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Abstract.   This paper is concerned with the theoretical treatment of transient thermoelastic problems 
involving a functionally graded hollow cylinder with piecewise power law due to asymmetrical heating from 
its surfaces. The thermal and thermoelastic constants of each layer are expressed as power functions of the 
radial coordinate, and their values continue on the interfaces. The exact solution for the two-dimensional 
temperature change in a transient state, and thermoelastic response of a hollow cylinder under the state of 
plane strain is obtained herein. Some numerical results for the temperature change and the stress 
distributions are shown in figures. Furthermore, the influence of the functional grading on the thermal 
stresses is investigated. 
 

Keywords:   thermal stress problem; functionally graded material; hollow cylinder; piecewise power law; 
transient state; asymmetrical heating; plane strain problem 
 
 
1. Introduction 

 
Functionally graded materials (FGMs) are nonhomogeneous material systems that two or more 

different material ingredients change continuously and gradually, and are used as constituents of 
the beam, strip, plate and shell types. The concept of FGMs was proposed as a new material which 
is adaptable for a super-high-temperature environment at first in Japan. In recent years, the concept 
of FGMs has been applied in many industrial fields such as engineering, chemical plant, 
electronics, energy conversion, optics, biomaterials and so on in addition to the aerospace field 
(Miyamoto et al. 1999, Ichikawa 2001). FGMs subjected to several thermal loading consist of 
metals and ceramics as their constituents, and are remarkable heat-resistant materials for relaxation 
of thermal stress. Therefore, it is necessary to analyze the thermal stress problems for FGMs. 
Because the governing equations for the temperature field and the associate thermoelastic field of 
FGMs become of nonlinear form in generally, the analytical treatment is difficult. It is well-known 
that thermal stress distributions in a transient state can show large values compared with the one in 
a steady state. Therefore, the transient thermoelastic problems for FGMs become important. The 
analytical treatment of the transient thermoelastic problems is more difficult.  

As the analytical treatment of the thermoelastic problems of FGMs, there are two pieces of 
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treatment mainly. One is introducing the theory of laminated composites, which have a number of 
homogeneous layers along the thickness direction. Using the theory of laminated composites, the 
transient thermal stress problems of several analytical models (Tanigawa et al. 1989, Ootao and 
Tanigawa 1994, Sugano et al. 1996, Ootao and Tanigawa 1999) were analyzed theoretically.  

The other analytical treatment is the exact analysis under the assumption that the material 
properties are given in the specific functions containing the variable of the thickness coordinate 
without using the laminated composite model. Examples of exact transient thermal stress analysis 
for FGM plate type structures are as follows. Sugano (1987) analyzed exactly one-dimensional 
transient thermal stresses of nonhomogeneous plate where the thermal conductivity and Young’s 
modulus vary exponentially, whereas Poisson’s ratio and the coefficient of linear thermal 
expansion vary arbitrarily in the thickness direction. Vel and Batra (2003) analyzed the 
three-dimensional transient thermal stresses of the functionally graded rectangular plate. Ootao 
and Tanigawa (2005) analyzed the transient thermal stress problems of a functionally graded 
rectangular plate, where the thermal conductivity, the coefficient of linear thermal expansion and 
Young’s modulus vary exponentially in the thickness direction, due to nonuniform heat supply. 

On the other hand, examples of exact analysis for FGM shell type structures are as follows. 
Obata and Noda (1994) analyzed one-dimensional thermal stress problem of functionally graded 
hollow cylinder and hollow sphere using a perturbation method. Zimmerman and Lutz (1999) 
presented the exact solution for one-dimensional thermal stresses of functionally graded cylinder 
whose elastic modulus and coefficient of linear thermal expansion vary linearly with the radius. Ye 
et al. (2001) presented the exact solution for the axisymmetric thermoelastic problem of a 
uniformly heated functionally graded transversely isotropic cylindrical shell, assuming that the 
modulus of elasticity and the coefficient of linear thermal expansion vary with the power product 
form of radial coordinate variable. Tarn (2001) presented the exact solutions for functionally 
graded anisotropic cylinders subjected to thermal and mechanical loads. Jabbari et al. (2003) 
presented the exact solutions for thermal stresses of functionally graded hollow cylinder whose 
material properties vary with the power product form of radial coordinate variable due to 
nonaxisymmetric loads. Poultangari et al. (2008) obtained the two-dimensional exact solutions for 
thermal stresses of functionally graded sphere whose material properties vary with the power 
product form of radial coordinate variable. Jabbari et al. (2007) presented the analytical solution 
for three-dimensional thermal stresses in a short length functionally graded hollow cylinder whose 
material properties vary with the power product form of radial coordinate variable. You et al. 
(2007) analyzed the thermoelasatic problem of functionally graded cylindrical vessels under 
internal pressure and uniform temperature by a simple and accurate method. Peng and Li (2009) 
analyzed the thermoelastic problem of functionally graded annulus with arbitrary gradient. Vel 
(2011) analyzed the thermoelastic problem of functionally graded anisotropic hollow cylinders, 
whose thermoelastic constants are expressed as Taylor’s series. These papers, however, only 
treated the thermoelasic problems under steady temperature distribution. 

As a transient thermoelastiv problem of FGM shell type structures, one-dimensional and 
two-dimensional solutions for transient thermal stresses of a functionally graded hollow cylinder 
whose material properties vary with the power product form of radial coordinate variable were 
obtained by Ootao and Tanigawa (2006, 2009). Zhao et al. (2006) analyzed the one-dimensional 
transient thermo-mechanical behavior of a functionally graded solid cylinder, whose thermoelastic 
constants vary exponentially through the thickness. Shao et al. (2007) analyzed one-dimensional 
transient thermo-mechanical behavior of functionally graded hollow cylinders, whose 
thermoelastic constants are expressed as Taylor’s series.  
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However, these studies discuss the thermoelastic problems of one-layered FGM models, which 
have the big limitation of nonhomogeneity. On the other hand, the arbitrary nonhomogeneity can 
be expressed in the theory of laminated composites approximately. But the theory of laminated 
composites has a weak point that the material properties are discontinuous on such interface. Guo 
and Noda (2007) proposed a piecewise-exponential model, for the crack problems in FGMs with 
arbitrary material properties which are continuous on each interface in order to improve the 
ordinary theory of laminated composites. Ootao (2010) analyzed the transient thermoelastic 
problem in the FGM hollow cylinder by a piecewise-power model when material properties can be 
expressed by piecewise power law. To the author’s knowledge, however, the two-dimensional 
analysis for transient thermoelastic problems of FGM shell type structures with piecewise-power 
law has not been reported. 

From the viewpoint of above mentioned, we analyze the transient thermoelastic analysis for a 
functionally graded hollow cylinder with piecewise power law due to asymmetrical surface 
heating to guarantee arbitrary nonhomogeneity of material properties. 

 
 

2. Analysis 
 

The infinite long, functionally graded hollow cylinder consists of many layers whose material 
properties are expressed by piecewise power law of position. The thermal and thermoelastic 
constants of each layer are expressed as power functions of the radial coordinate, and their values 
continue on the interfaces. The hollow cylinder’s inner and outer radii are defined ra and rb, 
respectively. Moreover, ri is the outer radius of ith layer. Throughout this article, indices i (=1,2,…, 
N) are associated with the ith layer from the inner side of a functionally graded hollow cylinder. 

 
2.1 Heat conduction problem  
 
We assume that the functionally graded hollow cylinder is initially at zero temperature and is 

heated from the inner and outer surfaces by surrounding media with relative heat transfer 
coefficients (heat transfer coefficient/thermal conductivity) ha and hb. We denote the temperatures 
of the surrounding media by the functions Tafa(θ) and Tbfb(θ). Then the temperature distribution 
shows a two-dimensional distribution in r − θ plane, and the transient heat conduction equation for 
the ith layer is taken in the following form 
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The thermal conductivity λti and the heat capacity per unit volume iic   in each layer are assumed 
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where 
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In Eq. (4), 0r  and Nr  are 
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Substituting the Eqs. (2) and (3) into the Eq.(1), the transient heat conduction equations in 
dimensionless form are  
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The initial and thermal boundary conditions in dimensionless form are 
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In Eqs. (4)-(11), we introduced the following dimensionless values 
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where Ti is the temperature change; t is time; and T0, λt0 and c0ρ0 are typical values of temperature, 
thermal conductivity, and heat capacity per unit volume, respectively. For the sake of simplicity of 
analysis, we assume that the temperature functions fa(θ) and fb(θ) are symmetrical with respect to θ 
= 0, and expand the functions into the following Fourier’s series forms 

424



 
 
 
 
 
 

Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law 

 



q
b

a

f

f

q q

q

b

a cos
)(

)(

0



 
















                         

(13) 

       




 

dq
f

f

b

a

b

aq

q

q
cos

)(

)(
0 

















,








,3,2,1;2

0;1

q

q
q             (14) 

Introducing the Laplace transformation with respect to the variable τ and the method of separation 
of variables, the solution of Eq. (6) can be obtained so as to satisfy conditions (7)-(11). This 
solution is shown as follows 
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where Jx( ) and Yx( )  are the Bessel functions of the first and second kind of order x, respectively. 
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and μ1j 
the jth positive root of the following transcendental equation 

 0)( 1                                  (24) 

In Eqs. (16) and (17), the relations between μi 
and μ1 are 

 1 ii  ; Ni ,,2                          (25) 

2.2 Thermoelastic problem 
 
We now analyze the transient thermal stress of a functionally graded hollow cylinder as a plane 

strain problem. The displacement-strain relations are expressed in dimensionless form as follows 
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0 zirzizzi  Ni ,,1;                       (26) 

where a comma denotes partial differentiation with respect to the variable that follows. The 
stress-strain relation in dimensionless form is given by the following relation 
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The Young’s modulus Ei, the coefficient of linear thermal expansion αi and Poisson’s ratio vi are 
assumed to take the following forms 
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   Ni ,,1;               (29) 

The equilibrium equations are expressed in dimensionless form as follows: 

0)(,, 11  
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(30) 
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02,, 11  
iririr rr  

                       
(31) 

 

Substituting Eqs. (26)-(28) into Eqs. (30) and (31), the displacement equations of equilibrium are 
written as 
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In Eqs. (26)-(33), the following dimensionless values are introduced 
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where σkli are the stress components, εkli are the strain tensor, (uri, uθi) are the displacement 
components and α0 and E0 are the typical values of the coefficient of linear thermal expansion and 
Young’s modulus, respectively. If the inner and outer surfaces are traction free, and the interfaces 
of the each layer are perfectly bonded, then the boundary conditions of inner and outer surfaces 
and the conditions of continuity on the interfaces can be represented as follows 

0,0; 11   rrrarr , 

,,; 1,1,   iririrrrriirr   1,1, ,   iiirri uuuu   ; 1,,2,1  Ni  , 

0,0;1  NrrrNr                          (35) 

We assume the solutions of Eqs. (32) and (33) in the following form. 
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In Eq. (36), the first term on the right side gives the homogeneous solution and the second term of 
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right side gives the particular solution. We now consider the homogeneous solution and introduce 
the following equation 

)(exp sr                                 (37) 

Substituting the first term on the right side of Eq. (36) into the homogeneous equations of Eqs. 
(32) and (33), and later changing a variable with the use of Eq. (37), we have 
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where 
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d
D                                   (40) 

We show rcqiU  and cqiU  as follows 
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(41) 

Substituting Eq. (41) into Eqs. (38) and (39), the condition that nontrivial solutions of 

),( 00
cqircqi UU   for 2q  exist leads to the following equation 
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From Eq. (42), there might be four real roots, two real roots and one pair of conjugate complex 
roots, or two pairs of conjugate complex roots.  
Case 1: real roots for i  

Given iRJ  real roots for i , )(rUrcqi  and )(rU cqi are given by the following expressions 
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In Eq. (43), )(i
qJF  are unknown constants. 

Case 2: complex roots for i  

If the complex root for i  is expressed by iJiJiJ j  , and given iIJ  pairs of complex 

roots for i , )(rUrcqi  and )(rU cqi  are given by the following expressions 
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In Eq. (46), j , ][eR  and ][mI  are imaginary unit 1j , real part and imaginary part, 

respectively. Furthermore, in Eq. (45), )(
1

i
JC  and )(

2
i
JC  are unknown constants. 

On the other hand, substituting Eq. (41) into Eqs. (38) and (39), the condition that nontrivial 

solutions of ),( 00
cqircqi UU   for 1q  exist leads to the following equation 
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We now introduce the following expression 

16
1

)21(42
1 





i

ii
ii

l
lD




                         
(48) 

When 1iD  is positive and il  is not zero, there are 0i , ii l1  and two distinct real roots 
as follows 
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)(rU rcqi  and )(rU cqi  for 0i  can be expressed as follows 
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where )(
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rG  is a unknown constant. )(rUrcqi  and )(rU cqi  for iJ ( 3,2,1J ) can be expressed 

as follows 
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where )(i
qJF  are unknown constants. When 1iD  is negative and il  is not zero, there are 0i , 

ii l  and one pair of conjugate complex roots. When 1iD  is zero and il  is not zero, there are 

0i , ii l  and 2/ii l  (double root). The details are omitted here for the sake of 
brevity. 
  In the case of q = 0, the deformation is axisymmetric. )(rU rcqi  for q = 0 can be expressed as 

follows 
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  In order to obtain the particular solution, we use the series expansions of the Bessel functions. 

Since the order i of the Bessel function in Eq. (15) is not integer in general, Eq. (15) can be 
written as the following expression. 
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where 
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We assume )(rUrpqi  and )(rU pqi  of the particular solutions as follows 
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Substituting Eqs. (55), (56), (58) and the second term of right side of Eq. (36) into Eqs. (32) and 
(33), and later comparing the coefficients of functions with regard to r  respectively, the 
constants iqB1 , iqB2 , iqC1 , iqC2 , inqB1 , inqB2 , inqC1  and inqC2  can be obtained. 

  Then, the stress components can be evaluated by substituting Eq. (36) into Eq. (26), and later 

into Eq. (27). Since the terms with the constant )(
0
i

rG  is corresponding to the translation of rigid 
body, the next condition is added. 

0)(
0 N

rG                              (59) 
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The unknown constants in Eqs. (43), (45), (50), (51) and (52) are determined so as to satisfy the 
boundary condition (35). 
 
 
3. Numerical results 
 

We consider the functionally graded materials composed of titanium alloy (Ti-6Al-4V) and 
zirconium oxide (ZrO2). The materials of the inner and outer surfaces are titanium alloy 100% and 
zirconium oxide 100%, respectively. We assume that the hollow cylinder is partially heated from 
the outer surface by surrounding media. In this formulation, the material properties of the 
interfaces can be decided using all manner of rule of mixtures. In the interests of simplicity, we 
apply the simplest linear law of mixture. The material properties gi of the interface between ith 
layer and (i+1)th layer are assumed as follows 

1,,2,1;10,)(  Niffgggg iiabai               (60) 

where ag  is the material property of the inner surface, and bg  is the material property of the 

outer surface. The numerical parameters of heat conduction, shape and fi are presented as follows 

,0.1,0,/,0.1  batatbbab TTHHH  7.0ar , 

)()/1()( 22   bbb Hf , 30b               (61) 

Material 1: 2N , 85.01 r , 9.0,5.0,1.01 f                                 (62) 

Material 2: 2N , 97.0,85.0,73.01 r , 5.01 f                               (63) 

Material 3: 3N , ,9.0,8.0 21  rr 1.01 f , 9.0,5.0,2.02 f                 (64) 

Material 4: 1N                                                           (65) 

The material constants for titanium alloy (Ti-6Al-4V) are taken as 

/sm1061.2 26 , K)J/(kg7.537 c , 3kg/m4420 , 

K)W/(m2.6 t , 1/K109.8 6 , GPa8.105E , 3.0         (66) 

for zirconium oxide (ZrO2) 

/sm1006.1 26 , K)J/(kg4.461 c , 3kg/m3657 , 

K)W/(m1078.1 t , 1/K107.8 6 , GPa104.116 E , 3.0    (67) 

The typical values of material properties such as 0 , 0t , 0  and 0E  used to normalize the 
numerical data, are based on those of zirconium oxide. 

The numerical results for Material 1 are shown in Figs. 1-4. Fig. 1 shows the variations of 
temperature change. The variation on the heated surface ( 1r ) is shown in Fig. 1(a) and the 
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variation in the radial direction on the middle cross-section ( 0 ) is shown in Fig. 1(b). As 

shown in Fig. 1(a), the temperature rise can clearly be seen in the heated region (  300  ). As 
shown in Fig. 1, the temperature rises as the time proceeds and is greatest in a steady state. From 
Fig. 1, it can be seen that the temperature change on the heated surface increases when the 
 
 

Fig. 1 Temperature change (Material 1, N = 2, 1r = 0.85): (a) variation in the heated surface ( r = 1.0) 

and (b) variation in the radial direction (θ = 0) 
 

Fig. 2 Variation of thermal stress   (Material 1, N = 2, 1r = 0.85): (a) variation in the heated surface 

( r = 1.0), (b) variation in the inner surface ( r = 0.7) and (c) variation in the radial direction (θ = 0) 
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Fig. 3 Variation of thermal stress zz  (Material 1, N = 2, 1r = 0.85): (a) variation in the heated 

surface ( r = 1.0) and (b) variation in the radial direction (θ = 0) 
 

  

Fig. 4 Variation of thermal stresses in the radial direction (Material 1, N = 2, 1r = 0.85): (a) normal stress 

rr  (θ = 0) and (b) shearing stress  r  (θ = 30°) 

 
 

parameter f1 increases. Fig. 2 shows the variations of thermal stress  . The variation on the 

heated surface ( 1r ) is shown in Fig. 2(a), the variation on the inner surface ( arr  ) is shown in 
Fig. 2(b), and the variation in the radial direction on the middle cross section (θ = 0) is shown in 
Fig. 2(c). From Fig. 2(a), the thermal stress   shows compressive stress on the outer surface, 
and the maximum compressive stress occurs in a transient state. From Fig. 2(b), the large tensile 
stress occurs in the inner surface. From Fig. 2(c), the large tensile stress occurs inner part of the 
hollow cylinder and large compressive stress occurs on the outer surface. As shown in Fig. 2, the 
maximum tensile stress and the maximum compressive stress decrease when the parameter f1 
decreases except on the heated surface in the steady state. Fig. 3 shows the variations of normal 
stress zz . The variation on the heated surface ( 1r ) is shown in Fig. 3(a), and the variation in  
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Fig. 5 Variation of thermal stress   (Material 2, N = 2, f1 = 0.5): (a) variation in the heated surface 

( 1r  = 1.0), (b) variation in the inner surface ( r =0.7) and (c) variation in the radial direction (θ = 0) 

 
 

the radial direction on the middle cross section (θ = 0) is shown in Fig. 3(b). From Fig. 3, the 
thermal stress zz  shows compression almost. The absolute value of thermal stress zz  rises as 

the time proceeds and is greatest in a steady state. The maximum compressive stress of zz  
decreases when the parameter f1 decreases. Fig. 4 shows the variations of thermal stresses in the 
radial direction. The variations of normal stress rr  on the middle cross section (θ = 0) and 

shearing stress  r  at the edge (θ = 30°) of the heated region are shown in Figs. 4(a) and 4(b), 
respectively. From Fig. 4(a), the maximum tensile stress occurs in a transient state, the maximum 
tensile stress decreases when the parameter f1 decreases. From Fig. 4(b), the maximum shearinge 
stress occurs in a transient state, the maximum stress decreases when the parameter f1 decreases.  

The numerical results for Material 2 are shown in Figs. 5-7. Fig. 5 shows the variations of 
thermal stress  . The variation on the heated surface ( 1r ) is shown in Fig. 5(a), the variation 

on the inner surface ( arr  ) is shown in Fig. 5(b), and the variation in the radial direction on the 

middle cross section (θ = 0) is shown in Fig. 5(c). Fig. 6 shows the variations of normal stress zz .  
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Fig. 6 Variation of thermal stress zz  (Material 2, N = 2, f1 = 0.5): (a) variation in the heated surface 

( r = 1.0) and (b) variation in the radial direction (θ = 0) 
 

  
Fig. 7 Variation of thermal stresses in the radial direction (Material 2, N = 2, f1 = 0.5): (a) normal stress 

rr  (θ = 0) and (b) shearing stress  r  (θ = 30°) 

 
 

The variation on the heated surface ( 1r ) is shown in Fig. 6(a), and the variation in the radial 
direction on the middle cross section (θ = 0) is shown in Fig. 6(b). Fig. 7 shows the variations of 
thermal stresses in the radial direction. The variations of normal stress rr  on the middle cross 

section (θ = 0) and shearing stress  r  at the edge (θ = 30°) of the heated region are shown in 
Figs. 7(a) and 7(b), respectively. As shown in Figs. 5-7, it can be seen that the values decrease 
when the outer radius of first layer 1r  increases without distinct of time, except the normal stress 

  on the heated surface in the steady state.. 
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Fig. 8 Variation of thermal stresses in the radial direction (Material 3, N = 3, 1r = 0.8, 2r = 0.9, f1 

=0.1): (a) normal stress   (θ = 0), (b) normal stress zz  (θ = 0), (c) normal stress rr  (θ = 0), 

and (d) shearing stress  r  (θ = 30°). 

 
 
The numerical results for Material 3 are shown in Fig. 8. Figs. 8 (a), (b) and (c) show the 

variations of thermal stresses  , zz  and rr  along the radial direction on the middle cross 

section (θ = 0), respectively. Fig. 8(d) shows the variation of shearing stress  r  in the radial 
direction at the edge (θ = 30°) of the heated region. As shown in Fig. 8, it can be seen that the 
values decrease when the parameter 2f  decreases without distinct of time. 

In order to assess the influence of the functional grading, the numerical results for Material 4, 
i.e., one-layered FGM model, are shown in Fig. 9. Figs. 9 (a), (b) and (c) show the variations of 
thermal stresses  , zz  and rr  along the radial direction on the middle cross section (θ = 

0), respectively. Fig. 9(d) shows the variation of shearing stress  r  in the radial direction at the  
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Fig. 9 Results for one-layered model (Material 4, N = 1): (a) normal stress   (θ = 0), (b) normal 

stress zz  (θ = 0), (c) normal stress rr  (θ = 0), and (d) shearing stress  r  (θ = 30°) 

 
 

edge (θ = 30°) of the heated region. In comparison with the numerical results for Materails 1, 2 and 
3, it is possible to decrease the maximum values of thermal stresses  , zz , rr  and  r  
using the multilayered FGM model with piecewise power law . 
 
 
4. Conclusions 
 

In the present article, we analyzed the transient thermoelastic problem involving a functionally 
graded hollow cylinder with piecewise power law due to asymmetrical heating from its surfaces. 
The thermal and thermoelastic constants of each layer are expressed as power functions of the 
radial coordinate in the radial direction, and their values continue on the interfaces. We obtained 
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the exact solution for the transient two-dimensional temperature and transient thermoelastic 
response of a functionally hollow cylinder with piecewise power law under the state of plane 
strain.  

As an illustration, we carried out numerical calculations for the functionally graded materials 
composed of titanium alloy (Ti-6Al-4V) and zirconium oxide (ZrO2) and examined the behaviors 
in the transient state for the temperature change, the thermal stress distributions. Furthermore, the 
influence of the functional grading on the thermal stresses is investigated. 

It is difficult to obtain the exact solution of the asymmetric transient thermal stress problem 
involving a functionally graded hollow cylinder using the arbitrary manner of rule of mixtures in 
all areas to the radial direction. Though the material properties in each layer are expressed as 
power functions of the radial coordinate, the material properties of the interfaces can be decided 
using all manner of rule of mixtures. By increasing a number of layers, the manner of rule of 
mixtures can be applied to all areas to the radial direction approximately. 
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