in Table 1 are used as the excitations for the system. The 

PGAs of all the records are scaled to a fixed magnitude of 0.2g as shown in Fig. 5 for comparison 

of the dynamic responses under seismic excitations with varying frequency contents. On the basis 

of the ratios of PGA/PGV, El Centro-EW, Imperial Valley, Landers and San-Franscisco 

earthquakes are considered as low, low, intermediate and high frequency content seismic motions, 

respectively. In addition, the power spectrum density functions (PSDF) of all ground motions are 

obtained which depict the frequency content as shown in Fig. 6. 

 

6.1 Hydrodynamic responses 
 

The hydrodynamic responses in terms of sloshing elevation, base shear, overturning base 

moment, pressure distribution on the tank wall are computed for ground motions of different 
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Fig. 5 Time-history of acceleration of ground motions: (a) El Centro EW (b) 1979 Imperial 

185 (c) 1992 Landers 855 (d) 1957 San-Franscisco 23 
 

 

frequency content. The effect of nonlinearity of sloshing wave on each of these quantities is 

probed. The impulsive and convective response components are computed and their contribution 

to the overall hydrodynamic forces are studied and quantified.  

 
6.1.1 Sloshing response 
The sloshing wave elevation is not only important for the seismic-safety design of liquid 

containers but also gives the convective response of hydrodynamic pressure and associated base 

shear and base moment. Free board to be provided in a tank is based on maximumvalue of 

sloshing wave height. Further, insufficient free board obstructs the free movement of convective 

mass and thus changes the amount of liquid in convective mode. If sufficient free board is not 

provided roof structure should be designed to resist the uplift pressure due to sloshing of liquid. 

Hence sensitiveness of sloshing response to the frequency content of seismic ground motions is 

studied. 
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Table 1 Ground motion records 
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1940 El Centro-EW 
a 

- - - 60 0.02 0.2141 0.4879 0.439 

1979 Imperial Valley-06 

(Holtville 

Post office) 

HVP225 6.53 19.81 37.745 0.005 0.2476 0.4765 0.519 

1992 Landers                        

(Fort Irwin) 
FTI000 7.28 120.99 40.0 0.02 0.1288 0.1244 1.035 

1987 San-Franscisco          

(Golden Gate Park ) 
GGP010 5.28 11.13 39.725 0.005 0.1073 0.0377 2.846 

a 
All other ground motion records except the superscripted earthquake are taken from Pacific Earthquake 

Engineering Research Next Generation Attenuation (PEER-NGA) strong motion database records available 

online at http://peer.berkeley.edu/nga.  

 

 
Fig. 6 Power spectral density function (PSDF) of ground acceleration: (a) El Centro-EW (b) 

Imperial Valley (c) Landers (d) San-Franscisco 
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Fig. 7 Temporal variation of linear and nonlinear sloshing elevation due to ground motions: (a) 

El Centro-EW (b) Imperial Valley (c) Landers (d) San-Franscisco 

 
 

The time history of surface wave elevations due to all the ground motions is presented in Fig. 7. 

It is observed that both for linear and nonlinear model, the sloshing elevation is significantly more 

due to low frequency ground motion of Imperial Valley. Linear and nonlinear positive sloshing 

amplitudes at x= - L/2and x = + L/2 and the percentage increase in nonlinear response with respect 

to linear response are listed in Table 2. Maximum positive sloshing amplitude reduces from low to 

high frequency ground motions. The effect of nonlinearity on free surface sloshing elevation is 

more pronounced in case of low frequency ground motion of Imperial Valley. The increase in 

sloshing elevation has a decreasing trend from low to high frequency content seismic motion. 
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Table 2 Linear and nonlinear peak sloshing amplitude 

Earthquake 

Record 

Sloshing elevation (+ ve) 

2/Lx   

 

 

 

 

Sloshing elevation (+ ve) 

2/Lx   

Linear 

(cm) 

Nonlinear 

(cm) 

% 

variation 
 

Linear 

(cm) 

Nonlinear 

(cm) 

% 

variation 

El-Centro EW 

Imperial Valley 

Landers 

San-Franscisco 

50.02 

59.78 

8.34 

1.21 

51.42 

72.90 

11.72 

1.60 

2.80 

21.95 

40.52 

32.23 

 

 

 

 

42.86 

60.20 

9.44 

0.93 

53.68 

69.16 

11.77 

1.13 

25.24 

14.88 

24.68 

21.50 

 
 

6.1.2 Base shear and overturning base moment 
The temporal history of base shear and overturning base moment due to horizontal ground 

motions of selected earthquakes are computed by the proposed method. The effect of frequency 

content on the hydrodynamic response of the tank-liquid system is probed. Both base shear and 

overturning base moment are quantified in terms of impulsive and convective components. It may 

be mentioned convective component is frequency sensitive while impulsive response is 

acceleration sensitive. The computed responses of base shear and base moment are presented in 

terms of their time history in Figs. 8 and 9 respectively. 

The absolute maximum peaks of base shear and base moments due to all earthquakes are 

presented in Table 3. The responses are normalized with respect to those of the low frequency 

Imperial Valley record and presented in brackets. The table presents both linear and nonlinear 

responses of each physical parameter. As nonlinearity has nothing to do with the impulsive 

responses, their values remain the same under linear and nonlinear columns. The results show that 

impulsive responses remain almost unchanged irrespective of the frequency content of ground 

motions. However marginally higher values are observed in case of El Centro record. Unlike 

impulsive response, a wide variation in maximum values is recorded for convective components. 

The convective responses are magnified in case of El Centro earthquake. It is observed that there 

exists time lag between the peaks of impulsive and convective response components. For all 

earthquake records considered for the study, one can notice that the magnitudes of peak impulsive 

response is higher than the corresponding convective response irrespective of the frequency 

content of ground motions. The absolute peaks of impulsive responses invariably occur at the 

instant of PGAs of ground motions. The total seismic response is dominated by the impulsive 

response and occurs at some instant close to the time of PGA.    

In some sense, the reader may find the results in Table 3 intriguing. To clarify the confusion 

and for completeness of quantification, the contribution of impulsive and convective response 

components to the absolute total structural response are presented in Table 4.  From Table 3 it can 

be seen that both convective and impulsive response components of base shear are significantly 

more in case of El Centro-EW than their respective counterparts for Imperial Valley. However the 

absolute total base shear is more, although marginally, in case of low frequency Imperial Valley 

ground motion. An even more contrasting observation can be made in case of overturning base 

moment. It can be seen that the absolute maximum convective responses presented in Table 3 do 

not contribute to the absolute maximum total hydrodynamic responses. For a clearer picture, one 

can refer to the contributions of convective components to the absolute maximum total 
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hydrodynamic responses presented in Table 4. This is due to the time lag between the impulsive 

and convective peak responses. However the effect of absolute peak convective responses and/or 

local peaks cannot be marginalized or under estimated. This is because the amount of structural 

damage expected in an earthquake is proportional to the duration of the earthquake and this 

relationship is not linear. A longer duration of shaking causes the damage to increase. In case of 

long duration earthquakes amplified local peaks contribute to structural fatigue and may prove 

critical to the safety of the structure and hence their effect should be taken into account in design. 

If sloshing of the liquid, hence the effect of convective response, is ignored as is done in some 

simplified analysis; all the response quantities are found more than those when sloshing is 

considered. This observation is made in case of Landers and San-Franscisco records on the basis 

of linear analysis. This observation is shown with superscripted data in Table 4. This is due to the 

fact that convective responses for the said motions occur in opposite phase with respect to the 

impulsive responses and counter their effect. 

The convective response in terms of sloshing elevation is important in such decisions as the 

correct estimation of free board between the quiescent free surface and tank cover and also in the 

design of roof cover which experiences convective hydrodynamic pressure in case of inadequate 

free board. Thus incorrect estimation of sloshing elevation may lead to under-designed free board 

which may result spillage of hazardous fluids or the failures in the tank roof.  

It is evident from the tables that the effect of nonlinearity of surface wave on the dynamic 

response is more pronounced in case of low frequency earthquake of Imperial Valley and 

intermediate frequency content El Centro record. Figs. 10 and 11 present the comparative time 

history of convective responses of base shear and base moment due to Imperial Valley and El 

Centro records respectively. It is seen that nonlinear absolute global maximums in both the cases 

are significantly more than their linear counterparts. In addition, the nonlinear local peaks are 

consistently more, although not substantially, which may contribute to structural fatigue for long 

duration earthquakes and hence proof detrimental to the structural safety because of the cumulative 

damage sustained by the tank. 

A shallow tank of d/L = 0.2 is considered to study the effect of nonlinearity of surface wave on 

the dynamic response of the tank-liquid system. The ground motion records of El Centro and 

Imperial Valley are used for the numerical experiment. Figs. 12 and 13 present the comparative 

result of time history of base shear and base moment for tall tank (d/L = 0.5) and shallow tank (d/L 

= 0.2) respectively due to the above said ground motions. In case of shallow tanks, early 

dominance of convective response is noticed when the impulsive response is still in the 

dominating stage, and both impulsive and convective responses are in the same phase. As a result, 

an increase in overall total hydrodynamic response can be observed in case of shallow tank. From 

a comparative study of Figs. 12(b) and 13(b) it can be seen that although the convective and 

impulsive response of base shear for shallow tanks follow the same trend both in terms of phase 

and magnitudes, the two significantly differ in magnitudes in their respective responses to 

overturning base moments. This fact is attributed to higher convective pressure resultant height 

due to amplified sloshing for low frequency motion of Imperial Valley. As these forces are applied 

high up the tank they tend to cause overturning rather than sliding. This is in consistent with the 

physics that long period motions cause high surface waves in the tanks which apply large 

convective forces to the side of the tank. The histograms in Figs. 14 and 15 show respectively the 

absolute peak responses and contributions of impulsive and convective components to absolute 

peak responses. 
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Table 3 Absolute maximum dynamic response of various physical parameters of the tank liquid system  

Records Dynamic responses 

Hydrodynamic response 

Linear Nonlinear 

Impulsive Convective Total Impulsive Convective Total 

El-Centro 

EW 

Sloshing (cm) 

Base shear (kN/m) 

Base moment (kN.m/m) 

- 

54.87 (1.14) 

216.69 

(1.11) 

50.02 (0.83) 

12.27 (0.71) 

70.14 (0.72) 

50.02 (0.83) 

60.83 (1.01) 

248.34 (0.99) 

- 

54.87 (1.14) 

216.69 (1.11) 

53.68 (0.74) 

47.50 (2.10) 

216.95 (1.72) 

53.68 (0.74) 

59.20 (0.98) 

228.30 (0.93) 

Imperial 

Valley 

Sloshing (cm) 

Base shear (kN/m) 

Base moment (kN.m/m) 

- 

48.13 (1.0) 

195.40 (1.0) 

60.20 (1.0)
a 

17.15 (1.0) 

97.12 (1.0) 

60.20 (1.0) 

60.03 (1.0) 

250.19 (1.0) 

- 

48.13(1.0) 

195.40 (1.0) 

72.90 (1.0) 

22.68 (1.0) 

126.11 (1.0) 

72.90 (1.0) 

60.50 (1.0) 

245.45 (1.0) 

Landers 

Sloshing (cm) 

Base shear (kN/m) 

Base moment (kN.m/m) 

- 

48.16 (1.0) 

196.64 (1.0) 

9.44 (0.16) 

3.15 (0.18) 

19.30 (0.20) 

9.44 (0.16) 

46.92 (0.78) 

189.70 (0.76) 

- 

48.16 (1.0) 

196.64 (1.0) 

11.77 (0.16) 

29.39 (1.30) 

120.45 (0.96) 

11.77 (0.16) 

42.71 (0.71) 

170.95 (0.69) 

San-

Franscisco 

Sloshing (cm) 

Base shear (kN/m) 

Base moment (kN.m/m) 

- 

48.75 (1.01) 

197.40 

(1.01) 

1.21 (0.02) 

0.18 (0.01) 

0.94 (0.01) 

1.21 (0.02) 

48.58 (0.81) 

196.49 (0.79) 

- 

48.75 (1.01) 

197.40 (1.01) 

1.60 (0.02) 

10.68 (0.47) 

43.17 (0.34) 

1.60 (0.02) 

47.63 (0.79) 

192.31 (0.78) 

a 
The bracketed values are normalized hydrodynamic responses with respect to low frequency earthquake of Imperial Valley   

 
 

Table 4 Contributions of impulsive and convective components for absolute maximum hydrodynamic response of various physical parameters 

Records Dynamic responses 

Hydrodynamic response 

Linear Nonlinear 

Impulsive Convective Total Impulsive Convective Total 

El-Centro EW 
Base shear (kN/m) 

Base moment (kN.m/m) 

54.87 

216.69 

5.96 

31.65 

60.83 

248.34 

52.24 

206.07 

6.96 

22.23 

59.20 

228.30 

Imperial Valley 
Base shear (kN/m) 

Base moment (kN.m/m) 

45.53 

167.39 

14.50 

82.80 

60.03 

250.19 

44.43 

140.38 

16.37 

105.07 

60.50 

245.45 

Landers 
Base shear (kN/m) 

Base moment (kN.m/m) 

47.52 

192.83 

0.60
# 

3.13
# 

46.92 

189.70 

41.33 

168.80 

1.37 

2.15 

42.71 

170.95 

San-Franscisco 
Base shear (kN/m) 

Base moment (kN.m/m) 

48.75 

197.40 

0.17
#
 

0.91
# 

48.58 

196.49 

45.82 

185.54 

1.81 

6.77 

47.63 

192.31 
# 
The superscripted values indicate that the convective responses are in opposite phase with their impulsive counterparts.
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Fig. 8 Time history of impulsive and convective responses of base shear: (a) El Centro-EW (b) 

Imperial Valley (c) Landers (d) San-Franscisco 

 
Fig. 9 Time history of impulsive and convective responses of base moment: (a) El Centro-EW (b) 

Imperial Va lley (c) Landers (d) San-Franscisco 
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Fig. 10 Time history of linear and nonlinear convective base shear: (a) El Centro-EW (b) Imperial 

Valley 

 
 

Fig. 11 Time history of linear and nonlinear convective base moment: (a) El Centro-EW (b) Imperial 

Valley 

 
 

 

Fig. 12 Time history of impulsive and convective responses of base shear for Imperial Valley 

ground motion: (a) d/L = 0.5 (b) d/L = 0.2 
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Fig. 13 Time history of impulsive and convective responses of base moment for Imperial Valley 

ground motion: (a) d/L = 0.5 (b) d/L = 0.2 

 

 

Fig. 14 Quantitative result of absolute maximum values of impulsive, convective and total 

hydrodynamic responses for different ground motions: (a) Base shear (b) Base moment 

 

 

Fig. 15 Component-wise break up of peak hydrodynamic responses for different ground motions: (a) 

Base shear (b) Base moment 
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It is known that nonlinearity has no effect on the impulsive response since nonlinearity is 

associated with large amplitude sloshing and sloshing has nothing to do with impulsive response. 

Impulsive response being same in case of linear and nonlinear model the difference in overall 

dynamic behavior is decided by the difference in temporal variation of convective responses in 

case of linear and nonlinear model.    
 

6.1.3 Pressure distribution on tank wall 
The distributions of linear and nonlinear total hydrodynamic pressure on the container wall at 

the instant of maximum base shear are presented in Fig. 16. In case of low frequency ground 

motion of Imperial Valley, the nonlinear pressure resultant is more than the linear pressure 

resultant and the resultant height is also more than that of linear model. However, in case of 

intermediate and high frequency ground motions of Landers and San-Franscisco respectively, the 

nonlinearity does not have major effect on the pressure distributions for the tank walls. The linear 

pressure resultants give conservative results for hydrodynamic force on the tank wall. However 

even though the pressure resultant in case of linear model is larger, the lower resultant height 

produces less overturning base moment than the nonlinear model and hence may give non-

conservative result for overturning base moment. Hence nonlinearity of surface wave cannot be 

overruled by conservative result of hydrodynamic force on the wall even for high frequency 

motions.  

 

 

Fig. 16 Comparison of linear and nonlinear hydrodynamic pressure distribution along the height of 

tank wall: (a) El Centro-EW (b) Imperial Valley (c) Landers (d) San-Franscisco 
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Fig. 17 Distribution of impulsive and convective nonlinear hydrodynamic pressure along the height 

of tank wall: (a) El Centro-EW (b) Imperial Valley (c) Landers (d) San-Franscisco 

 

 
Fig. 18 Hydrodynamic pressure along the height of tank wall for Imperial Valley 

earthquake: (a) Impulsive (b) Convective 
 

 

Fig. 17 shows the distributions of impulsive and convective responses of pressure at the instant 

of maximum base shear for all ground motions. One can observe considerably higher contribution 

of convective response due to Imperial Valley record as compared to other earthquakes. The 

convective pressure resultant acts high up the wall. This is consistent with the other responses 

presented in Table 4 and clarifies the confusion, if any, of the reader as mentioned in paragraph 3 
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of 6.1.2. The convective pressure resultant due to high frequency San-Franscisco earthquake is 

negligibly small and that due to Landers is not appreciable compared to the impulsive response. 

The indispensability of nonlinearity of surface wave is further buttressed in Fig. 18. The 

impulsive and convective pressure distributions due to tall and shallow tank are presented in Fig. 

18. Significant increase in impulsive force is observed for tall tank of same width, which is due to 

the increased mass of liquid. The convective pressure at each point up to the depth of liquid in 

shallow tank is significantly more than those for the tall tank. 

 
 
7. Conclusions 
 

In the present study, an efficient Galerkin based two dimensional fully nonlinear finite element 

model has been developed for investigation and quantification of seismic behavior of partially 

filled rigid rectangular liquid tank under horizontal ground motions of different frequency content. 

Mixed Eulerian-Lagrangian (MEL) method based fourth order explicit Runge-Kutta scheme is 

used for the time-stepping integration of free surface boundary conditions. An artificial damping 

term μ is suitably introduced into the finite element formulation via modified surface boundary 

condition to mimic the surface damping on account of viscosity of liquid. It is defined as μ = 2ξω  

where ξ is the viscous type numerical damping and ω  is the fundamental frequency of liquid and a 

value equal to 0.0075is used for ξ. The model is capable of finding out both convective and 

impulsive responses of the hydrodynamic behavior. The effect of nonlinearity of surface wave on 

the convective response and hence on the overall hydrodynamic behaviour is investigated. 

Four different horizontal ground motions with peak ground acceleration scaled to a constant 

value of 0.2g are applied to investigate the effect of frequency content of ground motion on the 

seismic behavior of tank-liquid system. Time history analysis of sloshing elevation, structural base 

shear, overturning base moment are carried out and the results of absolute maximum values of free 

surface wave elevation, structural base shear, overturning base moment are presented. In addition 

the absolute maximum responses of impulsive and convective components of hydrodynamic 

forces are presented. The hydrodynamic responses due to linear model are depicted for 

comparison. The hydrodynamic pressure distributions on tank wall at the instant of maximum base 

shear for the choosen ground motions are compared. For completeness of investigation, numerical 

experiment is also conducted in shallow tank to study the effect of tank geometry on the dynamic 

response and in so doing the only ground motion of low frequency Imperial Valley earthquake is 

selected as external excitation.      

Important inferences drawn from the study may be summarized as follows: 

1. In time domain analysis local temporal variation of nonlinear convective response and their 

contribution to total hydrodynamic forces is equally important if not more important than the 

absolute global peak of total dynamic response and ought to be considered for the design of tank 

because of cumulative structural damage sustained by the tank. 

2. Nonlinearity of surface wave is not only important in shallow tank design but also critical in 

tall tanks subjected to low frequency ground motions and thus crucial in shaping the convective 

responses. 

3. Contrary to the generally accepted notion of dominancy of impulsive component on the 

hydrodynamic response, this study finds that although impulsive component dominates the 

hydrodynamic pressure in high frequency content earthquakes and also has a dominating share in 

total hydrodynamic response in all other ground motions, the convective components do also play 
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an important role in low frequency earthquakes. 

4. Design should not be biased on the basis of conservativeness of linear total hydrodynamic 

pressure distribution on tank wall. This is because conservativeness of hydrodynamic pressure 

does not necessarily guarantee other responses to be also conservative. 
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