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Asymmetric transient thermal stress of a functionally graded
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Abstract.  This paper is concerned with the theoretical treatment of transient thermoelastic problems
involving a functionally graded hollow cylinder with piecewise power law due to asymmetrical heating from
its surfaces. The thermal and thermoelastic constants of each layer are expressed as power functions of the
radial coordinate, and their values continue on the interfaces. The exact solution for the two-dimensional
temperature change in a transient state, and thermoelastic response of a hollow cylinder under the state of
plane strain is obtained herein. Some numerical results for the temperature change and the stress
distributions are shown in figures. Furthermore, the influence of the functional grading on the thermal
stresses is investigated.

Keywords: thermal stress problem; functionally graded material; hollow cylinder; piecewise power law;
transient state; asymmetrical heating; plane strain problem

1. Introduction

Functionally graded materials (FGMs) are nonhomogeneous material systems that two or more
different material ingredients change continuously and gradually, and are used as constituents of
the beam, strip, plate and shell types. The concept of FGMs was proposed as a new material which
is adaptable for a super-high-temperature environment at first in Japan. In recent years, the concept
of FGMs has been applied in many industrial fields such as engineering, chemical plant,
electronics, energy conversion, optics, biomaterials and so on in addition to the aerospace field
(Miyamoto et al. 1999, Ichikawa 2001). FGMs subjected to several thermal loading consist of
metals and ceramics as their constituents, and are remarkable heat-resistant materials for relaxation
of thermal stress. Therefore, it is necessary to analyze the thermal stress problems for FGMs.
Because the governing equations for the temperature field and the associate thermoelastic field of
FGMs become of nonlinear form in generally, the analytical treatment is difficult. It is well-known
that thermal stress distributions in a transient state can show large values compared with the one in
a steady state. Therefore, the transient thermoelastic problems for FGMs become important. The
analytical treatment of the transient thermoelastic problems is more difficult.

As the analytical treatment of the thermoelastic problems of FGMs, there are two pieces of
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treatment mainly. One is introducing the theory of laminated composites, which have a number of
homogeneous layers along the thickness direction. Using the theory of laminated composites, the
transient thermal stress problems of several analytical models (Tanigawa et al. 1989, Ootao and
Tanigawa 1994, Sugano et al. 1996, Ootao and Tanigawa 1999) were analyzed theoretically.

The other analytical treatment is the exact analysis under the assumption that the material
properties are given in the specific functions containing the variable of the thickness coordinate
without using the laminated composite model. Examples of exact transient thermal stress analysis
for FGM plate type structures are as follows. Sugano (1987) analyzed exactly one-dimensional
transient thermal stresses of nonhomogeneous plate where the thermal conductivity and Young’s
modulus vary exponentially, whereas Poisson’s ratio and the coefficient of linear thermal
expansion vary arbitrarily in the thickness direction. Vel and Batra (2003) analyzed the
three-dimensional transient thermal stresses of the functionally graded rectangular plate. Ootao
and Tanigawa (2005) analyzed the transient thermal stress problems of a functionally graded
rectangular plate, where the thermal conductivity, the coefficient of linear thermal expansion and
Young’s modulus vary exponentially in the thickness direction, due to nonuniform heat supply.

On the other hand, examples of exact analysis for FGM shell type structures are as follows.
Obata and Noda (1994) analyzed one-dimensional thermal stress problem of functionally graded
hollow cylinder and hollow sphere using a perturbation method. Zimmerman and Lutz (1999)
presented the exact solution for one-dimensional thermal stresses of functionally graded cylinder
whose elastic modulus and coefficient of linear thermal expansion vary linearly with the radius. Ye
et al. (2001) presented the exact solution for the axisymmetric thermoelastic problem of a
uniformly heated functionally graded transversely isotropic cylindrical shell, assuming that the
modulus of elasticity and the coefficient of linear thermal expansion vary with the power product
form of radial coordinate variable. Tarn (2001) presented the exact solutions for functionally
graded anisotropic cylinders subjected to thermal and mechanical loads. Jabbari er al. (2003)
presented the exact solutions for thermal stresses of functionally graded hollow cylinder whose
material properties vary with the power product form of radial coordinate variable due to
nonaxisymmetric loads. Poultangari et al. (2008) obtained the two-dimensional exact solutions for
thermal stresses of functionally graded sphere whose material properties vary with the power
product form of radial coordinate variable. Jabbari et al. (2007) presented the analytical solution
for three-dimensional thermal stresses in a short length functionally graded hollow cylinder whose
material properties vary with the power product form of radial coordinate variable. You et al.
(2007) analyzed the thermoelasatic problem of functionally graded cylindrical vessels under
internal pressure and uniform temperature by a simple and accurate method. Peng and Li (2009)
analyzed the thermoelastic problem of functionally graded annulus with arbitrary gradient. Vel
(2011) analyzed the thermoelastic problem of functionally graded anisotropic hollow cylinders,
whose thermoelastic constants are expressed as Taylor’s series. These papers, however, only
treated the thermoelasic problems under steady temperature distribution.

As a transient thermoelastiv problem of FGM shell type structures, one-dimensional and
two-dimensional solutions for transient thermal stresses of a functionally graded hollow cylinder
whose material properties vary with the power product form of radial coordinate variable were
obtained by Ootao and Tanigawa (2006, 2009). Zhao et al. (2006) analyzed the one-dimensional
transient thermo-mechanical behavior of a functionally graded solid cylinder, whose thermoelastic
constants vary exponentially through the thickness. Shao et al. (2007) analyzed one-dimensional
transient thermo-mechanical behavior of functionally graded hollow cylinders, whose
thermoelastic constants are expressed as Taylor’s series.
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However, these studies discuss the thermoelastic problems of one-layered FGM models, which
have the big limitation of nonhomogeneity. On the other hand, the arbitrary nonhomogeneity can
be expressed in the theory of laminated composites approximately. But the theory of laminated
composites has a weak point that the material properties are discontinuous on such interface. Guo
and Noda (2007) proposed a piecewise-exponential model, for the crack problems in FGMs with
arbitrary material properties which are continuous on each interface in order to improve the
ordinary theory of laminated composites. Ootao (2010) analyzed the transient thermoelastic
problem in the FGM hollow cylinder by a piecewise-power model when material properties can be
expressed by piecewise power law. To the author’s knowledge, however, the two-dimensional
analysis for transient thermoelastic problems of FGM shell type structures with piecewise-power
law has not been reported.

From the viewpoint of above mentioned, we analyze the transient thermoelastic analysis for a
functionally graded hollow cylinder with piecewise power law due to asymmetrical surface
heating to guarantee arbitrary nonhomogeneity of material properties.

2. Analysis

The infinite long, functionally graded hollow cylinder consists of many layers whose material
properties are expressed by piecewise power law of position. The thermal and thermoelastic
constants of each layer are expressed as power functions of the radial coordinate, and their values
continue on the interfaces. The hollow cylinder’s inner and outer radii are defined r», and r,,
respectively. Moreover, r;is the outer radius of ith layer. Throughout this article, indices i (=1,2,...,
N) are associated with the ith layer from the inner side of a functionally graded hollow cylinder.

2.1 Heat conduction problem

We assume that the functionally graded hollow cylinder is initially at zero temperature and is
heated from the inner and outer surfaces by surrounding media with relative heat transfer
coefficients (heat transfer coefficient/thermal conductivity) 4, and 4,. We denote the temperatures
of the surrounding media by the functions 7,/,(¢) and T,f;(6). Then the temperature distribution
shows a two-dimensional distribution in » — & plane, and the transient heat conduction equation for
the ith layer is taken in the following form

o, 10 oT, 1 o o7,
() —=Lt==—| 4, =L |+ 5—| A,(r) =L |si=1-, N 1
cl(r)pz(r) 81 rar( tl(r)r arJ r2 80( tl(r)aej ! ()

The thermal conductivity 4, and the heat capacity per unit volume c¢,p; in each layer are assumed
to take the following forms

A.(r)= A/ )" )

c(Npr=cprir)" 3)
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where

_InCL A Il /6

i _ = ,l=1,,N (4)
ln(r,» / VH) In(7; /7))

InEq. (4), %, and 7, are

nhn=r,, ry=1 %)

Substituting the Egs. (2) and (3) into the Eq.(1), the transient heat conduction equations in
dimensionless form are

E_Okm

K1 (Wl +1)}"m i 1@4_’7%—/& 627_: —m;—k,~2 827—1

8172 +r l];i:1)27.'.’N (6)

92

The initial and thermal boundary conditions in dimensionless form are

T:O, 7_::0 5 l:1,2,,N (7)
oT, =
77:_(1, __I_H T _HaTafa(g) (8)
or
17:_1'9 ]Ti:f+1 ; i:1,2,"-,N—1 (9)
Pl =2 T i1, N - (10)
or T oor
7,
Fel 86N+HT _H.T.1.(0) (11)

In Egs. (4)-(11), we introduced the following dimensionless values
= o 2
(T;,T;,T) ( 9 aaT)/ (I", 13 ) (7", ,9 a)/rbz T= Ztol/(copo’”b )’

’?}0:2’0 /(Copo) ( (7 tl) (;tn’;t?z)/ﬁto’ (Ha’Hb):(ha’hb)’?) (12)
where T; is the temperature change; ¢ is time; and 7, 40 and cgp, are typical values of temperature,
thermal conductivity, and heat capacity per unit volume, respectively. For the sake of simplicity of
analysis, we assume that the temperature functions f,(6) and f;(¢) are symmetrical with respect to
= 0, and expand the functions into the following Fourier’s series forms
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9 0
{?EQ;}=Z{ZQ}cosq0 (13)

a4, _8_q | f,(0) B 1:;9=0
{bq}_ o {ﬁ(e)}wsqug’gq _{2 =123 (14)

Introducing the Laplace transformation with respect to the variable r and the method of separation
of variables, the solution of Eq. (6) can be obtained so as to satisfy conditions (7)-(11). This
solution is shown as follows

_ 1 - = M|
Z(?,@,r):F(Ai’O+Bi’077”"")+27 A 75+ Bl F)cosq 0
0

IR 2 Xp[_ﬂf, & o m k)]
q=0 j=1 ll’l]] q(yl]) 4 ra t
_m —k; _m,-fk,»
X[Alq ;/(Qﬂlj 2 )+qu ;/(Qll’llj : )]Cosqe (15)

where J( ) and Y,() are the Bessel functions of the first and second kind of order x, respectively.
And A, and F, are the determinants of 2N x2N matrix [af,] and [ef, ], respectively; the

coefficients A iq and B iq are defined as the determinant of the matrix similar to the coefficient
matrix [ a/; ], in which the (2i-1)th column or 2ith column is replaced by the constant vector {c/ },

respectively. Similarly, the coefficients A’ i,and B’ are defined as the determinant of the matrix
similar to the coefficient matrix [ ef, ], in which the (2i-1)th column or 2ith column is replaced by

the constant vector {c/ }, respectively. The nonzero elements of the coefficient matrices [a}; ], [

e}, ] and the constant vector { ¢/ } are given as

m—k

- —k m -
af, =7 2| 1= —— D —H | (w2
1,1 {|:( )(71 2_ 1+kl)a a:| ;/1( 1"a )

_m=h _mh
_:Ul(l_ )I’ ? J;/l+l(ll’ll’7a 2 )},

—k m -7k
al, =7 1- DY(y, — ! P —-H Y (ur, 2
12 {|:( )(7/1 2_m1 +k1 a a:| " (lul a )
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_m—ky m—ky
_ﬂl(l_ 1),, ? Yyl+1(ﬂ1 2 )}
m
Ay N1 = {(l_ > N)(VN m)_i_l—[b}]m(ﬂN)
N TRy

=" R0 ).

m, —k
Ay oy = {(l - %)(ﬂﬁv - m) + Hb}% (4y)
m, —k
— py(1 —%)YWMN) (16)
_m; 17m —k; _m; 17ml-—k
agi,Zi—l =7 2 J;/ (wr, * ), azqi,zi =7 ? Yy (wr, 7 ),

q — 7 2 = 2 q — 7 2 2
Dripiv1 = 1 J;/M (47, )s @yinin =T, me (47, ),

= m, —k, m, _ _l-—
Aynig =1 7 {(1_ Wy, — P )7 lJy,- (wr; )

m — k m; —k; - m; —k;
— u;(1- ’2 or 2 J, a(un 2 )},

= m, — k. m, o ik
Ay =7; {(l— Sy Y (ui 7))

i

m —k _mi—k; 17m,-—kl-
_lui(l_ 12 Z)Z ? YY;+1(/'liFi ? ):|9

_ My —kis

1+k )Fii]JyM (/Ui+1’7i ? )

i+l

— m,, —k
q = 2 i+1 ~ Myl
a2i+1,2i+1 =-r (1 - 9 )(7/1'4—1 -

i+1
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_ iy _ki+1 _ My _ki+l

m.., —k.
i+l i+l \7+ 2 by 2
—Hin (1 - B )’: J;/M +1 (/Ui+1’;' ) >
Mmjy My 7ki+l
- m.,, —k, m, T
q ——7 2 el Tl S £ St - 2
Ayivipiv2 = F ¢ 5 )P 5 A ) Y (47;
—m, TR
_ k Mg —ki - My =k

_ll'llw‘l(l_%)z ? Y}’i+1+1(ﬂi+ll7i : ) ; i:1,27‘..,N_1

0 _ 0 _ ——m-1 ——m 0 _ 0 _ _
e,=-H,, €, = —(mr, +H "), €N aN-1 = H,, € naN = H,—my

a

0 _ 0 _=m 0 _ 0 My
€i0ic1 = 1, €ini =N s €gi T L, €02 = °F 5

0 oy il 0 _
€100 — M s €102 =M

—==m;,; -1
i+1 .
L1 y

i1l y =12, N -1

q _ —éu-l _ == q _ =1 _ b
€, =&l Hr =™, ¢, =&l Hpr, =,

q _ q _ C o
€N aN-1 = S t+H,, NN = SvatH, 5 =123,

q — %0 q — %0 q — _—§f+1,1 q — _—§i+l,2
€inict =1 5 €0 THTTs Cypi =TT, €00 =TT,
q — —&in—1 q — =il q — =&l
€121 = S, €12 = Sl €i41,2i41 = §i+1,1”i )

egi+1,2i+2 = _§i+1,27i§”1'271 HIRES 1’25'”aN -1 » 4= 152,3’“'
ol =-HTa, ciy=HTb ;q=0123,

In Eq. (15), ¢;1» Gpa» 7;» €2 and A'(gy;) are

—m, £m’ +4q’ _m +4q°

Gi1sGin = 5 ) i_|2_mi+ki|’
Q = Eﬁ.ﬁﬁ%} 2-m +k 2 AY( T‘dA
VR P\ 2m k) STy

1 =t

)

7)

(18)

(19)

(20)

e2y)

(22)

(23)
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and u; the jth positive root of the following transcendental equation

A()=0 (24)
In Egs. (16) and (17), the relations between y; and u, are
u=Q.u; i=2,--- N (25)

2.2 Thermoelastic problem

We now analyze the transient thermal stress of a functionally graded hollow cylinder as a plane
strain problem. The displacement-strain relations are expressed in dimensionless form as follows

E.=U

rri rior >

Em = ’771(7‘95’0"'0_‘;1): Er@i :[Fil(ﬁri’a_z’_lﬁi)-i_z’_lﬂiﬁ 172,

E.=£2.=£,=0 ;i=l-,N (26)

y4) 1

where a comma denotes partial differentiation with respect to the variable that follows. The
stress-strain relation in dimensionless form is given by the following relation

G_IVi 1_ Vi Vl 0 —
_ E .
G oo E, v, l1-v, 0 "
— - €o0i
O . (1+V[)(1_2Vi) Vi vV, 0 —
G 0 0 1-2v, |
1
a ET. |1
- f—Esz 1 @7
0

The Young’s modulus E;, the coefficient of linear thermal expansion a; and Poisson’s ratio v; are
assumed to take the following forms

E(F)=E"(FIr ) a@)=a'(F /7 )" v, =const(v, V) (28)
where
0 0 —0 —0
=)y h@aa) oy (29)
In@7; /7.,) In@7; /7;_,)

The equilibrium equations are expressed in dimensionless form as follows:

O-rri’7+r O-rﬁi ’6’+r (O-

rri

~5,,)=0 (30)



Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law 429
— —]— ——
O gisr T Ogpisg+2r 0,5 =0 (€1Y

Substituting Egs. (26)-(28) into Egs. (30) and (31), the displacement equations of equilibrium are
written as

U +(l +1)r—1_rl’}7+( Vlll -1 _rl__z 1_2Vi F_ZL_lri’90+ 1 7_11’7491'5170
1-v, 2(1-v,) 2(1-v,)
, 3-4v, _
T LA L M[(1 +b)FT 4 FT (32)
I-v, " 2(-v) (1-v,

Uy HA =2V + 20 =V )7 U,y + (1=2v )L, + D)y, —F ily) + Fily,- ]

2(1+
+2(1=v,)F iy, = (_—Wfb T (33)

i
i-1

In Egs. (26)-(33), the following dimensionless values are introduced

0
_ Oui _ & _ a,,a,
O-k]i — kli , = kli , (ai,aiO) — ( i ) ,
a,E T, a,1, a,
— E, EO U, Uy,
(E,‘aE,‘ ) ( ) 5 (1’_‘”"1’791‘) = M (34)
E, o, Iy,

where oy; are the stress components, &; are the strain tensor, (u,, ug) are the displacement
components and ¢ and E, are the typical values of the coefficient of linear thermal expansion and
Young’s modulus, respectively. If the inner and outer surfaces are traction free, and the interfaces
of the each layer are perfectly bonded, then the boundary conditions of inner and outer surfaces
and the conditions of continuity on the interfaces can be represented as follows

r=r; O-rrlzo’ O-rBIZO’

r=r; o, =0,

rri rr,i+12 O_-r&i = ErH,Hl’ u 1/[ u&i =L7€,i+l ’l =1’2’”.’N_1’
r=1; 0,y =0,0,4 =0 (35)
We assume the solutions of Egs. (32) and (33) in the following form.
i, =) U, . (F)+U, . (Flcosqb, ity = Y [Upgi(F)+ Uy, (7)lsing & (36)
q=0 g=1

In Eq. (36), the first term on the right side gives the homogeneous solution and the second term of
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right side gives the particular solution. We now consider the homogeneous solution and introduce
the following equation

7 =exp(s) (37)

Substituting the first term on the right side of Eq. (36) into the homogeneous equations of Egs.
(32) and (33), and later changing a variable with the use of Eq. (37), we have

(D* +1D)+ Yt —1- 22y
1-v, 2(1-v,) !
+[ L 5.+ 4-3_4“ 1qU,.. =0 (38)
2(1-v) l1-v, " 2(1-v) 1

—[D +(1-2v)(. +1)+2(1-v,)]qU,

rcqi

+H{(1=2v)(D* +1D)~[(1-2v)(t, + D +201-v)g* ]}V, =0 (39)
where
= d
D=— 40
s (40)
We show U, and Uy, as follows
UregisUng) = Urigis Vs xp(Ais) (1)

Substituting Eq. (41) into Egs. (38) and (39), the condition that nontrivial solutions of
U’ Ugcql.) for g>2 existleads to the following equation

reqi®

A +2070 —[2¢° +2+1,.(1_2Vf —INE -1L(2q" +2+ =2, [)A,
l1-v, I-v,
2 2 2 li —
+(g" -1 +(q —1)1 vl —(1=2v)]=0 (42)
_Vi

From Eq. (42), there might be four real roots, two real roots and one pair of conjugate complex
roots, or two pairs of conjugate complex roots.
Case 1: real roots for 4,

Given Jj realroots for 4, U, (¥) and U,,(¥)are given by the following expressions

reqi

JiR
_ =1,
U,.(7) = E FJF,
J=1
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Ui (F) = ZM(’) VES (43)

where

[A, +1(1-2v,)+3—4v,]q
(1=2v)(Ay +14,) - [ + DA =2v) + 2(1-v,))g’]

MD(A,) = (44)
In Eq. (43), F q(J") are unknown constants.

Case 2: complex roots for 4,
If the complex root for A 1is expressed by 4, =a;, +jB,, and given J, pairs of complex
roots for 4;, U, (r) and U,,(¥) are given by the following expressions

reqi

U,.(F) = Z [cO7 cos(B, InF)+ COFsin(B, InF)|.
Upy(7) = Z{c“ “ [T, cos(B, In7) — Q, sin(B, InF)]

Cé’}_“’[ scos(f, Inr)+T, s1n(,6u1nr)]} (45)

where

_R[M(l) ]’ —] [M(l)

Aiy=ai +jBy

(46)

Aiy=ai;+JjBy

In Eq. (46), j, R[] and [, [ ] are imaginary unit j=+/—1, real part and imaginary part,
respectively. Furthermore, in Eq. (45), C) and C{) are unknown constants.
On the other hand, substituting Eq. (41) into Egs. (38) and (39), the condition that nontrivial

solutions of (U°. ..U, ;qi) for g =1 existleads to the following equation

reqi>

1-2v,

L-4)=0 47)

i

We now introduce the following expression

Dy =2+ A=) 4 (48)
1-v,;
When D, is positive and /; is not zero, there are 4 =0, 4, =-/, and two distinct real roots
as follows
—1.+D, -1 — D,
— i il A= i il (49)

2 2 > M3 2
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U, () and U, (¥) for 4 =0 canbe expressed as follows
Urcqi(f) = G;fi)) > U&;qi(F) = _sz)) (50)

where G} is a unknown constant. U, .(¥) and U, aqi(7) for A, (J =1,2,3) can be expressed

reqi

as follows
2 ) 2 - =4
Urc'qi (77) = ZF;;)F v 2 U@cqi (77) = ZM;.lJ) (ﬂ’iJ )F:;]l)l7 v (51)
J=1 J=1

where F, q(}) are unknown constants. When D, is negative and /;, is not zero, there are 4, =0,

A; ==, and one pair of conjugate complex roots. When D,, is zero and [/, is not zero, there are
A4,=0, A =—/ and A =-//2 (double root). The details are omitted here for the sake of

brevity.

In the case of g = 0, the deformation is axisymmetric. U,_;(¥) for g = 0 can be expressed as

reqi

follows
2 .
U, (F) = D F 7 (52)
J=1
where
-1 +.D. -1 —.D.
/Iil — i i0 , /1[2 — i i0 (53)
2 2
2 Vi
Dl.0 = ll. +4(1— ! lij (54)
1-v,

In order to obtain the particular solution, we use the series expansions of the Bessel functions.
Since the order y; of the Bessel function in Eq. (15) is not integer in general, Eq. (15) can be
written as the following expression.

L(r.0.0)= T,(7,r)cosq0 (55)
q=0

where
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T, (F, 1) =al, 7 + b, 7 + Z[amq(f)r”‘ +b,, (1)F ] (56)

n=0

—0

2
> 2 Hy; 7 oSy
Ay (T) = ) ———— exp[——- - — 2 —my +k)’7] (4, + B,———
! ; A () 4 " k 1 “sinyz
S G L 7Y =
nl'(y,+n+1) 2
by (1) = =S — = exp[—'u—lzj- 5 o m k)] E
" T A () 4 ’Zmlik} L Y siny,w
% (—l)n Qi'ulj )Zn—y,» ’
n(=y, +n+1) 2
1
:5[(2_mi +k1)(2n +7/i)_mi]a
1
@,; :E[(z_mi +ki)(2n_7/i)_mi] (57)
Weassume U, .(r) and Uy, (r) of the particular solutions as follows
rpq, (}") B —§1+b +1 + Bélq_§2+b +1 + Z(Blmq—ml +b; +1 + Bzmq—mz +b; +1) ,
n=0
U@,ql-(?) — C]/iq76i1+bi+l + Céiq?fiz +b; +1 + z(clmq—wl +b; +1 + szq—wz +b; +1) (58)

Substituting Egs. (55), (56), (58) and the second term of right side of Eq. (36) into Egs. (32) and
(33), and later comparing the coefficients of functions with regard to 7 respectively, the
constants B, , B, , C{., C5 ., B B C,,, and C,, ~ can be obtained.

lig > 2iq > lig > 2iq >
Then, the stress components can be evaluated by substituting Eq. (36) into Eq. (26), and later
into Eq. (27). Since the terms with the constant G') is corresponding to the translation of rigid

body, the next condition is added.

ling > 2ing ling 2ing

GV =0 (59)
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The unknown constants in Egs. (43), (45), (50), (51) and (52) are determined so as to satisfy the
boundary condition (35).

3. Numerical results

We consider the functionally graded materials composed of titanium alloy (Ti-6Al-4V) and
zirconium oxide (ZrO,). The materials of the inner and outer surfaces are titanium alloy 100% and
zirconium oxide 100%, respectively. We assume that the hollow cylinder is partially heated from
the outer surface by surrounding media. In this formulation, the material properties of the
interfaces can be decided using all manner of rule of mixtures. In the interests of simplicity, we
apply the simplest linear law of mixture. The material properties g; of the interface between ith
layer and (i+1)th layer are assumed as follows

8 =4, +(gb _ga)f;’ OSf; <1 ;i:1,2,"',N—1 (60)

where g, is the material property of the inner surface, and g, is the material property of the

outer surface. The numerical parameters of heat conduction, shape and f; are presented as follows

H,=10,H,=H,4,/2,,T,=0,T,=10, 7,=0.7,

fa > Ta

/@) =(1-6*/6])H (6, -|6). 6, =30° (61)
Material 1: N=2, 7 =0.85, £, =0.1,0.5,0.9 (62)
Material 2: N =2, 7 =0.73,0.85,0.97, f, =0.5 (63)
Material 3: N=3, 7 =08, =09, f, =0.1, f,=02,0.5,0.9 (64)
Material 4: N =1 (65)

The material constants for titanium alloy (Ti-6Al-4V) are taken as
Kk=2.61x10"m’/s, ¢=537.7J/(kg-K), p=4420kg/m’,
A, =62 W/(m-K), a=89x10°1/K, E=1058 GPa, v=0.3 (66)
for zirconium oxide (ZrO,)
k=1.06x10"° m’/s, c=461.4J/(kg-K), p=3657kg/m’,
4, =1.78x10 W/(m-K), a=8.7x10°1/K, E=1164x10GPa, v=03 (67)

The typical values of material properties such as «,, 4,, &, and E, used to normalize the
numerical data, are based on those of zirconium oxide.

The numerical results for Material 1 are shown in Figs. 1-4. Fig. 1 shows the variations of
temperature change. The variation on the heated surface (7 =1) is shown in Fig. 1(a) and the
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variation in the radial direction on the middle cross-section (€ =0) is shown in Fig. 1(b). As

shown in Fig. 1(a), the temperature rise can clearly be seen in the heated region (0° <8 <30"). As
shown in Fig. 1, the temperature rises as the time proceeds and is greatest in a steady state. From
Fig. 1, it can be seen that the temperature change on the heated surface increases when the

0-4"1rr1'-r"1"

-+ —h
11
ce e
w ;o=

0 30 60 9I0 IEU" 1-50 180
e []
Fig. 1 Temperature change (Material 1, N =2,

and (b) variation in the radial direction (6 = 0)

0.01

60 90 120 150 180
0 [°]

-0.06 I 1 i I
0.7 0.8 0.9 1

Fig. 2 Variation of thermal stress &, (Material 1, N=2,7; = 0.85): (a) variation in the heated surface
(7 =1.0), (b) variation in the inner surface (7 = 0.7) and (c) variation in the radial direction (6 = 0)
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Fig. 3 Variation of thermal stress &,, (Material 1, N = 2, ;= 0.85): (a) variation in the heated
surface (7 = 1.0) and (b) variation in the radial direction (6 = 0)
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Fig. 4 Variation of thermal stresses in the radial direction (Material 1, N =2, 7= 0.85): (a) normal stress
O, (0=0)and (b) shearing stress 7,, (0= 30)

parameter f; increases. Fig. 2 shows the variations of thermal stress &,,. The variation on the
heated surface (¥ =1) is shown in Fig. 2(a), the variation on the inner surface (7 =7, ) is shown in

Fig. 2(b), and the variation in the radial direction on the middle cross section (¢ = 0) is shown in
Fig. 2(c). From Fig. 2(a), the thermal stress &, shows compressive stress on the outer surface,
and the maximum compressive stress occurs in a transient state. From Fig. 2(b), the large tensile
stress occurs in the inner surface. From Fig. 2(c), the large tensile stress occurs inner part of the
hollow cylinder and large compressive stress occurs on the outer surface. As shown in Fig. 2, the
maximum tensile stress and the maximum compressive stress decrease when the parameter f;
decreases except on the heated surface in the steady state. Fig. 3 shows the variations of normal
stress &, . The variation on the heated surface (7 =1) is shown in Fig. 3(a), and the variation in
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Fig. 5 Variation of thermal stress T, (Material 2, N=2, f; =0.5): (a) variation in the heated surface

(1 =1.0), (b) variation in the inner surface (7 =0.7) and (c) variation in the radial direction (6 = 0)

the radial direction on the middle cross section (6 = 0) is shown in Fig. 3(b). From Fig. 3, the
thermal stress &,, shows compression almost. The absolute value of thermal stress &, rises as
the time proceeds and is greatest in a steady state. The maximum compressive stress of o,
decreases when the parameter f; decreases. Fig. 4 shows the variations of thermal stresses in the
radial direction. The variations of normal stress &, on the middle cross section (6 = 0) and
shearing stress &,, at the edge (6 = 30") of the heated region are shown in Figs. 4(a) and 4(b),

respectively. From Fig. 4(a), the maximum tensile stress occurs in a transient state, the maximum
tensile stress decreases when the parameter f; decreases. From Fig. 4(b), the maximum shearinge
stress occurs in a transient state, the maximum stress decreases when the parameter f; decreases.
The numerical results for Material 2 are shown in Figs. 5-7. Fig. 5 shows the variations of
thermal stress &, . The variation on the heated surface (7 =1) is shown in Fig. 5(a), the variation

on the inner surface (¥ =7,) is shown in Fig. 5(b), and the variation in the radial direction on the

middle cross section (6 = 0) is shown in Fig. 5(c). Fig. 6 shows the variations of normal stress &, .
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Fig. 6 Variation of thermal stress &,, (Material 2, N =2, f; = 0.5): (a) variation in the heated surface
(7 =1.0) and (b) variation in the radial direction (6 = 0)
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Fig. 7 Variation of thermal stresses in the radial direction (Material 2, N =2, f; = 0.5): (a) normal stress
G, (0=0)and (b) shearing stress 7., (0=30)

The variation on the heated surface (7 =1) is shown in Fig. 6(a), and the variation in the radial
direction on the middle cross section (¢ = 0) is shown in Fig. 6(b). Fig. 7 shows the variations of
thermal stresses in the radial direction. The variations of normal stress &, on the middle cross
section (6 = 0) and shearing stress &,, at the edge (0 = 30") of the heated region are shown in
Figs. 7(a) and 7(b), respectively. As shown in Figs. 5-7, it can be seen that the values decrease
when the outer radius of first layer 7 increases without distinct of time, except the normal stress

Gy on the heated surface in the steady state..
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Fig. 8 Variation of thermal stresses in the radial direction (Material 3, N =3, 1= 0.8, 1= 0.9, f;
=0.1): (a) normal stress G,y (6 =0), (b) normal stress &,, (6 = 0), (c) normal stress &, (6 =0),

and (d) shearing stress ©,, (0= 30).

The numerical results for Material 3 are shown in Fig. 8. Figs. 8 (a), (b) and (c) show the
variations of thermal stresses &,,, &, and &, along the radial direction on the middle cross

zz

section (6 = 0), respectively. Fig. 8(d) shows the variation of shearing stress &,, in the radial
direction at the edge (6 = 30) of the heated region. As shown in Fig. 8, it can be seen that the
values decrease when the parameter f, decreases without distinct of time.

In order to assess the influence of the functional grading, the numerical results for Material 4,
i.e., one-layered FGM model, are shown in Fig. 9. Figs. 9 (a), (b) and (c) show the variations of
thermal stresses &, , O, and o, along the radial direction on the middle cross section (6 =

zz

0), respectively. Fig. 9(d) shows the variation of shearing stress &,, in the radial direction at the
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Fig. 9 Results for one-layered model (Material 4, N = 1): (a) normal stress T, (6 = 0), (b) normal
stress 0,, (0=0), (c) normal stress &,. (0=0), and (d) shearing stress &,, (6= 30)

edge (9= 30") of the heated region. In comparison with the numerical results for Materails 1, 2 and
3, it is possible to decrease the maximum values of thermal stresses o©,,, ©,., 0, and G,

using the multilayered FGM model with piecewise power law .

4. Conclusions

In the present article, we analyzed the transient thermoelastic problem involving a functionally
graded hollow cylinder with piecewise power law due to asymmetrical heating from its surfaces.
The thermal and thermoelastic constants of each layer are expressed as power functions of the
radial coordinate in the radial direction, and their values continue on the interfaces. We obtained
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the exact solution for the transient two-dimensional temperature and transient thermoelastic
response of a functionally hollow cylinder with piecewise power law under the state of plane
strain.

As an illustration, we carried out numerical calculations for the functionally graded materials
composed of titanium alloy (Ti-6Al-4V) and zirconium oxide (ZrO,) and examined the behaviors
in the transient state for the temperature change, the thermal stress distributions. Furthermore, the
influence of the functional grading on the thermal stresses is investigated.

It is difficult to obtain the exact solution of the asymmetric transient thermal stress problem
involving a functionally graded hollow cylinder using the arbitrary manner of rule of mixtures in
all areas to the radial direction. Though the material properties in each layer are expressed as
power functions of the radial coordinate, the material properties of the interfaces can be decided
using all manner of rule of mixtures. By increasing a number of layers, the manner of rule of
mixtures can be applied to all areas to the radial direction approximately.
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