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Abstract.  In this paper, an improved version of particle swarm optimization based optimum design 
algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated 
considering the provisions of American Institute of Steel Construction concerning Load and Resistance 
Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the 
grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When 
an improved version of the technique is extended to be implemented, the related results and convergence 
performance prove to be better than the simple particle swarm optimization algorithm and some other meta-
heuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed 
algorithm is also numerically investigated considering a number of numerical grillage system examples. 
 

Keywords:  optimum structural design; particle swarm optimization; minimum weight; search technique; 

combinatorial optimization; grillage systems 

 
 
1. Introduction 

 

Designing the steel structures optimally has always been the aim of structural designers. In 

recent years, structural optimization has witnessed an emergence of novel and innovative design 

techniques that strictly avoid gradient-based search to counteract with challenges that traditional 

optimization algorithms have faced for years. The basic idea behind each of these stochastic search 

techniques rests on simulating the paradigm of a biological, chemical, or social system such as 

survival of the fittest in genetic algorithm (Goldberg 1989), shortest path to food source in ant 

colony algorithm (Dorigo and Stützle 2004), best harmony of instruments in the harmony search 

algorithm (Geem and Kim 2001), immune system (Dasgupta 1999), evolution (Xie and Steven 

1997), and annealing process (Van Laarhoven and Aaarts 1998), that is automated by nature to 

achieve the task of optimization of its own.  

The long-standing research on computational efficiencies of meta-heuristic search techniques 

has clearly evinced that the design algorithms developed using these methods are suitable for 

obtaining rapid and precise solutions to optimum structural design problems as they can handle 
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both the continuous and discrete design problems equally well. Furthermore, apart from requiring 

the derivatives of the objective function and constraints, they use probabilistic transition rules 

instead of deterministic rules. A large number of optimum structural design algorithms developed 

in recent years is based on these robust techniques (Adeli and Kumar 1995, Leite and Topping 

1999, Luh and Chueh 2004, Camp and Barron 2004, Lee and Geem 2005).  

Particle swarm optimization (PSO) is a relatively new heuristic approach utilized for 

optimization problems due to its simple principle and ease of implementation. This stochastic 

search method is based on swarm intelligence (Bonabeau et al. 1999). In this meta-heuristic 

technique, there are implicit rules each member of bird flock and fish school has to abide by so 

that they can move in a synchronized way without colliding, where each individual in a flock 

maintains optimum distance from the neighboring individuals so that there is no collision within 

the flock. Particle swarm optimizer is a simulator of social behavior that is used to realize the 

movement of a birds’ flock, which is population based optimization algorithm. Its population is 

called a swarm, and each individual in the swarm is called a particle. Each particle flies through 

the problem space to search for the optimum way out. In the original particle swarm optimization 

technique (Kennedy et al. 1995), continuous design variable assumption is made. Then, 

researchers have applied this assumption in most of the applications of particle swarm 

optimization algorithm to the structural optimization problems in the literature (He et al. 2004). 

Such an assumption can not be made in the optimum design problem of steel frames where the 

steel sections for their beams and columns are to be selected from a steel profile list which consists 

of discrete values. There exist two different approaches in the literature, which convert the integer 

numbers to continuous ones; first suggested by Kennedy and Eberhart (1997) and the second 

applied by Kaveh and Talatahari (2009). The former used the binary numbers are to achieve a 

discrete set; whereas the latter rounds of the real number to the nearest integer number in the each 

iteration. The rounding off method is implemented in the present study due to its simplicity. 

However, it is realized that this technique raise convergence problems in the optimization process. 

In the present study, an improved version of particle swarm optimization is employed to overcome 

this problem where minimum weight design problem of grillages is carried out using this IPSO 

algorithm, and the results are compared with the ones obtained with classic particle swarm 

optimizer (CPSO), harmony search (HSO), simple genetic algorithm (sGA) and charged system 

search (CSS) based design algorithms. 

 

 

2. Discrete particle swarm optimizer 
 

Particle swarm optimization (PSO) algorithm is one of the recent additions to the meta-

heuristic search techniques of combinatorial optimization problems which are based on the social 

behavior of animals such as insect swarming, fish schooling and birds flocking as mentioned 

before. This social behavior is concerned with grouping by social forces that depend on both the 

memory of each individual as well as the knowledge gained by the swarm. The procedure involves 

a number of particles which represents the swarm are initialized randomly in the search space of 

an objective function. Each particle in the swarm represents a candidate solution of the optimum 

design problem. Originally particle swarm optimizer is developed for continuous design variables. 

To be able to use the method for discrete design variables, some adjustments are required. The 

basic steps of the particle swarm optimization for a general discrete optimization problem can be 

outlined as follows (Fourie and Groenwold 2002, Perez and Behdinan 2007).  
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Step 1. Initializing Particles: A swarm is composed of a pre-selected number of particles 

called as swarm size (μ). A design vector I and a velocity vector v are two set of components that 

each particle should have (Eq. (1)). The positions of variables are retained by the position vector I, 

while the velocity vector v is used to change positions during the search. Random initialization is 

used to set up each particle in the swarm such that all initial positions )0(
iI  and velocities )0(

iv  

are assigned from Eqs. (7)-(8) 

     
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In Eqs. (2)-(3), Imin and Imax are the sequence numbers of the first and last standard steel 

sections in the profile list, respectively, r represents a random number between 0 and 1; ∆t is 

referred to as the time step increment. 

Step 2. Evaluating particles: The analysis of the structure is carried out with the potential 

designs represented by each particle. The objective function values (fj) are evaluated using the 

design space positions. 

Step 3. Updating the particle’s best and the global best: Particle’s best (Pbest) refers to the 

particle’s best position which the best design is having minimum objective function during 

iterations so far. Each particle has a vector B containing the particle’s best. Another vector G stores 

the best feasible design obtained by any particle since the beginning of the process (Eq. (4)), which 

is the global best position (gbest). Both the particles’ bests and the global best are updated at the 

current iteration k.  
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Step 4. Updating a Particle’s Velocity Vector: The velocity vector of each particle is updated 

using Eq. (5) considering the particle’s current position, the particle’s best position and global best 

position. 
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Where, w is the inertia of the particle which controls the exploration properties of the algorithm; 

r1 and r2 
are random numbers between 0 and 1; and c1 and c2 are the trust parameters, indicating 

how much confidence the particle has in itself and in the swarm, respectively. 

Step 5. Updating a Particle’s Position Vector: Using the updated velocity vector, the position 

vector of each particle is updated (Eq. (6)), which is rounded to nearest integer value for discrete 

variables. 
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Step 6. Termination: The steps 2 through 5 are repeated until the termination criterion which 

is the pre-selected maximum number of cycles (Nite) is reached. 
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3. Improved particle swarm optimizer 
 

Particle swarm optimization technique based optimum design algorithm necessitates updating 

the positions of all the particles using Eqs. (7)-(8). During the procedure, particles’ velocities and 

positions change, and these changes lead to revisions of particle and global bests. Numerical 

applications indicate that when the velocities are updated through the use of Eq. (4), the current 

and best positions of all the particles in the swarm are eventually dragged to the position identified 

by the global best position. Hence, the current and best positions the particles become identical to 

the global best resulting in almost zero velocity vectors. In the present study, the following 

equations are reported to tackle with this problem in IPSO.  
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Where, r3 is a random number between 0 and 1; Ns is referred to as the number of steel sections 

in the profile list; and i  is 0-1 heaviside function implemented by sampling a random number r 

between 0 and 1. In IPSO, the role of additional term in Eq. (7) is to facilitate flying of the 

particles when the swarm is collected as a whole in the same region of the design domain. Through 

this term, some particles are enforced to move randomly in certain directions to keep the mobility 

the swarm alive to carry on an effective search process. Probabilistically speaking, Eq. (8) implies 

that the each iteration of the half of the particles in the swarm is given a random velocity in one 

direction. A verification of the value 1/2Nd in Eq. (8) has been conducted using a number of test 

problems. It has been found that higher values, such as 1/Nd or 2/Nd might turn the search into a 

randomized process, whereas lower values (e.g., 1/4Nd) would be insufficient or less effective to 

prevent stagnation of the algorithm. 

The additional term in PSO serves to provide communication between particles in order to 

accelerate the convergence rate of the algorithm. Therein, a particle is encouraged to modify its 

velocity based on the position of another particle in the swarm. The new formulated equation has 

been observed to eliminate the aforementioned drawback and greatly improve the efficiency of the 

technique. The improvements in the technique are demonstrated by several numerical examples 

that are explained in section 5. 

Constraint handling: In this study, fly-back mechanism is used for in handling the design 

constraints, which is proven to be effective in Arumugam et al. (2008). Once all particle positions 

(I
i
) are generated, the objective functions are evaluated for each of these and the constraints in the 

problem are then computed with these values to find out whether they violate the design 

constraints. If one or a number of the particle gives infeasible solutions, these are discarded and 

new ones are re-generated. If a particle is slightly infeasible, then such particles are kept in the 

solution. These particles having one or more slightly infeasible constraints are utilized in the 

design process which might provide a new particle that may be feasible. This is achieved by using  
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(a) Simple steel grillage (b) End forces and displacements of a grillage member 

Fig. 1 Typical grillage system 

 

 

larger error values initially for the acceptability of the new design vectors. Later, this value could 

be gradually reduces during the design cycles. Finally, an error value of 0.001 or any value that is 

required to be selected for the permissible error term towards the end of iterations could be used. 

This adaptive error strategy is found quite effective in handling the design constraints in large 

design problems. 

 

 

4. Optimum design of grillage systems 

 
Grillage systems are widely used in structures to cover large areas such as in bridge decks, 

airplane wings, ship hulls and floors. The design of these systems is one of the problems of steel 

structures that practicing engineers have to deal with. Optimum design of a typical grillage system 

shown in Fig. 1 aims at finding the cross sectional properties of transverse and longitudinal beams. 

In this case, the response of the system under the external loading should be within the allowable 

limits described in a code of practice while the weight or the cost of the system is the minimum. In 

one of the previous studies on grillage systems, the optimum design problem is formulated by 

treating the moment of inertias of the beams and joint displacements as design variables (Saka 

1987). Stiffness, stress, displacement and size constraints are included in the design formulation. 

The effect of warping is taken into account in the computation of the stresses in the grillage 

members. The nonlinear programming problem is solved by the approximating programming 

method (Saka 1981). The formulation of the same design problem is carried out only by treating 

the cross-sectional areas of members in the grillage system in (Saka 1981, Kaveh and Talatahari 

2010) where the warping and shear effects are also taken into account in the computation of the 

response of the system. Displacements, stress and size limitations are included in the design 

formulation according to ASD-AISC (Allowable Stress Design – American Institute of Steel 

Construction) code. The solution of the optimum design problems is obtained using optimality 

criteria approach. In (Saka and Erdal 2009), harmony search algorithm is used to determine the 

optimum wide flange beam sections (W) for the members of grillage system from the set of 

LRFD-AISC sections. The deflection limitations and the allowable stress constraints are 

considered in the formulation of the design problem. 
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4.1 Optimum design problem to LRFD-AISC 
 

If the design variables are selected from steel sections from W-sections list of LRFD-AISC, 

optimum design problem of a grillage steel structure, consisting of Nk members that are collected 

in Nd 
design variables, according to LRFD-AISC (1999) code yields the following discrete 

programming problem. In order to find a vector of integer values I representing the sequence 

numbers of steel sections assigned to Nd member groups, the following formulae are applied to 

minimize the weight of the grillage system. 

 
dN

T III ,...,, 21I                           (7) 

 
 


d kN

k

N

i
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1 1

                     (8) 

Where mk is the unit weight of grillage belonging to group k to be selected from W-sections list 

of LRFD-AISC, Nt is the total number of groups in the grillage system. li is the length of member i. 

The grillage system members are subjected to following behavioral constraints. 

pjandjuj ,........,2,11/                    (9) 

nmrandMM nrbur ,.......,2,11)/( 
 
              (10) 

nmrandVV nrvur ,........,2,11)/(                 (11) 

Where δj in Eq. (9) is the displacement of joint j and δju is its upper bound. The joint 

displacements are computed using the matrix displacement method for grillage systems. Eq. (10) 

represents the strength requirement for laterally supported beam in load and resistance factor 

design according to LRFD-F2. In this inequality Ø b is the resistance factor for flexure which is 

given as 0.9, Mnr is the nominal moment strength and Mur is the factored service load moment for 

member r. Eq. (11) represents the shear strength requirement in load and resistance factor design 

according to LRFD-F2. In this inequality Ø v represents the resistance factor for shear given as 0.9, 

Vnr is the nominal strength in shear and Vur is the factored service load shear for member r. The 

details of obtaining nominal moment strength and nominal shear strength of a W-section according 

to LRFD are given in the following. 

 

4.2 Grillage analysis 
 
The structural analysis of the grillage system that is required to determine its response under 

the external loads is carried out using the matrix displacement method. The joint displacements 

vector of a grillage element r which connects joints i and j is related to the vector of joint loading 

in global coordinate system as {P}r = [K]r{D}r

 
where [K]r is the stiffness matrix of the grillage 

member r in global coordinates. This matrix is obtained by carrying out triple matrix 

multiplication        r
T

rr BkBK   where [B]r is the displacement transformation matrix and [k]r is 

the stiffness matrix of the grillage member r in local coordinates. The stiffness matrix of member r 

in global coordinates has the following form. 
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in which E is the modulus of elasticity, G is the shear modulus, I is the moment of inertia about 

major axis , J is the torsional moment of inertia of the cross section and L is the length of grillage 

element. α is the angle between the local x axis of the element and the global X axis. The overall 

stiffness matrix of the grillage system is obtained by collecting together the stiffness matrices of 

each member in global coordinates. The solution of the stiffness equations {P} = [K]{D} yields to 

the joint displacements. Once the joint displacements are obtained the vector of member end forces 

for each member is then computed from {F}r = [k][B]r{D}r where {F}r represents the vector of 

member end forces for member r shown in Fig. 1(b). 

 

4.3 Classification of cross sections and shear for laterally supported rolled beams 
 

In the computation of the nominal flexural strength Mn of a laterally supported beam, it is  

519



 

 

 

 

 

 

Ferhat Erdal, Erkan Doğan and Mehmet Polat Saka 

 

Fig. 2 Flowchart for determining nominal flexural strength 

 
Table 1 Limiting width to thickness ratios for I-beams 

Type of Element λp λr 

Outstand Element of Compression Flange 
yF

E
38.0  

ry FF

E


83.0  

For web, with neutral axis at mid-depth 
yF

E
76.3  

yF

E
70.5  

 

 

necessary first to determine the classification of cross sections. In compact sections, local buckling 

of the compression flange and the web do not occur before the plastic hinge develops in the cross 

section. On the other hand in practically compact section, the local buckling of compression flange 

or web may occur after the first yield is reacted at the outer fiber of the flanges. The flowchart for 

checking procedure is given in Fig. 3 according to LRFD-AISC specification.  

In this figure, λ = bf/(2tf) is the slenderness parameter for I-shaped member flanges, in which bf 

and tf represent the width and the thickness of the flange respectively, similarly; λ = h/tw is the 

same for beam web, in which h = d – 2k plus allowance for undersize inside fillet at compression 

flange for rolled I-shaped sections. d is referred to as the depth of the section and k is the distance 

from outer face of flange to web toe of fillet. tw denotes the web thickness. h/tw values are readily 

available in W-section properties table. λp and λr are given in Table 1 according to LRFD-B5.1 

provision.  

In which, E is the modulus of elasticity and Fy is the yield stress of steel. Besides, Fr represents 

the compressive residual stress in flange which is given as 69 MPa for rolled shapes in the code. It 

is apparent that Mn is computed for the flange and for the web separately by using corresponding λ 

values. The smallest amongst all is taken as the nominal moment strength of the W section under 

consideration. According to LRFD-AISC-F2.2, nominal shear strength of a rolled compact, semi-

compact and slender W section is given in Fig. 3. Where, Fyw represents the yield stress of web 

steel. Vn is computed from one of the expressions of Fig. 4 depending upon the value of h/tw of the 

W section under consideration. 
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Fig. 3 Shear capacity of un-stiffened webs 

 

 

5. Design examples 
 

In this section, improved particle swarm based optimum design algorithm presented in the 

previous sections is used to design of three different grillage systems to test and compare the 

numerical performance of this proposed technique with other heuristic search methods according 

to LRFD-AISC code provisions. Sections are assumed to be made up of A36 mild steel, which has 

the yield stress of 250MPa. The values of 205kN/mm
2
 and 81kN/mm

2 
are used for the modulus of 

elasticity and the shear modulus, respectively. The discrete set from which the design algorithm 

selects the sectional designations for grillage members is considered to be the complete set of 272 

W-sections starting from W100×19.3 to W1100×499mm as given in LRFD-AISC. The sequence 

number of each section in the set is used as design variable. 

 

5.1 Cantilever grillage system with 14-members 
 

The 14-member cantilever simple grillage system shown in Fig. 4 is selected as the first 

numerical design example to solve the optimum design algorithm developed. The dimensions, 

member grouping and the external loading of the system are also shown in Fig. 5. The upper 

bound imposed on vertical deflections of joints 7 and 8 is restricted to 20 mm while the strength 

constraints (2) and (3) are implemented from LRFD-AISC. The system is designed by collecting 

the grillage members in two different groups. The longitudinal beams are considered to be group 1 

and the transverse beams are taken as group 2 as shown in Fig. 4.  

After 32 cycles, the sectional designations that correspond to the sequence numbers given in 

the first row are W530×74 for group 1 and W200×15 for groups 2 which yield to a grillage system 

with a weight of 890.6 kg. The analysis of the system with these sections resulted in 14.4 mm 

maximum vertical displacements at joints 5, 6, 7 and 8. The strength ratios of (2) computed for 

these sections are 0.89 for member 1. These values clearly indicate that improved particle swarm 

optimizer should be continued to determine even a better combination because the safety margin 

on strength constraints is large. The minimum weight design of the cantilever grillage system 
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Fig. 4 Cantilever grillage system with 14-members 

 
Table 2 The parameter data set of particle swarm algorithm 

Search Method 
Optimum W-Section 

δmax (mm) 
Maximum 

Strength Ratio 

Minimum Weight 

(kg) Group 1 Group 2 

IPSO W460×74 W150×13.5 17.8 0.98 872.23 

CPSO W530×74 W200×15 14.4 0.89 890.58 

ECSS W530×72 W150×13.5 7.39 0.91 847.20 

 

 

obtained after 90 steps is given in Table 2. The sectional designations for this combination are 

W460×74 and W150×13.5 which yield to a grillage system with a weight of 872.2 kg. With these 

sections the vertical displacements of joints 5, 6, 7 and 8 are 17.8 mm, and maximum strength 

ratio is 0.97 for member in group 1. This result indicates that strength constraints are more 

dominant from displacement in the design problem. Further use of particle swarm method with 

more than 10000 iterations produces the same combination. Accordingly, as compared to the 

solution of the standard algorithm (CPSO), which is 890.58 kg, a much better final design weight 

of 872.23 kg is located by the improved PSO method. The improved and classical PSO results are 

also compared to those of enhanced charged system search (Kaveh and Nikaeen 2013). 

Consequently the solution found in Table 2 represents the optimum solution for IPSO which 

corresponds to the grillage system with sections W460×74 selected for longitudinal members and 

W150×13.5 chosen for transverse members. ECSS approach found the minimum weight of the 14-

member grillage as 847.2 kg, which is only 2.87% lighter than IPSO algorithm.  

 
5.2 Simply supported grillage system with 40-members 
 

Fig. 5 shows the geometry of a 40-member grillage which are collected in four different groups.  
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Fig. 5 Grillage system with 40-members 

 

 

The outer and inner longitudinal beams are considered to be group 1 and 2 respectively while the 

outer and inner transverse beams are taken as group 3 and 4.  

The vertical displacements of joints 6, 7, 10 and 11 are restricted to 25mm for this 40-member 

grillage system. Considering stochastic nature of the PSO method, 40-member grillage is 

separately solved with both improved and standard versions of particle swarm algorithms. The 

results are compared to those of the harmony search, charged system search and genetic algorithm 

to demonstrate the efficiency of the present approach. The size of the initial population and the 

maximum number of generations are kept the same in the harmony search method, charged system 

search and genetic algorithm. The parameterization of the improved method is conducted in line 

with the recommendations of the former studies (Shi and Eberhart 1998), and hence the following 

parameter value set is used in solving the problem: population size of NPT=20, maximum search 

number of Ns=10.000, control parameters of c1 and c2=1.0, inertia weight of w=0.08, the system 

parameter of Vmax=2 and time step value of t =2. The minimum weight designs of the grillage 

obtained from the improved and standard algorithms of PSO and other three stochastic search 

techniques are given in Table 3 with sectional designations attained for all member groups used in 

the design problem. 

Accordingly, as compared to the solution of the standard algorithm (CPSO), which is 7198.2 kg, 

a much better final design weight of 7138.04 kg is located by the improved particle swarm 

algorithm (IPSO). Furthermore, it is noticed that the maximum vertical displacement is 24.6 mm 

while the maximum value of the strength ratio is 0.99 which is almost upper bound. This clearly 

reveals both the strength and geometric constraints are dominant in IPSO algorithm. The design 

history curve for these solutions is plotted in Fig. 6, which displays the variation of the feasible 

best design obtained so far during the search versus the number of designs sampled. It is clear 

from this figure that the IPSO algorithm performs the best convergence rate toward the optimum 

solution. In an effort to compare the solution of IPSO algorithm with those of other metaheuristic 

techniques, these techniques yield the following design weights for the same problem: 7168.0 kg 

with charged system search (Kaveh and Talatahari 2010), 7198.2 kg with harmony search method 

(Saka and Erdal 2009), and 8087.91 kg with simple genetic algorithm (Saka 1998). 
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Table 3 The parameter data set of particle swarm algorithm 

Search Method 
Optimum W-Section 

δmax (mm) 
Maximum 

 Strength Ratio 

Minimum 

 Weight (kg) Group No Designation 

IPSO 

1 

2 

3 

4 

W150×13.5 

W150×13.5 

W760×147 

W840×176 

24.6 0.99 7138.04 

CSS 

1 

2 

3 

4 

W410×46.1 

W460×52 

W150×13.5 

W1000×222 

23.7 0.99 7168.05 

CPSO 

1 

2 

3 

4 

W410×46.1 

W460×52 

W200×15 

W1000×222 

23.2 0.99 7198.21 

HSO 

1 

2 

3 

4 

W410×46.1 

W460×52 

W200×15 

W1000×222 

23.2 0.99 7198.21 

sGA 

1 

2 

3 

4 

W150×13.5 

W610×92 

W410×46.1 

W840×226 

24.7 0.84 8087.91 

 

 

Fig. 6 Design history graph for 40-member grillage system 
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Fig. 7 Variation of weight versus member grouping using IPSO 

 
Table 4 The Variation of best designs with member grouping for 40-member grillage 

Number of Groups 
Maximum Displacement  

Ratio 

Maximum Strength 

Ratio 
Minimum Weight (kg) 

1 0.97 0.73 14499.8 

2 0.98 0.81 7729.5 

4 0.89 0.99 7138.1 

8 0.86 1.00 9403.2 

 

 
5.2.1 The effect of member grouping to minimum weight 
Member grouping in the optimum design of grillage systems has a considerable effect on the 

minimum weight and it is more appropriate to consider parameters as a design variable if a better 

design is looked for. In order to demonstrate this effect, 40-member grillage system is designed 

several times by considering different member groupings. The variation of the minimum weight with 

the member grouping using IPSO method is plotted in Fig. 7. It is clear from this figure that when 

the optimum design problem is carried out considering only one member group, the minimum 

weight of the system turns out to be 14499.8kg. While the longitudinal members are considered as 

one group and the transverse ones are collected in another member group, the minimum weight 

drops down almost by half to 7729.5kg. Further reduction is possible if longitudinal members are 

collected in two groups and transverse members are considered as another group. It is apparent from 

Table 5 that consideration of four member groups represents the optimum grouping for 40-member 

grillage system with 7138.04kg. Finally, the number of groups is increased from 4 to 8 in both 

directions. It is interesting to notice that when all the members are allowed to have separate groups, 

the minimum weight of the grillage system also increases from 7138.04kg to 9403.1kg.  

Furthermore, it is also evident from Table 4 that for the larger number of groups, the strength 

constraints becomes dominant in the design problem, while for the cases where less number of 
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Fig. 8 Steel grillage system with 112-members 

 

 

groups is considered, the displacement constraints become dominant. 

 
5.2 Simply supported grillage system with 112-members 
 

The grillage system shown in Fig. 8 has 112 members which are firstly collected in two 

different groups. The longitudinal beams are considered to be group 1 while the transverse beams 

are taken as group 2. The external loading distributed to the joints of the system as point loads is 

also shown in the same figure. The vertical displacements of joints 18, 19, 25 and 26 are restricted 

to 25mm for this system. The 112-member grillage is separately solved by improved and standard 

version of PSO. The results are compared to those of the HSS and CSS techniques to demonstrate 

the efficiency of the suggested algorithm. The result of the sensitivity analysis, carried out to 

determine the appropriate values of the PSO is given with more detail in Shi and Eberhart (1998). 

The values of 10 for NPT, 1.0 for c1 and c2, 1 for w and 2 for Vmax and Δt produce the least 

weight design for this grillage. Optimum design obtained with these parameters is given in Table 

5. 

IPSO algorithm selects W150×13.5 for the first group and W760×147 for the second group in 

the optimum design where the minimum weight of the system is 13465.0kg. Furthermore, the 
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Table 5 Best designs of 112-member grillage system for the case of two groups 

Search Method 
Optimum W-Section δmax 

(mm) 

Maximum 

Strength Ratio 

Minimum 

Weight (kg) Group No Designation 

IPSO 
1 

2 

W150×13.5 

W760×147 
23.9 0.49 13464.9 

CSS 
1 

2 

 

W150×13.5 

W770×147 
24.3 0.45 13519.2 

CPSO 
1 

2 

 

W150×13.5 

W760×161 
24.1 0.50 14664.1 

HSO [36] 
1 

2 

W200×15 

W690×192 
23.2 0.48 17363.4 

 

 

Fig. 9 Design history graph for 112-member grillage with two groups 

 

 

maximum vertical displacement is 23.9 mm while the maximum value of the strength ratio is 0.49 

for IPSO method. This clearly reveals the fact that the displacement constraints are dominant for 

this design problem. In the case where the beams of the grillage system are collected in two groups 

these produced optimum design weight 8.9% lighter than a design weight of 14664.1kg obtained 

with standard PSO algorithm. These designs are shown in Table 5 with sectional designations 

attained for two groups used in the problem. Fig. 9 shows the design history graph obtained for 

these two solutions. The attempts to optimize this grillage with other metaheuristic techniques 

yield higher final design weights of 13519.0 kg with charged system search and 17363.4 kg with 

harmony search algorithm methods, which are also tabulated in Table 5 for comparison purposes. 

Later, the members of the 112-member grillage are collected in four groups to get a better 

design for the system. Both IPSO and CPSO algorithms are performed independently using the 

same parameter value set employed in the previous part. IPSO algorithm exhibited a rapid and  

10000

15000

20000

25000

30000

35000

0 2000 4000 6000 8000

Number of Iterations

B
e
st

 F
e
a

si
b

le
 D

e
si

g
n

 (
k

g
)

CPSO

HSO

IPSO

527



 

 

 

 

 

 

Ferhat Erdal, Erkan Doğan and Mehmet Polat Saka 

 

Fig. 9 Design history graph for 112-member grillage with four groups 

 
Table 6 Best designs of 112-member grillage system for the case of four groups 

Search Method 
Optimum W-Section δmax 

(mm) 

Maximum 

Strength Ratio 

Minimum 

Weight (kg) Group No Designation 

IPSO 

1 

2 

3 

4 

W310×23.8 

W250×17.9 

W310×23.8W

920×201 

24.5 0.99 9980.2 

CSS 

1 

2 

3 

4 

W150×13.5 

W840×176 

W150×13.5 

W300×21 

24.4 0.75 11548.0 

CPSO 

1 

2 

3 

4 

W250×80 

W250×32.7 

W360×79 

W840×193 

25.0 0.69 12057.3 

HSO 

1 

2 

3 

4 

W200×15 

W200×15 

W460×192 

W610×307 

22.8 0.99 14362.0 

 

 

linear convergence towards the optimum in the early stages of the optimization process and 

produced lightest design where the minimum weight of the system is 9980.2 kg, which is 20.8% 

lighter than the same system with two groups. CSS approach found the minimum weight of the 

112-member grillage as 11548.0 kg, which is 15.7% heavier than the previous one. The other 
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An improved particle swarm optimizer for steel grillage systems 

minimum weights obtained by CPSO and HS methods are 20.8% and 43.9% heavier, respectively 

than the minimum weight achieved by IPSO. In this design example HS method has attained the 

heaviest design. The design history curve of 112-member grillage collected in four groups for PSO 

and HS techniques is plotted in Fig. 10. The optimum designs obtained by all methods for this case 

are tabulated in Table 6 with section designations attained for each member group, and are 

considered to be the optimum solution of the problem reached in the present study.   

 

 
6. Conclusions 
 

An improved version of particle swarm based minimum weight design algorithm developed 

produces satisfactory results for the optimum design problem of grillage systems where the design 

constraints are implemented as in LRFD-AISC provisions. The algorithm of the presented method 

is mathematically quite simple but robust in finding the solutions of combinatorial optimization 

problems. Convergence problem encountered during the iteration process is overcome by 

employing an improved version of the suggested algorithm. The efficiency of the proposed 

algorithm is numerically tested with various design examples on size optimum design of grillage 

systems. The design history graphs generated for these problems using improved and standard 

PSO algorithms clearly evidence a significant performance improvement achieved with the former. 

Comparison of the optimum designs attained by improved particle swarm optimizer with other 

search techniques also clearly demonstrates that the improved version of the method outperforms 

the latter in the selected design examples. It produces lighter optimum designs and requires less 

number of structural analyses, which makes it computationally more efficient. However, it should 

be stated that performance of the algorithm depends on the selection of appropriate values for its 

parameter similar to the cases of other meta-heuristic techniques. Furthermore, it is not possible to 

generalize the robustness of the algorithm for all design problems just based upon its performance 

in the optimum design of few grillage systems considered in this study.  It is necessary to carry 

out a more detailed comparative study before such a conclusion can be drawn. 
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