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Abstract.  A Bayesian probabilistic method is proposed for online estimation of the process noise and 
measurement noise parameters for Kalman filter. Kalman filter is a well-known recursive algorithm for state 
estimation of dynamical systems. In this algorithm, it is required to prescribe the covariance matrices of the 
process noise and measurement noise. However, inappropriate choice of these covariance matrices 
substantially deteriorates the performance of the Kalman filter. In this paper, a probabilistic method is 
proposed for online estimation of the noise parameters which govern the noise covariance matrices. The 
proposed Bayesian method not only estimates the optimal noise parameters but also quantifies the associated 
estimation uncertainty in an online manner. By utilizing the estimated noise parameters, reliable state 
estimation can be accomplished. Moreover, the proposed method does not assume any stationarity condition 
of the process noise and/or measurement noise. By removing the stationarity constraint, the proposed 
method enhances the applicability of the state estimation algorithm for nonstationary circumstances 
generally encountered in practice. To illustrate the efficacy and efficiency of the proposed method, examples 
using a fifty-story building with different stationarity scenarios of the process noise and measurement noise 
are presented. 
 

Keywords:  Bayesian probabilistic approach; Kalman filter; online algorithm; process noise; measurement 
noise; structural health monitoring 
 
 
1. Introduction 

 
Kalman filter is a well-known recursive algorithm for state estimation of dynamical systems 

(Kalman 1960). Due to its potential for online state estimation, Kalman filter has been extensively 
applied in various engineering disciplines (Schmidt 1981, Grewal and Andrews 1993, Hoi et al. 
2008, Chui and Chen 2009, Lee and Chen 2010, Lei and Jiang 2011, Papadimitriou et al. 2011, 
Lin et al. 2013). Despite its wide range of applications, this algorithm requires to prescribe the 
covariance matrices of the process noise and measurement noise. The accuracy of state estimation 
depends on the prior selection of these covariance matrices and inappropriate choice substantially 
deteriorates its performance. Since reliable prior information of the time-varying noise covariance 
matrices is generally not available in practice, the reliability of the state estimation is questionable 
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(Sangsuk-Iam and Bullock 1990). 
To address this issue, a number of methods have been proposed to estimate the noise 

covariance matrices. Mehra (1970) proposed to optimize the Kalman gain matrix and the noise 
covariance matrices by using the autocorrelation function of the residuals between the 
measurement and the corresponding estimated state. Koh and See (1994) introduced a covariance 
matching technique to update the noise parameters. With a moving time window prescribed by the 
user, the noise parameters are updated according to the predicted state trajectories of batches of 
past data. Mohamed and Schwarz (1999) presented a maximum likelihood method to determine 
the optimal noise parameters by maximizing the likelihood function of the measurements. Odelson 
et al. (2006) proposed an autocovariance least-squares method to estimate the noise covariance 
matrices. The autocovariance of the residuals of the output states is utilized so that the 
optimization problem is converted to a standard least-squares problem. Yuen et al. (2007) 
developed an offline probabilistic approach to estimate the noise parameters. The optimal noise 
parameters are obtained by maximizing its likelihood function. A half-or-double optimization 
scheme was proposed to efficiently obtain the estimated noise parameters with acceptable 
precision. Unfortunately, most of the existing methods are operated in an offline or quasi-online 
manner. 

In this paper, a Bayesian probabilistic method is proposed for online estimation of the noise 
parameters. Bayesian inference provides a rigorous framework for parametric identification and 
uncertainty quantification (Box and Tiao 1973, Beck 2010, Yuen and Kuok 2011). It has been 
developed and applied to various problems in civil engineering (Beck and Katafygiotis 1998, 
Papadimitriou et al. 2000, Beck and Yuen 2004, Yuen and Katafygiotis 2005a, Yuen and 
Katafygiotis 2005b, Ching et al. 2006, Lam et al. 2006, Ching et al. 2009, Yan et al. 2009, Yuen 
and Kuok 2010, Kuok and Yuen 2012, Yuen and Mu 2012). Taking the advantage of Bayesian 
inference, the proposed method provides not only the optimal estimation of the noise parameters 
but also the associated estimation uncertainty. In contrast to most of the works in the literature, the 
proposed method propagates simultaneously with the state estimation of the Kalman filter 
algorithm. In other words, the noise parameters are updated for every time step in an online 
manner. 

The crux of the proposed method is given as follows. By utilizing the estimation of the 
previous time step and the measurement at the current time step, the posterior probability density 
function (PDF) of the noise parameters is formulated. Then, the optimal noise parameters can be 
estimated by maximizing the posterior PDF. Meanwhile, the estimation uncertainty of the noise 
parameters is quantified in terms of the covariance matrix. Thereafter, the estimated noise 
parameters and the associated covariance matrix will be used to construct the prior distribution for 
the next time step. The major difficulty of this problem is to efficiently solve the optimization 
problem especially at the early propagation stage in which the parameter uncertainty is large. By 
employing the proposed algorithm along with the propagation of the Kalman filter algorithm, 
online estimation of the noise parameters and the associated covariance matrix can be obtained. 
Based on the reliable estimation of the noise parameters, accurate state estimation can be 
accomplished. Since no iteration is required in the algorithm, the proposed method is 
computationally efficient. Moreover, the proposed method enhances the applicability of the 
Kalman filter since it does not require any stationarity condition of the process noise and 
measurement noise. In the conventional usage of Kalman filter, the covariance matrices of the 
process noise and measurement noise are prescribed constant matrices. This implies the 
stationarity assumption of the noise processes but this is usually not fulfilled in practice (Yun et al. 
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1979, Yang et al. 2004, Taranath 2005, Ni et al. 2007, Rosa et al. 2012). By removing the 
stationarity requirement in the proposed method, the applicability of the Kalman filter is 
substantially widen for nonstationary circumstances. 

This paper is organized as follows. In Section 2, the formulation and fundamentals of Kalman 
filter are briefly reviewed. In Section 3, the proposed Bayesian probabilistic method is presented 
for online estimation of the noise parameters. This computationally efficient method is a two-stage 
approach. A training stage is necessary at the early propagation stage while the gradient method is 
used in the operating stage after the training stage. Thereafter, the procedure of the proposed 
algorithm is summarized in Section 3.3. Finally, in Section 4, the proposed method is 
demonstrated with a fifty-story building under different stationarity scenarios of the process noise 
and measurement noise. 
 
 
2. Formulation and Kalman filter 
 

Consider a second-order linear dynamical system with ௗܰ degrees of freedom (DOFs) and its 
equation of motion is given by 

ሻݐሷሺܠۻ       ሻݐሶሺܠۺ  ሻݐሺܠ۹ ൌ ሻ (1)ݐሺ܂

where x is the generalized displacement vector of the system; ,ۻ	ۺ and ۹ are the mass, damping 
and stiffness matrix of the system, respectively; ܂ ∈ Թ

ேൈே is the force distributing matrix and 
ሻݐሺ ∈ Թே is the excitation subjected to the system. The external excitation (i.e., the process 
noise)  consists of the deterministic and stochastic components 

ሻݐሺ ൌ ۴ሺݐሻ  ۴ሺݐሻ 																									 (2)

where ۴ሺݐሻ is the deterministic component, and ۴ሺݐሻ is the stochastic component, modeled as a 
Gaussian process with zero mean and covariance matrix ሺݐሻ. Therefore, the external excitation 
 .ሻݐሻ and covariance matrix ሺݐis a Gaussian process with mean ۴ሺ 

The state vector ܡ is defined to include the displacement and velocity vector 

ሻݐሺܡ ≡ ሾܠሺݐሻ், ሶܠ ሺݐሻ்ሿ் 																									  (3)

Then, Eq. (1) can be transformed to the state-space form 

ሻݐሶሺܡ ൌ ሻݐሺܡۯ  ሻݐሺ۰ 																									 (4)

where the state matrix ۯ and input distributing matrix ۰ are given by: 

ۯ ൌ ቂ  ۷
െିۻଵ۹ െିۻଵۺ

ቃ 																									 

۰ ൌ 


܂ଵିۻ
൨ 																									 

(5)

where ۷ is the identity matrix. Eq. (4) can be discretized to a difference equation by assuming that 
the excitation is constant within any time interval, i.e., ሺ݇∆ݐ  ߬ሻ ൌ ,ሻݐ∆ሺ݇ ∀߬ ∈ ሾ0, ,ሻݐ∆ ݇ ൌ
0,1,2, … 

ାଵܡ ൌ ܡௗۯ  ۰ௗ 																									 (6)
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where ۯௗ ൌ expሺۯΔݐሻ, ۰ௗ ൌ ௗۯଵሺିۯ െ ۷ሻ۰,  ൌ ۴,  ۴ , Δݐ  is the sampling time step, 
ܡ ≡  ,ሻݐሺ݇Δܡ ≡ ሻ, ۴,ݐሺ݇Δ ≡ ۴ሺ݇Δݐሻ and ۴ ≡ ۴ሺ݇Δݐሻ. The discrete external excitation 
 ,ࣂ ,൯, whereࣂ is a discrete Gaussian process with mean ۴, and covariance matrix ,൫
is the characteristic parameter vector of the covariance matrix ,. 

Discrete-time response measurement is available at ܰ  observed DOFs and this noise 
corrupted output measurement is modeled as 

ାଵܢ ൌ ۱ௗܡାଵ  ۲ௗ۴,ାଵ  ାଵܖ 																																	 (7) 

where ۱ௗ ∈ Թேబൈଶே  is the observation matrix; and ۲ௗ ∈ Թ
ேబൈே  is the input distributing 

matrix of the deterministic excitation component to the output. Given a sensor configuration, these 
matrices can be easily obtained. The measurement noise ܖ

 
is modeled as an ܰ-variate discrete 

Gaussian process with zero mean and covariance matrix ,ାଵ൫ࣂ,ାଵ൯ at the kth time step, 
where ࣂ,ାଵ is the characteristic parameter vector of the covariance matrix ,ାଵ. Furthermore, 
it is assumed that the measurement noise ܖ and the process noise  are statistically independent.  

The essential steps of the Kalman filter algorithm are to predict and filter/update in an 
alternating manner at each time step using the available data set. Given the measurements up to the 
݇th time step ܦ ൌ ሼܢଵ, ,ଶܢ … ,  ାଵ can be predicted by using its conditionalܡ ሽ, the state vectorܢ
probability density function (PDF) ሺܡାଵ|ܦሻ , which follows a multi-variate Gaussian 
distribution. By using Eq. (6), the one-step-ahead predicted state vector at the ሺ݇  1ሻth time step 
can be obtained 

௬,ାଵ܍ ≡ ሿܦ|ାଵܡሾܧ ൌ ത௬,܍ௗۯ  ۰ௗ۴, 																									 (8)

where ܍ത௬, ≡  ሿ is the filtered state of the previous time step. In addition, the uncertaintyܦ|ܡሾܧ
of the predicted state can be represented by its covariance matrix 

௬,ାଵ ≡ ܧ ቂ൫ܡାଵ െ ାଵܡ௬,ାଵ൯൫܍ െ ௬,ାଵ൯܍
்
ቚ ቃܦ ൌ ௗۯௗഥ௬,ۯ

்  ۰ௗ,۰ௗ									
் 			 (9)

where ഥ௬, ≡ ܧ ቂ൫ܡ െ ܡത௬,൯൫܍ െ ത௬,൯܍
்
ቚ  ቃ represents the filtered/updated state covarianceܦ

matrix at the 	݇ th time step using the measurements up to the same time step. When the 
measurement at the ሺ݇  1ሻth time step is available, the updated state vector ܍ത௬,ାଵ can be 
obtained by maximizing the conditional PDF ሺܡାଵ|ܦାଵሻ 

ത௬,ାଵ܍ ൌ ௬,ାଵ܍  ۹ାଵ൫ܢାଵ െ ۱ௗ܍௬,ାଵ െ ۲ௗ۴,ାଵ൯																									 (10)

where the Kalman gain ۹ାଵ is given by (Kalman 1960) 

۹ାଵ ൌ ௬,ାଵ۱ௗ
்൫۱ௗ௬,ାଵ۱ௗ

்  ,ାଵ൯
ିଵ

																									 (11)

Again, the uncertainty of the updated state vector is represented by its covariance matrix 

ഥ௬,ାଵ ൌ ሺ۷ െ ۹ାଵ۱ௗሻ௬,ାଵ 																									 (12)

Eqs. (8), (9), (10) and (12) comprise the essential propagation formulae of the Kalman filter 
algorithm (Kalman 1960, Grewal and Andrews 1993). It is obvious that the accuracy of the 
estimated state vectors and their covariance matrices depends on the process noise and 
measurement noise parameters which are unknown in practice. In the following section, the 
proposed Bayesian probabilistic approach is presented for online estimation of these noise 
parameters. 
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3. Online estimation of the noise parameters 
 

3.1 Bayesian probabilistic approach 
 

The covariance matrices of the process noise and measurement noise are parameterized as: 
, ൌ ,൫ࣂ,൯  and ,ାଵ ൌ ,ାଵ൫ࣂ,ାଵ൯ . Then, the noise parameter vector to be 
estimated at the ሺ݇  1ሻth time step ࣂାଵ ∈ Թேഇ can be defined to include the process noise 
parameter vector ࣂ, and the measurement noise parameter vector ࣂ,ାଵ 

ାଵࣂ ൌ ,ࣂൣ
் , ,ାଵࣂ

் ൧
்

																									 (13)

The primary objective of this research is to develop an efficient algorithm for online estimation of 
these noise parameters. By using the Bayes’ theorem, the posterior PDF of the noise parameter 
vector ࣂାଵ given the measurement data set ܦାଵ is (Yuen and Katafygiotis 2001) 

,ାଵܢ|ାଵࣂሺ ሻܦ ൌ ܿሺࣂାଵ|ܦሻሺܢାଵ|ࣂାଵ,  (14)																									ሻܦ

where ሺࣂାଵ|ܦሻ is the prior PDF; ሺܢାଵ|ࣂାଵ,  ሻ is the likelihood function; and ܿ is theܦ
normalizing constant such that integrating the right-hand side over the entire domain of ࣂାଵ 
yields unity. The prior distribution ሺࣂାଵ|ܦሻ is approximated as a Gaussian distribution. By 
considering certain continuity of the noise parameters, the mean is taken as the estimation from the 
previous time step ܍തఏ,  and the covariance matrix is ߣഥఏ, , where ܍തఏ,  and ഥఏ,  are the 
updated noise parameter vector and the associated covariance matrix of the previous time step. The 
fading factor ߣ  1 is assigned to enlarge the estimated covariance matrix so that the contribution 
of the past data is discounted gradually (Sorensen and Sacks 1971, Grewal and Andrews 1993). 
Here, it is used to activate the adaptiveness of the proposed algorithm in order to track the time-
varying noise parameters. In the special case when a unity fading factor (i.e., ߣ ൌ 1) is employed, 
there is no discounting effect on the past data. In this study, the fading factor is chosen as 
ߣ ൌ 2ଶ/ேೞ so that the half-life of the contribution of a data point is ௦ܰ time steps. As a result, the 
prior distribution can be expressed as follows 

ሻܦ|ାଵࣂሺ ൌ ሺ2ߨሻି
ேഇ
ଶ หߣഥఏ,ห

ି
ଵ
ଶ exp െ

1
ߣ2

൫ࣂାଵ െ തఏ,൯܍
்
ഥఏ,
ିଵ ൫ࣂାଵ െ  (15)								തఏ,൯൨܍

The usage of this prior distribution can be viewed as a regularizer. It facilitates the identifiability of 
the optimization problem even when there are unnecessarily too many noise parameters. However, 
it affects the computational cost of the proposed algorithm. In practical circumstances, it is 
suggested to use no more than five noise parameters to avoid overfitting. In this case, the 
computational cost of the proposed method is acceptable. 
  The likelihood function ሺܢାଵ|ࣂାଵ,  ାଵܢ ሻ reflects the contribution of the measurementܦ
in establishing the posterior PDF of the noise parameters and it is given by 

,ାଵࣂ|ାଵܢሺ ሻܦ

ൌ ሺ2ߨሻି
ேబ
ଶ ห௭,ାଵห

ି
ଵ
ଶ exp െ

1
2
൫ܢାଵ െ ௭,ାଵ൯܍

்
௭,ାଵ
ିଵ ൫ܢାଵ െ  ௭,ାଵ൯൨܍

(16)

where the estimator ܍௭,ାଵ can be obtained by taking the expectation of Eq. (7) 

௭,ାଵ܍ ≡ ሿܦ|ାଵܢሾܧ ൌ ۱ௗ܍௬,ାଵ  ۲ௗ۴,ାଵ 																									 (17)
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Based on Eqs. (7), (9) and (17), the associated covariance matrix ௭,ାଵ can be readily obtained 

௭,ାଵ ≡ ܧ ቂ൫ܢାଵ െ ାଵܢ௭,ାଵ൯൫܍ െ ௭,ାଵ൯܍
்
ቚ  ቃܦ

ൌ ۱ௗۯௗഥ௬,ۯௗ
்۱ௗ

்  ۱ௗ۰ௗ,۰ௗ
்۱ௗ

்  ,ାଵ 
(18)

Note that the noise parameters appear implicitly on the right hand side of Eq. (16) through ௭,ାଵ. 
  By substituting Eqs. (15) and (16) into Eq. (14), the posterior PDF ሺࣂାଵ|ܦାଵሻ can be 
rewritten as follows 

ାଵሻܦ|ାଵࣂሺ ൌ ܿଵห௭,ାଵห
ି
ଵ
ଶ exp െ

1
ߣ2

൫ࣂାଵ െ തఏ,൯܍
்
ഥఏ,
ିଵ ൫ࣂାଵ െ തఏ,൯܍

െ
1
2
൫ܢାଵ െ ௭,ାଵ൯܍

்
௭,ାଵ
ିଵ ൫ܢାଵ െ  ௭,ାଵ൯൨܍

(19)

where the constant ܿଵ ൌ ܿሺ2ߨሻ
ି
൫ಿశಿഇ൯

మ หߣഥఏ,ห
ି
భ
మ does not depend on the noise parameters in 

  .ାଵࣂ
Then, the objective function ܬሺࣂାଵሻ can be defined as the negative logarithm of the posterior 

PDF ሺࣂାଵ|ܦାଵሻ without including the constant term 

ାଵሻࣂሺܬ ൌ
1
2
lnห௭,ାଵห

1
ߣ
൫ࣂାଵ െ തఏ,൯܍

்
ഥఏ,
ିଵ ൫ࣂାଵ െ തఏ,൯܍

 ൫ܢାଵ െ ௭,ାଵ൯܍
்
௭,ାଵ
ିଵ ൫ܢାଵ െ  ௭,ାଵ൯൨܍

(20)

Therefore, the updated noise parameter vector ܍തఏ,ାଵ  can be obtained by maximizing the 
posterior PDF ሺࣂାଵ|ܦାଵሻ or, equivalently, by minimizing the objective function ܬሺࣂାଵሻ 

തఏ,ାଵ܍ ൌ argmin
ೖశభࣂ

ାଵሻࣂሺܬ 																									 (21)

Since there is no closed-form solution for this optimization problem, a computationally efficient 
procedure is proposed to obtain the numerical solution and the details will be presented in Section 
3.2.  

Furthermore, the associated uncertainty of the estimation is represented by the covariance 
matrix ഥఏ,ାଵ which can be calculated by 

ഥఏ,ାଵ ൌ തఏ,ାଵ൯൧܍൫ࡴൣ
ିଵ

																									 (22)

where ࡴ൫܍തఏ,ାଵ൯ is the Hessian matrix of the objective function evaluated at ࣂାଵ ൌ  തఏ,ାଵ܍
and it can be computed efficiently using the finite difference method. Specifically, its ሺ݈, ݈′ሻ 
component is given by Yuen (2010) 

ࡴ
൫,ᇲ൯

൫܍തఏ,ାଵ൯ ≡
߲ଶܬሺࣂାଵሻ

ାଵߠ߲
ሺሻ ାଵߠ߲

ሺᇲሻ
อ
തഇ,ೖశభ܍ೖశభୀࣂ

 

=ቐ
ቀ

ଵ

∆ఏሺሻ
ቁ
ଶ
തఏ,ାଵ܍൫ܬൣ  ൯ࣂ∆ െ തఏ,ାଵ൯܍൫ܬ2  തఏ,ାଵ܍൫ܬ െ ,൯൧ࣂ∆ ݈ ൌ ݈′

ଵ

ସ∆ఏሺሻ∆ఏ൫
ᇲ൯ തఏ,ାଵ܍൫ܬൣ  ࣂ∆  ᇲ൯ࣂ∆ െ തఏ,ାଵ܍൫ܬ െ ࣂ∆  ᇲ൯ࣂ∆ െ തఏ,ାଵ܍൫ܬ  ࣂ∆ െ ᇲ൯ࣂ∆  തఏ,ାଵ܍൫ܬ െ ࣂ∆ െ ,ᇲ൯൧ࣂ∆ ݈ ് ݈′

 
(23)

where the perturbation vectors ∆θl = [0, …, 0, ∆θ(l), 0, …, 0]T and ∆θl’ = [0, …, 0, ∆θ(l’), 0, …, 0]T  
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are vectors with zero entries except the lth and l’th components being small positive perturbations 
൫ߠ∆ ሺሻ andߠ∆

ᇲ൯, respectively. At the early propagation stage, the updated covariance matrix of 
the noise parameter vector ഥఏ,ାଵ  may not satisfy the positive-definiteness condition of 
covariance matrices since the approximation in Eq. (22) is inaccurate. In this situation, the updated 
covariance matrix ഥఏ,ାଵ will be replaced by the covariance matrix of the previous time step 
ഥఏ,. 

From Eqs. (20) to (22), it can be seen that the computation cost of the proposed algorithm 
depends on ഥఏ, and ௭,ାଵ. The size of ഥఏ, is ఏܰ ൈ ఏܰ and it depends on the number of 
noise parameters of the noise covariance matrices, ఏܰ. In general, this number is much smaller 
than the number of degrees of freedom, ௗܰ. On the other hand, the size of ௭,ାଵ is ܰ ൈ ܰ, 
where the number of measured degrees of freedom, ܰ , is again much smaller than ௗܰ . 
Therefore, the addition computation cost of the proposed algorithm is very minor, compared with 
the Kalman filter algorithm itself. In the following, a computationally efficient algorithm is 
proposed to solve Eq. (21) so that the noise parameters can be estimated in an online manner.  
 

3.2 Proposed optimization algorithm 
 
In this section, an efficient two-stage algorithm is proposed for the optimization problem in Eq. 

(21) in order to estimate the noise parameters in an online manner. This algorithm consists of the 
training stage and the operating stage. Specifically, the optimization problem is solved using an 
online half-or-double optimization algorithm during the training stage while it is solved using the 
gradient method during the operating stage. 

 
3.2.1 Training stage 
At the early propagation stage, the posterior PDF is associated with large uncertainty and 

complicated topology since only a limited number of data points have been acquired. Furthermore, 
the initial values of the noise parameters may be far away from the actual values. Therefore, direct 
application of gradient-type of methods at this stage may lead to erroneous results. This is the 
major reason in hampering the development of an efficient online identification method for the 
noise parameters. In order to overcome this difficulty, a training process is introduced at the early 
propagation stage. In this stage, an online half-or-double optimization algorithm is utilized. First, 
the parameter candidate set is established based on the half-or-double rule of the solution from the 
previous time step and it is given by 

દ ൌ ቄࣂାଵ: ାଵߠ
ሺሻ ൌ ߮eതఏ,

ሺሻ ; ߮ ൌ 1/2, 1, 2ቅ 																									 (24)

where eതఏ,
ሺሻ  is the ݈th component of the updated noise parameter vector at the ݇th time step ܍തఏ,. 

The optimal solution for the (k+1)th time step is the parameter vector candidate which provides the 
minimum objective function value within the parameter candidate set દ 

തఏ,ାଵ܍ ൌ arg min
ೖశభ∈દࣂ

ାଵሻࣂሺܬ 																									 (25)

The training stage will be terminated if the training has been carried out for no less than one 
fundamental period of the concerned dynamical system and the updated noise parameter vectors 
are identical for ten consecutive time steps. 
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3.2.2 Operating stage 
At the end of the training stage, a preliminary solution (which is relatively close to the true 

optimal point of the posterior PDF) of the noise parameters has been obtained. Furthermore, since 
the topology of the posterior PDF will become more regular at this stage after acquiring a 
considerable amount of data points, it is possible to use the gradient method to solve the 
optimization problem. Specifically, the updated noise parameter vector can be obtained as follows 

തఏ,ାଵ܍ ൌ തఏ,܍ െ ഥఏ,ܬ൫܍തఏ,൯ 																									 (26)

where the matrix ഥఏ, is given by Eq. (22) (with ݇  1 being replaced by ݇); and ܬ൫܍തఏ,൯ is 
the gradient of the objective function evaluated at ࣂ ൌ  തఏ,. It can be computed numerically܍
using the finite difference method and its lth component is given by 

തఏ,൯܍ሺሻ൫ܬ ≡
୩ሻࣂሺܬ∂

ߠ∂
ሺሻ อ

തഇ,ೖ܍ೖୀࣂ

ൌ
1

ሺሻߠ∆2
തఏ,܍൫ܬൣ  ൯ࣂ∆ െ തఏ,܍൫ܬ െ  (27)														൯൧ࣂ∆

where ∆ࣂ ൌ ൣ0,… ,0, ,ሺሻߠ∆ 0, … ,0൧
்

. It is worth noting that the contribution of one data point is 
small. Therefore, the estimated noise parameter vectors in two consecutive time steps are expected 
to be close to each other. Consequently, Eq. (26) provides accurate solution for the optimization 
problem without any iteration. 
 

3.3 Summary of the proposed method 
 
The proposed method can be summarized as follows: 
 
Training stage 
1. Initialize arbitrarily (subjected to positive or positive-definite condition) the state vector ܍ത௬,, 

noise parameter vector ܍തఏ, and covariance matrices ഥ௬, and ഥఏ,. 
2. Calculate the predicted state vector ܍௬,ାଵ and the associated covariance matrix ௬,ାଵ by 

using Eqs. (8) and (9), respectively. 
3. Estimate the updated noise parameter vector ܍തఏ,ାଵ according to Eqs. (24) and (25). 
4. Compute the covariance matrix of the updated noise parameter vector ഥఏ,ାଵ by using Eq. 

(22). If ഥఏ,ାଵ does not satisfy the positive-definiteness criterion, replace it by ഥఏ,. 
5. Calculate the updated state vector ܍ത௬,ାଵ and the associated covariance matrix ഥ௬,ାଵ by 

using Eqs. (10) and (12), respectively. 
6. Check whether the stopping criteria are satisfied:  
a) The training stage has been carried out for at least one fundamental period of the system;  
b) The optimal noise parameters remain unchanged for ten consecutive time steps. 
 
If yes, then go to the operating stage. Otherwise, repeat the procedure from Step 2 for the next 

time step. 
 
Operating stage 
7. Calculate the predicted state vector ܍௬,ାଵ and the associated covariance matrix ௬,ାଵ by 

using Eqs. (8) and (9), respectively. 
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8. Estimate the updated noise parameter vector ܍തఏ,ାଵ by using Eq. (26). 
9. Compute the covariance matrix of the updated noise parameter vector ഥఏ,ାଵ by using Eq. 

(22). 
10. Calculate the updated state vector ܍ത௬,ାଵ and the associated covariance matrix ഥ௬,ାଵ by 

using Eqs. (10) and (12), respectively. 
11. Repeat the procedure from Step 7 for the next time step. 

 
 
4. Illustrative example 
 

A fifty-story shear building is utilized to demonstrate the efficacy and applicability of the 
proposed method. The building has a square floor plan with 20m width and identical interstory 
height of 2.5m. It is assumed that the building has a uniformly distributed floor mass and interstory 
stiffness over its height. The floor mass and the interstory stiffness are taken to be 400 metric ton 
and 652.9MN/m, respectively. As a result, the fundamental frequency of the building is 0.2Hz. 
Rayleigh damping is assumed, i.e., the damping matrix is given by ۺ ൌ ۻெߙ   ۹, whereߙ
ெߙ ൌ 1.885 ൈ 10ିଶsିଵ and ߙ ൌ 3.980 ൈ 10ିଷs, so that the damping ratios of the first two 
modes are 1.00%. Acceleration responses are measured at the 1st, 10th, 20th, 30th, 40th and 50th 
floor. The entire monitoring duration is 1000s and the sampling frequency is 100Hz. Moreover, the 
fading factor is taken to be ߣ ൌ 2ଶ/ଵ ൌ 1.001387, implying that the data half-life is 10s. 

Three stationarity scenarios of the process noise and measurement noise are considered:  
Case 1. stationary ground excitation with stationary measurement noise  
Case 2. nonstationary ground excitation with stationary measurement noise 
Case 3. nonstationary wind excitation with nonstationary measurement noise  

 
4.1 Case 1: Stationary ground excitation with stationary measurement noise  
 
In Case 1, the underlying shear building is subjected to stationary ground excitation. The force 

distributing matrix is given by ܂ ൌ …,ሾെ1,െ1ۻ ,െ1ሿ் and the ground excitation is given by 
ሻݐሺ ൌ ۴ሺݐሻ ൌ ሷ݃ሺݐሻ. The base acceleration ሷ݃  is modeled as zero-mean stationary Gaussian white 
noise with spectral intensity ܵሷ  ൌ 1.20 ൈ 10ିସmଶ/sଷ. The covariance matrix of the excitation 
can be expressed as , ൌ ሷߪ ,

ଶ . On the other hand, the measurement noise is also modeled as 
zero-mean stationary Gaussian white noise. The root-mean-square (RMS) of the measurement 
noise is taken to be 5% RMS of the noise-free acceleration of the top floor. Therefore, the 
covariance matrix of the measurement noise can be expressed as ,ାଵ ൌ ,ାଵߪ

ଶ ۷. The noise 
parameter vector is assumed to consist of two parameters and it is denoted by 

ାଵࣂ ൌ ,,ߠൣ ,ାଵ൧ߠ
்

, where ߠ, ൌ ሷߪ ,
ଶ  and ߠ,ାଵ ൌ ,ାଵߪ

ଶ . The actual noise parameter 

vector is ࣂ ൌ ሾ0.0754, 1.320 ൈ 10ିସሿ் and it remains constant throughout the entire estimation 
process in this case.  

The proposed method requires only arbitrary initial noise parameters ܍തఏ, and arbitrary 
positive-definite covariance matrix ഥఏ,. To demonstrate the effect of the initial choice to the 
noise parameters estimation, five representative sets of the initial noise parameters are employed. 
The actual values of the noise parameters are used for Trial 1 while the other four trials represent 
different combinations of overestimation or underestimation in the initial values. These five sets of  
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Table 1 Five representative sets of initial noise parameters  

Trial eതఏ,
ሺଵሻ eതఏ,

ሺଶሻ 

1 0.0754 1.320×10-4 
2 10 10 
3 10 10-5 
4 10-3 10 
5 10-3 10-5 

 

 

Fig. 1 Estimated noise parameters with different initial conditions (Case 1) 
 
 

initial values are listed in Table 1. The initial covariance matrix of the noise parameter vector ഥఏ, 

is assigned to be diagonal matrix with large variances: ഥఏ, ൌ 1/9 ∗ diag ൬ቀeതఏ,
ሺଵሻቁ

ଶ
, ቀeതఏ,

ሺଶሻቁ
ଶ
൰. The 

rationale for this is to use a prior distribution that covers the actual noise parameters in its 
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significant region (i.e., within the plus and minus three standard deviations region). Furthermore, 
this region covers only positive values of the noise parameters by using this prior distribution. 

Fig. 1 shows the time histories of the estimated noise parameters for these five trials. The solid 
lines represent the estimated results of the five trials and the dashed lines represent the actual 
values. It can be clearly seen that the choice of the initial noise parameters affects only the 
estimation at the early propagation stage for the proposed approach and all these curves merge to 
one after the 150th second. It is not surprising that the result with Trial 1 is associated with the 
fastest convergence for both noise parameters because the actual noise parameters are taken as the 
initial values. However, the initial noise parameters for other trials are far from the actual values. 
By comparing the results of Trial 2 to Trial 5, it is found that the trials with larger initial noise 
parameters are associated with higher convergence rates. For example, Trial 2 converges 
significantly faster than Trial 3 to Trial 5 and the estimated noise parameters of Trial 1 and Trial 2 
become virtually identical since around the 40th second. Taking this into account, an arbitrarily 
large initial noise parameter vector ܍തఏ, ൌ ሾ10, 10ሿ் and the associated initial covariance matrix 
ഥఏ, ൌ 1/9 ∗ diagሺ100, 100ሻ (i.e., Trial 2) are used hereafter. 

Next, the state estimation performance of the proposed method is compared with the Kalman 
filter using prescribed noise parameters, namely the actual noise parameters (i.e., ࣂ ൌ ࣂ ൌ
ሾ0.0754, 1.320 ൈ 10ିସሿ்) and ࣂ ൌ ሾ10, 10ሿ். Note that the parameter vector ࣂ ൌ ሾ10, 10ሿ் will  

 
 
Table 2 RMS errors of the estimated state using the conventional Kalman filter and the proposed method  
(Case 1) 

RMS error 
Kalman filter Proposed method 

ࣂ ൌ ࣂ ࣂ ൌ ሾ10, 10ሿ் ܍തఏ, ൌ ሾ10, 10ሿ் 
 ହሺmሻ 1.089×10-4 1.051×10-3 [865] 1.089×10-4 [3.62×10-3]ݔ
 ଵሺmሻ 2.009×10-4 1.869×10-3 [830] 2.009×10-4 [4.30×10-3]ݔ
 ଵହሺmሻ 2.803×10-4 2.531×10-3 [803] 2.803×10-4 [5.11×10-3]ݔ
 ଶሺmሻ 3.487×10-4 3.076×10-3 [782] 3.486×10-4 [5.94×10-3]ݔ
 ଶହሺmሻ 4.070×10-4 3.525×10-3 [766] 4.070×10-4 [6.37×10-3]ݔ
 ଷሺmሻ 4.559×10-4 3.889×10-3 [753] 4.559×10-4 [6.14×10-3]ݔ
 ଷହሺmሻ 4.955×10-4 4.176×10-3 [743] 4.954×10-4 [5.74×10-3]ݔ
 ସሺmሻ 5.253×10-4 4.389×10-3 [736] 5.252×10-4 [5.38×10-3]ݔ
 ସହሺmሻ 5.445×10-4 4.524×10-3 [731] 5.445×10-4 [5.05×10-3]ݔ
 ହሺmሻ 5.521×10-4 4.576×10-3 [729] 5.521×10-4 [4.89×10-3]ݔ
 ሶହሺm/sሻ 9.880×10-4 5.451×10-3 [452] 9.882×10-4 [1.87×10-2]ݔ
 ሶଵሺm/sሻ 1.075×10-3 7.235×10-3 [573] 1.076×10-3 [1.65×10-2]ݔ
 ሶଵହሺm/sሻ 1.134×10-3 8.142×10-3 [618] 1.134×10-3 [1.58×10-2]ݔ
 ሶଶሺm/sሻ 1.184×10-3 8.815×10-3 [644] 1.184×10-3 [1.35×10-2]ݔ
 ሶଶହሺm/sሻ 1.222×10-3 9.279×10-3 [659] 1.222×10-3 [1.04×10-2]ݔ
 ሶଷሺm/sሻ 1.255×10-3 9.665×10-3 [670] 1.255×10-3 [8.90×10-3]ݔ
 ሶଷହሺm/sሻ 1.285×10-3 9.992×10-3 [677] 1.285×10-3 [8.96×10-3]ݔ
 ሶସሺm/sሻ 1.314×10-3 1.027×10-2 [681] 1.315×10-3 [9.74×10-3]ݔ
 ሶସହሺm/sሻ 1.341×10-3 1.051×10-2 [684] 1.341×10-3 [1.05×10-2]ݔ
 ሶହሺm/sሻ 1.360×10-3 1.069×10-2 [686] 1.361×10-3 [1.05×10-2]ݔ

Note: The numbers in [ ] denote the percentage of difference. 
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Table 3 Maximum absolute errors of the estimated state using the conventional Kalman filter and the 
proposed method (Case 1) 

Infinity-norm err
or 

Kalman filter Proposed method 
ࣂ ൌ ࣂ ࣂ ൌ ሾ10, 10ሿ் ܍തఏ, ൌ ሾ10, 10ሿ் 

 ହሺmሻ 4.269×10-4 4.151×10-3 [872] 4.271×10-4 [4.46×10-2]ݔ
 ଵሺmሻ 7.951×10-4 7.180×10-3 [803] 7.955×10-4 [4.60×10-2]ݔ
 ଵହሺmሻ 1.085×10-3 9.206×10-3 [749] 1.085×10-3 [4.23×10-2]ݔ
 ଶሺmሻ 1.294×10-3 1.095×10-2 [746] 1.294×10-3 [4.10×10-2]ݔ
 ଶହሺmሻ 1.528×10-3 1.253×10-2 [720] 1.529×10-3 [4.00×10-2]ݔ
 ଷሺmሻ 1.693×10-3 1.349×10-2 [697] 1.694×10-3 [4.32×10-2]ݔ
 ଷହሺmሻ 1.826×10-3 1.417×10-2 [676] 1.827×10-3 [1.41×10-2]ݔ
 ସሺmሻ 1.941×10-3 1.482×10-2 [664] 1.940×10-3 [1.26×10-2]ݔ
 ସହሺmሻ 2.043×10-3 1.551×10-2 [659] 2.043×10-3 [8.42×10-3]ݔ
 ହሺmሻ 2.087×10-3 1.584×10-2 [659] 2.087×10-3 [6.13×10-3]ݔ
 ሶହሺm/sሻ 4.393×10-3 2.664×10-2 [506] 4.370×10-3 [5.32×10-1]ݔ
 ሶଵሺm/sሻ 4.721×10-3 3.777×10-2 [700] 4.736×10-3 [2.98×10-1]ݔ
 ሶଵହሺm/sሻ 4.962×10-3 4.219×10-2 [750] 4.976×10-3 [2.74×10-1]ݔ
 ሶଶሺm/sሻ 5.005×10-3 4.211×10-2 [741] 5.006×10-3 [2.71×10-2]ݔ
 ሶଶହሺm/sሻ 5.245×10-3 4.380×10-2 [735] 5.245×10-3 [2.98×10-3]ݔ
 ሶଷሺm/sሻ 5.282×10-3 4.459×10-2 [744] 5.282×10-3 [1.58×10-2]ݔ
 ሶଷହሺm/sሻ 5.311×10-3 4.264×10-2 [703] 5.339×10-3 [5.11×10-1]ݔ
 ሶସሺm/sሻ 5.724×10-3 4.401×10-2 [669] 5.757×10-3 [5.71×10-1]ݔ
 ሶସହሺm/sሻ 5.924×10-3 4.304×10-2 [627] 5.958×10-3 [5.65×10-1]ݔ
 ሶହሺm/sሻ 5.928×10-3 4.495×10-2 [658] 5.962×10-3 [5.69×10-1]ݔ

Note: The numbers in [ ] denote the percentage of difference. 
 
 
also be used as the initial values for the proposed method. The accuracy of state estimation is 
evaluated according to the RMS errors and the maximum absolute errors of the estimated state 
variables. These results are summarized in Tables 2 and 3, respectively. In order to eliminate the 
effect of the initial conditions, the results of the first 100s are excluded from the calculation of the 
RMS errors and the maximum absolute errors. For the proposed method and the Kalman filter with 
ࣂ ൌ ሾ10, 10ሿ், the numbers in brackets denote the percentage of difference compared with the 
results of the Kalman filter using the actual noise parameters. Table 2 confirms that the proposed 
method can achieve satisfactory accuracy of state estimation. Specifically, it demonstrates that the 
RMS errors of the proposed method with the initial parameters ܍തఏ, ൌ ሾ10, 10ሿ் are virtually 
identical to those of the Kalman filter with the actual noise parameters. The corresponding 
percentage of difference is less than 0.02% for all state variables. However, the accuracy of state 
estimation of the conventional Kalman filter is seriously degraded by the inappropriate choice of 
the noise parameters. By using ࣂ ൌ ሾ10, 10ሿ் for the conventional Kalman filter, the RMS errors 
of the estimated state variables are around one order larger than those obtained with the actual 
noise parameters. Note that the same results are obtained by using ࣂ ൌ ሾߪଶ, ࣂ ,ଶሿ், e.gߪ ൌ
ሾ0.1, 0.1ሿ். On the other hand, the maximum absolute errors are used as an alternative measure of 
the estimation accuracy. Table 3 reconfirms, in terms of maximum absolute errors, the observation 
from Table 2. Specifically, the state estimation accuracy of the Kalman filter depends on the  
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Fig. 2 Estimation results of the noise parameters (Case 1) 
 
 
choice of the noise parameters. Nevertheless, the proposed method provides accurate state 
estimation regardless of the poor initial choice of the noise parameters.  

Finally, the tracking performance of noise parameters using the proposed method is discussed. 
Since both the excitation and measurement noise are stationary in this case, the actual noise 
parameters remain constant throughout the entire monitoring duration. Fig. 2 shows the estimation 
results of the noise parameters. The solid lines represent the estimated values, the dotted lines 
represent the plus and minus three standard derivations confidence intervals (i.e., corresponding to 
a probability of 99.7%) and the dashed lines represent the actual values of the noise parameters. 
For both of the noise parameters, the estimated results approach to the actual values after 70s with 
reasonable confidence intervals. This example demonstrates that reliable estimation of the noise 
parameters is necessary in order to ensure the accuracy of the state estimation. The proposed 
method provides an efficient solution for this task. In contrast to the conventional usage of Kalman 
filter, the proposed method requires only a set of arbitrarily positive initial noise parameters. 
Furthermore, this example verifies that the arbitrary choice of the initial noise parameters does not 
affect the accuracy of the proposed method after the training process. In practice, it is suggested to 
start with sufficiently large initial values of the noise parameters. 
 

0 100 200 300 400 500 600 700 800 900 1000

0.05

0.1

0.15

Time (s)
(a)

 f

 

 
Estimated

99.7% confidence interval
Actual

0 100 200 300 400 500 600 700 800 900 1000
0.8

1

1.2

1.4

1.6

1.8
x 10

-4

Time (s)
(b)

 n
373



 
 
 
 
 
 

Ka-Veng Yuen, Peng-Fei Liang and Sin-Chi Kuok 

Table 4 RMS errors of the estimated state using the conventional Kalman filter and the proposed method  
(Case 2) 

RMS error 
Kalman filter Proposed method  

ࣂ ൌ ࣂ ࣂ ൌ ഥࣂ ࣂ ൌ ࣂ ࣂ ൌ ሾ10, 10ሿ் ܍തఏ, ൌ ሾ10, 10ሿ் 
ହሺmሻ 1.397×10-4 1.397×10-4ݔ 1.397×10-4 9.956×10-4 1.397×10-4 
ଵሺmሻ 2.576×10-4 2.576×10-4ݔ 2.576×10-4 1.764×10-3 2.576×10-4 
ଵହሺmሻ 3.594×10-4 3.593×10-4ݔ 3.593×10-4 2.383×10-3 3.593×10-4 
ଶሺmሻ 4.471×10-4 4.470×10-4ݔ 4.469×10-4 2.893×10-3 4.470×10-4 
ଶହሺmሻ 5.219×10-4 5.218×10-4ݔ 5.217×10-4 3.312×10-3 5.218×10-4 
ଷሺmሻ 5.846×10-4 5.845×10-4ݔ 5.844×10-4 3.653×10-3 5.846×10-4 
ଷହሺmሻ 6.353×10-4 6.351×10-4ݔ 6.350×10-4 3.922×10-3 6.352×10-4 
ସሺmሻ 6.735×10-4 6.733×10-4ݔ 6.732×10-4 4.121×10-3 6.734×10-4 
ସହሺmሻ 6.982×10-4 6.981×10-4ݔ 6.979×10-4 4.248×10-3 6.981×10-4 
ହሺmሻ 7.079×10-4 7.078×10-4ݔ 7.076×10-4 4.297×10-3 7.079×10-4 
ሶହሺm/sሻ 1.232×10-3 1.263×10-3ݔ 1.284×10-3 5.639×10-3 1.235×10-3 
ሶଵሺm/sሻ 1.347×10-3 1.376×10-3ݔ 1.394×10-3 7.261×10-3 1.349×10-3 
ሶଵହሺm/sሻ 1.423×10-3 1.451×10-3ݔ 1.468×10-3 8.073×10-3 1.426×10-3 
ሶଶሺm/sሻ 1.489×10-3 1.516×10-3ݔ 1.532×10-3 8.680×10-3 1.491×10-3 
ሶଶହሺm/sሻ 1.539×10-3 1.564×10-3ݔ 1.580×10-3 9.097×10-3 1.541×10-3 
ሶଷሺm/sሻ 1.582×10-3 1.606×10-3ݔ 1.622×10-3 9.446×10-3 1.584×10-3 
ሶଷହሺm/sሻ 1.621×10-3 1.645×10-3ݔ 1.660×10-3 9.744×10-3 1.623×10-3 
ሶସሺm/sሻ 1.659×10-3 1.682×10-3ݔ 1.697×10-3 9.999×10-3 1.661×10-3 
ሶସହሺm/sሻ 1.694×10-3 1.716×10-3ݔ 1.731×10-3 1.022×10-2 1.696×10-3 
ሶହሺm/sሻ 1.719×10-3 1.741×10-3ݔ 1.756×10-3 1.038×10-2 1.721×10-3 

 
 

4.2 Case 2: Nonstationary ground excitation with stationary measurement noise  
 
In this case, the underlying shear building is subjected to nonstationary ground excitation. The 

force distributing matrix is given by ܂ ൌ …,ሾെ1,െ1ۻ ,െ1ሿ்  and the nonstationary ground 
excitation is modeled as a modulated zero-mean Gaussian white noise ሺݐሻ ൌ ۴ሺݐሻ ൌ ሷ݃ሺݐሻ ൌ
is a stationary Gaussian white noise with spectral intensity ܵ௩ ݒ ሻ, whereݐሺݒሻݐሺܣ ൌ 1.20 ൈ
10ିସmଶ/sଷ. The modulating function ܣ is given by 

ሻݐሺܣ ൌ ቐ
1  0.2 sinሺ250/ݐߨሻ, 0  ݐ ൏ 300s
1  4ሺݐ െ 300ሻ expሾെ0.02ሺݐ െ 100ሻሿ , 300s  ݐ ൏ 700s
1 െ 0.2 sinሺ250/ݐߨሻ, 700s  ݐ  1000s

 (28)

The measurement noise is modeled as stationary Gaussian white noise. The RMS of the 
measurement noise is taken to be 5% RMS of the noise-free acceleration of the top floor so that 
the covariance matrix of the measurement noise can be expressed as ,ାଵ ൌ ,ାଵߪ

ଶ ۷. Again, the 

noise parameter vector is taken to be ࣂାଵ ൌ ,,ߠൣ ,ାଵ൧ߠ
்

 where ߠ, ൌ ,ߪ
ଶ  and ߠ,ାଵ ൌ

,ାଵߪ
ଶ . 

Table 4 shows the RMS errors of the estimated state obtained by the Kalman filter with 
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prescribed noise parameters and the proposed method with the initial parameters ܍തఏ, ൌ
ሾ10, 10ሿ். For the Kalman filter, four trials of noise parameters are used: the actual time-varying 

noise parameters, i.e., ࣂ ൌ ࣂ ,.; the mean values of the actual noise parameters, i.eࣂ ൌ  ഥ; theࣂ
actual noise parameters at ݐ ൌ 0, i.e., ࣂ ൌ  ; and the initial noise parameters employed in theࣂ
proposed approach, i.e., ࣂ ൌ ሾ10, 10ሿ். Again, the state estimation results of the first 100s are 
excluded from the calculation of the RMS errors so that the effect of the initial conditions can be 
eliminated. 

These results show that the proposed approach is able to provide accurate state estimation and 
the obtained RMS errors are virtually the same as those of the Kalman filter with the actual time-
varying noise parameters. Then, the performance of the conventional Kalman filter with the 

prescribed noise parameters (i.e., ࣂ ൌ ࣂ ,ഥࣂ ൌ ࣂ  andࣂ ൌ ሾ10, 10ሿ்) is discussed. By taking 
either the mean or the initial values of the actual noise parameters, the utilized noise parameters 
are close to the actual noise parameters. It turns out that the estimated displacements are fairly 
accurate with similar RMS errors with the results obtained from the Kalman filter with the actual 
time-varying noise parameters. However, the RMS errors of the estimated velocity are up to 2.5% 

of difference for ࣂ ൌ ࣂ ഥ and up to 4% forࣂ ൌ  . It is realized that the accuracy of the stateࣂ
estimation is deteriorated even though the prescribed noise parameters are very close to the actual 
values of the noise parameters. Moreover, it should be noted that these accurate prescribed values 
of the noise parameters are difficult to achieve in practice. Arbitrarily selected noise parameters 
induce notable errors on the state estimation. Herein, the RMS errors of the state estimation 
obtained by the arbitrary selected noise parameters ࣂ ൌ ሾ10, 10ሿ் are more than four times larger 
than the corresponding results obtained by the proposed approach. From this case, it demonstrates 
the necessity of reliable online estimation on the time-varying noise parameters and the efficacy of 
the proposed approach to tackle this problem. 
 
 

 

Fig. 3 Comparison between the estimated and actual values of the noise parameters (Case 2) 
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Fig. 4 Estimated noise parameters with 99.7% confidence intervals (Case 2) 
 
 

Fig. 3 shows the comparison between the estimated and actual noise parameters. Although the 
fluctuation of the earthquake ground motion is severe, the proposed method performs satisfactorily 
in tracking the variation. It is observed that there is time delay of the estimated noise parameters. 
This time lag is expected because the estimation is based on the data at the current and previous 
time steps. Therefore, the estimation can be viewed as a weighted average of the actual values in a 
moving time window. Fig. 4 shows the time histories of the estimated noise parameters with the 
99.7% confidence intervals. These results confirm that the proposed method provides satisfactory 
estimation on the noise parameters with reasonable confidence intervals. Through this case, the 
proposed method is confirmed to be applicable for nonstationary process noise with stationary 
measurement noise. On the other hand, the conventional Kalman filter cannot achieve accurate 
state estimation in this situation unless the entire time histories of the covariance matrices of the 
process noise and measurement noise are given. Unfortunately, this is rarely the case in practice.  
 

4.3 Case 3: Nonstationary wind excitation with nonstationary measurement noise  
 
In the last case, the proposed method is demonstrated with an application under nonstationary 

process noise and nonstationary measurement noise. Here, the building is subjected to 
nonstationary wind excitation which is a superposition of the mean wind load ۴  and the 
turbulent wind load ۴, i.e., ሺݐሻ ൌ ۴  ۴ሺݐሻ (Simiu and Scanlan 1996, Taranath 2005). The 

mean wind load is denoted as ۴ ൌ ൣFሺ݄ଵሻ, Fሺ݄ଶሻ, … , F൫݄ே൯൧
்

, where ݄ is the elevation of 
the ݅th floor. The component corresponding to the ݅th floor Fሺ݄ሻ is given by 
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Table 5 RMS errors of the estimated state using the conventional Kalman filter and the proposed method  
(Case 3) 

RMS error 
Kalman filter Proposed method   

ࣂ ൌ ࣂ ࣂ ൌ ሾ10, 10ሿ் ܍തఏ, ൌ ሾ10, 10ሿ் 
 ହሺmሻ 8.309×10-5 6.240×10-4 8.304×10-5ݔ
 ଵሺmሻ 1.607×10-4 1.197×10-3 1.606×10-4ݔ		
 ଵହሺmሻ 2.348×10-4 1.714×10-3 2.346×10-4ݔ
 ଶሺmሻ 3.006×10-4 2.179×10-3 3.004×10-4ݔ
 ଶହሺmሻ 3.638×10-4 2.590×10-3 3.635×10-4ݔ
 ଷሺmሻ 4.170×10-4 2.946×10-3 4.166×10-4ݔ
 ଷହሺmሻ 4.667×10-4 3.244×10-3 4.662×10-4ݔ
 ସሺmሻ 5.039×10-4 3.478×10-3 5.033×10-4ݔ
 ସହሺmሻ 5.356×10-4 3.635×10-3 5.351×10-4ݔ
 ହሺmሻ 5.464×10-4 3.699×10-3 5.459×10-4ݔ
 ሶହሺm/sሻ 2.776×10-4 1.617×10-3 2.776×10-4ݔ
 ሶଵሺm/sሻ 4.026×10-4 2.405×10-3 4.026×10-4ݔ
 ሶଵହሺm/sሻ 5.484×10-4 2.901×10-3 5.483×10-4ݔ
 ሶଶሺm/sሻ 6.282×10-4 3.289×10-3 6.282×10-4ݔ
 ሶଶହሺm/sሻ 7.499×10-4 3.625×10-3 7.498×10-4ݔ
 ሶଷሺm/sሻ 7.955×10-4 3.928×10-3 7.953×10-4ݔ
 ሶଷହሺm/sሻ 9.030×10-4 4.228×10-3 9.026×10-4ݔ
 ሶସሺm/sሻ 9.364×10-4 4.536×10-3 9.359×10-4ݔ
 ሶସହሺm/sሻ 1.017×10-3 4.869×10-3 1.016×10-3ݔ
 ሶହሺm/sሻ 1.138×10-3 5.173×10-3 1.138×10-3ݔ

 
 

Fሺ݄ሻ ൌ
1
2
ߩ ෩ܷு

ଶ ܿ ሻଶఉ (29)ܪ/௪ሺ݄ܣ

where the air density is ߩ ൌ 1.20kg/mଷ; the reference height is ܪ ൌ 10m; the mean wind 
velocity at the reference height ܪ  is ෩ܷு ൌ 10m/s; the drag coefficient is ܿ ൌ 2.03; the 
equivalent windward area of one story is ܣ௪ ൌ 20 ൈ 2.5 ൌ 50mଶ; and the power-law exponent is 
ߚ ൌ 0.3. The turbulent wind load ۴ሺݐሻ ൌ  ሻ is modeled as a modulated zero-meanݐሺሻݐሺܣ
Gaussian white noise. The modulating function ܣ is given by: 

ሻݐሺܣ ൌ ൜
1  ,500/ݐ 0  ݐ ൏ 500s
3 െ ,500/ݐ 500s  ݐ  1000s (30)

The ሺ݅, ݆ሻ component of the covariance matrix  of ሺݐሻ can be expressed as: 


ሺ,ሻ

ൌ ሺ,ሻFሺ݄ሻF൫ݎଶߛ ݄൯, ݅, ݆ ൌ 1,… , ௗܰ (31)

where ߛ ൌ 0.2 is the intensity of the turbulence wind at the reference height ܪ ; and the 
correlation coefficient between ݄ and ݄ is expressed as ݎሺ,ሻ ൌ exp൫െห݄ െ ݄ห/ܪ൯. In this 
case, the force distributing matrix is ܂ ൌ ۷. Therefore, the covariance matrix of the excitation can 
be expressed as , ൌ ,ߪ

ଶ  . On the other hand, the measurement noise is modeled as 
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modulated stationary Gaussian white noise. For simulation purpose, the same modulating function 
is employed but this information is assumed unavailable in the identification process. The RMS of 
the stationary Gaussian white noise is taken to be 5% RMS of the noise-free acceleration of the top 
floor. 

The RMS errors of the estimated state variables are used to evaluate the accuracy of state 
estimation. Table 5 shows the comparison between the RMS errors of the estimated state using the 
proposed method and the Kalman filter. In particular, the results obtained by the proposed method 
is compared with those obtained by the Kalman filter with the actual time-varying noise parameter 
ࣂ ൌ ࣂ  and the initial noise parameters employed in the proposed approachࣂ ൌ ሾ10, 10ሿ். Again, 
the results of the first 100s are excluded from the calculation of the RMS errors so that the effect 
of the initial conditions can be eliminated. Since the RMS errors obtained from the proposed 
approach are virtually identical to those of the Kalman filter with the actual noise parameters, it 
reconfirms that the proposed approach provides accurate state estimation. Besides, it is clearly 
seen that the RMS errors of the proposed method are much lower than those of the conventional 
Kalman filter. The accuracy of the conventional Kalman filter with ࣂ ൌ ሾ10, 10ሿ் is poor. By 
using the proposed method, the accuracy of state estimation is significantly improved. 

Fig. 5 shows the time histories of the estimated and actual noise parameters. It is observed that 
the variations for both noise parameters can be successfully estimated. In addition, the time 
histories of the estimated noise parameters with the 99.7% confidence intervals are shown in Fig. 
6. It is realized that the proposed method can track the time-varying noise parameters and provide 
the confidence intervals of the estimation. These results verify that the proposed method is 

 
 

 

Fig. 5 Comparison between the estimated and actual values of the noise parameters (Case 3) 
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Fig. 6 Estimated noise parameters with 99.7% confidence intervals (Case 3) 
 
 
capable for general situations with nonstationary process noise and nonstationary measurement 
noise. The estimated noise parameters are accurate and the associated estimation uncertainties are 
reliable. Consequently, reliable state estimation can be achieved.  
 
 
5. Conclusions 
 

The noise covariance matrices are required for state estimation using the Kalman filter. 
However, prior information of these noise covariance matrices is usually not available in practice 
and inappropriate choice substantially deteriorates the accuracy of state estimation results. In this 
study, a Bayesian probabilistic method is proposed for online estimation of the noise parameters 
which govern the noise covariance matrices. The proposed method is a two-stage approach that 
includes a training stage before the operating stage. The training stage is necessary because the 
initial noise parameters may be far from the actual values. Direct application of the gradient-type 
of methods leads to erroneous results. Moreover, the proposed method removes the stationarity 
requirement imposed to the process noise and measurement noise. Therefore, it is widely 
applicable for state estimation in nonstationary situation. The efficacy and efficiency of the 
proposed method were confirmed by the illustrative examples. Three stationarity scenarios of the 
process noise and measurement noise were examined. These results confirm that the proposed 
method successfully provides reliable online estimation of the noise parameters for both stationary 
and nonstationary situations. Consequently, accurate online state estimation can be accomplished 
by using the proposed method. 
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