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Abstract.  For the purpose of investigating the free vibration response of the spatial curved beams, the 
governing equations are derived in matrix formats, considering the variable curvature and torsion. The 
theory includes all the effects of rotary inertia, shear and axial deformations. Frobenius’ scheme and the 
dynamic stiffness method are then applied to solve these equations. A computer program is coded in 
Mathematica according to the proposed method. As a special case, the dynamic stiffness and further the 
natural frequencies of a cylindrical helical spring under fixed-fixed boundary condition are carried out. 
Comparison of the present results with the FEM results using body elements in I-DEAS shows good 
accuracy in computation and validity of the model. Further, the present model is used for reciprocal spiral 
rods with different boundary conditions, and the comparison with FEM results shows that only a limited 
number of terms in the resultant provide a relatively accurate solution. 
 

Keywords:   curved beam; free vibration; variable curvature and torsion; dynamic stiffness; exact solution 

 
 
1. Introduction 

 
Curved beams have been found extensive use in modern world from traditional bridges and 

machinery structures to light rails for city transportation and scenic railways in the play grounds. 
Larger span with variable curvature and torsion and higher speed moving loads interest the 
researchers. Based on the static analysis, the studies began to focus on the dynamic response of 
spatial curved beams. Earliest work casts back to Michell’s (1890), which obtained three equations 
of motion by using the first form of Lagrange’s fundamental equation. Love (1899) obtained six 
equations of motion based on the same assumptions as Michell’s. These equations were later 
modified by Yoshimura and Murata (1952) to include the torsional inertia, and then by Wittrick 
(1966) to add the rotary inertia and Timoshenko shear deformation effects. But because of the 
mathematical difficulties on solving the equations, various numerical methods were applied to 
attack such problems. Based on the Timoshenko beam theory, Kiral and Ertepinar (1974a, b) 
derived governing equations of the free and forced vibration of curved space rod in the canonical 
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form and solved the free vibration problem by the transfer matrix method. Using the equations 
given by Wittrick (1966), Mottershead (1980) computed the natural frequencies of the free 
vibration of cylindrical helical rods by the finite element method and compared them with the 
results from experiments and Pearson (1982) studied the free vibration of the compressed circular 
cross-sectioned cylindrical helical springs by the transfer matrix method. Pearson and Wittrick 
(1986) obtained the dynamic stiffness matrix for the free vibration of a helical spring not 
considering the effect of shear deformation. Nagaya et al. (1986) gave the natural frequencies of 
noncircular helical springs with circular cross-section by the equivalence transfer matrix method 
and experimentally, where only the effect of axial deformation was considered. Tabarrok et al. 
(1988) examined free vibration of spatial curved and twisted rods with the aid of a finite element 
model and obtained displacement modes of a problem. Yildirim (1999, 2001, 2004) studied free 
vibration of cylindrical helical springs and unidirectional composite barrel and hyperboloidal 
springs with the help of the transfer matrix method and investigated the effect of the parameters to 
the natural frequencies. Lee and Thompson (2001) examined the free vibration and wave motion 
of helical springs and compared the natural frequencies of the dynamic stiffness matrix with those 
of the transfer matrix and the finite element methods. Temel and Calim (2003) presented a method 
for the analysis of the forced vibration of cylindrical helical rods under arbitrary time-dependent 
and impulsive loads in the Laplace domain. Taktak et al. (2008) introduced an efficiently finite 
element for dynamic analysis of a cylindrical isotropic helical spring. Calim (2009) investigated 
the dynamic behavior of composite barrel and hyperboloidal springs using the complementary 
functions method. Yu et al. (2008, 2010) and Hao and Yu (2011) carried out an analytical study for 
free vibration of naturally curved and twisted beams with uniform cross-sectional shapes using 
spatial curved beam theory based on the Washizu’s static model (1964) and investigated the free 
vibrational behavior of cylindrical helical springs with different cross-section. 

Of the vast literature in dynamic analysis of spatial curved beam, most of it aimed to the 
cylindrical helical rods which curvature and torsion are constant. Although there are some papers 
on the free and forced vibration analysis of composite barrel and hyperboloidal springs (Yildirim 
2001, 2004, Calim 2009), research on the analysis of the universal spatial curved beams with 
variable curvature and torsion considering the effects of rotary inertia, shear and axial 
deformations is scarce. In this study, the governing equations for free vibration of spatial curved 
beams with variable curvature and torsion are set up, considering the effects of rotary inertia, shear 
and axial deformations. Frobenius’ theory (Whittaker and Watson 1965) combined with the 
dynamic stiffness method (Tseng et al. 1997) is applied to solve these equations. Compared with 
the traditional finite element method and other approximate methods, the method allows an infinite 
number of natural frequencies and normal modes of a vibration structure to be computed through 
few degrees of freedom. A computer program is coded in Mathematica according to the proposed 
method. As a special case, the dynamic stiffness and further the natural frequencies of a cylindrical 
helical spring under fixed-fixed boundary condition are carried out. Comparison of the present 
results with the FEM results using body elements in I-DEAS shows good accuracy in computation 
of the model. Further, the validity of the present solution for free vibration is demonstrated through 
comparison with FEM results for a reciprocal spiral rod. This provides great convenience in the 
solution of the problems with general boundary conditions, which usually need to take high 
number of elements in FEM to get the satisfactory solutions. 
 
 
2. Governing equations 
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Let the locus of the cross-sectional centroid of a spatial curved beam be a continuous spatial 
curve. The tangential, normal and binormal unit vectors of the curve are shown by es, en and eb, 
respectively. Through the centroid O1 of the cross-section, let ξ and η directions be in coincidence 
with the principal axes. eξ 

and eη are unit vectors of ξ axis and η axis, respectively. s is the 
coordinate of the curve. Assuming the normal and binormal axes are the principle axes, the 
equations of motion obtained from dynamic equilibrium, if there is no external loading, are 
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Q and M is the principal vector and principal moment, respectively, when simplifying the cross-
sectional stress vectors to the centroid O1, of which components are respectively denoted by Qs 
axial force, Qξ and Qη shear forces in the ξ and η directions, Ms torque and Mξ and Mη bending 
moments in esO1eη and esO1eξ 

plane; k and τ, curvature and torsion of the curve; u and φ, the 
generalized displacements; ρ, the mass per unit volume; As, the cross-sectional area and J, 
torsional constant of cross-section; Iξ and Iη, the area moments of inertia around ξ and η axes. The 
dots denote time derivatives. 

Assuming that the effect of warping is ignored, and that the material of the beam is linear 
elastic, the geometrical equations and constitutive equations are written in matrix form as (Zhu and 
Zhao 2008, Zhu et al. 2010, Oz 2010) 
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where 
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E and G are respectively Young’s and shear moduli, ε and ω are the generalized strains. 
Substituting Eq. (2) into Eq. (3), the relations between the displacement and rotation 

components and the stress resultants are given as 
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And then substituting Eq. (4) into Eq. (1), the governing equations for free vibration of spatial 
curved beams are: 
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3. Method of solution 
 

As is known, for a spatial curved beam such as a helix, it is simple to give its parametric 
equation as a function of the parameter ϕ. Therefore, in the following formulation of solution, the 
coordinate s is transformed to ϕ. Furthermore, introducing a representative length of the beam L, 
non-dimensional parameters are defined as 
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And for the free vibration analysis, the solutions of Eq. (5) can be assumed to take the form as: 

).(e),(),(e),( ii   ΦUu tt tt                        (7) 

Substituting Eq. (6) and Eq. (7) into Eq. (5) and after some calculations, Eq. (5) can be 
transformed into a set of second order ordinary differential equations with coefficients that are 
functions of only one independent variable ϕ: 
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where the primes denote derivatives with respect to ϕ, and 
ds

d
L

sd

d   . 

The Frobenius’ theory (Whittaker and Watson 1965) and the dynamic stiffness method (Tseng 
et al. 1997) are applied now to solve Eq. (8). At first, variable coefficients of the equations should 
be expressed in Taylor expansion series about a point on the beam under consideration with the 
non-dimensional position coordinates, δ: 
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Consequently, the solutions of Eq. (8) can be expressed in term of polynomials as 
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Theoretically, V should approach infinity. Nevertheless, only a finite number of terms in Eq. 
(10) are needed to obtain very accurate results. Substituting Eq. (9) and Eq. (10) into Eq. (8) with 
some rearrangement, the relationships between the coefficients in Eq. (10) can be shown as 
follows 
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where v = 0, 1, 2, … From Eq. (11), 2vA , 2vB , 2vC , , 2vE , 2vF  can be determined 

if 0A , 1A , 0B , 1B , 0C , 1C , 0D , 1D , 0E , 1E , 0F  and 1F  are known. As in the finite-

element approach, the beam can be decomposed into several elements. Substituting Eq. (11) into 
Eq. (10), the end displacements for each element can be determined from Eq. (10) and expressed 
as 

 nnn χαw  (1　　　　　　　　　　　　　　　　 2) 

where the subscript n  for vectors and the matrix represents the results for the n th element. For 

the nth element,
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in which sju , ju , ju , sj , j  and j  (j = 0, 1, 2, …, 11) are polynomials the coefficients of 

which are determined when substituting Eq. (11) into Eq. (10) through the aid of some commercial 
softwares such as Mathematica and so on. 

According to Eq. (7), the solutions for the stress resultants can be expressed as 

)(e),(),(e),( ii   mMqQ tt tt  . 

After transforming the coordinate s to ϕ and using Eq. (6), Eq. (4) can be expressed as follows 

）（

）（

ΦKΦDm

HΦUKUBq









L

1         (1　　　　　　　　 3) 

Substituting Eq. (12) into Eq. (13), the end stress resultants for the n th element of the beam 
can be shown as follows 

nnnnnnnn wGwαβχβf  1
　　　　　　　　　　　  (14) 

where 
T

111111000000 }{  mmmqqqmmmqqq ssssf , 

Gn is the local dynamic stiffness matrix for the nth element. 
From the continuity conditions between adjacent elements, the local dynamic stiffness matrices 

of all elements can be assembled to obtain the global dynamic stiffness matrix G
~

, such that: 
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FUG
~~~

                                 (15) 

where U
~

 is the nodal displacement vector for the curved beam system under consideration while 

F
~

 is the equivalent external loading vector applied at the ends of each element. 

After leaving out the rows and columns of G
~

 associated with the geometry boundary 
conditions, the resultant dynamic stiffness matrix can be denoted by subG . The natural frequencies 

are the roots making the determinant of subG  equal to zero. 

 
 
4. Computation procedure 
 

With the help of symbolic computing package Mathematica, the proposed method can be 
organized as a computation procedure as illustrated in Fig. 1. It consists of the following steps: 

Step 1 Input the control data, which includes the geometric parameters, material characteristics 
and boundary conditions of the spatial curved beam. 

Step 2 Express the geometric relationship of the spatial curved beam using the Frobenius’ 
theory. 

Step 3 Compute the local dynamic stiffness matrix, the procedure of which is illustrated in Fig. 
2. 

Step 4 Substitute the geometric boundary conditions into the global dynamic stiffness matrix, 
which is obtained by assembling the local dynamic stiffness matrices of all elements. 

Step 5 Find the natural frequencies of the spatial curved beam. 
 
 
5. Numerical examples 
 

In this section, two sample problems are presented. First, in order to validate the developed 
computer program, the free vibration frequencies of a cylindrical helical spring that is fixed at two 
ends are compared with the FEM results. Second, a reciprocal spiral arch having uniform circular 
cross-section is considered. The analysis is done by using the present computer program and I-
DEAS, respectively. The free vibration frequencies with different boundary conditions are 
compared in the tables. 

Example 1. The parametric equation of a cylindrical helix is (Fig. 3): 

  haa ,sin,cosr  

where   is the horizontal angle of the helix. 
According to 

 haa ,cos,sin r , 

 0,sin,cos  aa r , 

 0,cos,sin  aa r , 
then 

22 ha r , 
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Example 2. Using the method presented above, a general-purpose computer program is used to 
analyze free vibration of spatial curved beams with variable curvature and torsion. In order to 
validate the developed computer program, the free-vibration frequencies of a fixed-fixed 
reciprocal spiral arch having uniform circular cross-section (Fig. 6) are compared with the FEM 
results. 

The parametric equation of a reciprocal spiral arch is 

  aaa ,sinh,coshr , 

According to 

 aaa ,cosh,sinh r , 

 0,sinh,cosh  aar , 

 0,cosh,sinh  aar , 

and 

cosh2ar , 

 222 ,cosh,sinh

0sinhcosh

coshsinh aaa

aa

aaa  



321 eee

rr , 

cosh2 2a rr , 

So the variable curvature and torsion of it are: 

23 cosh2

1

a
k 






r

rr
, 

 
  


22 cosh2

1,,

a






rr

rrr
. 

From length of curve, it can be found that: 




sinh2cosh2)(
0

22

0
adads   r . 

The diameter of the cross-section is d = 1 mm, a = 5 mm, ϕ = 5 mm, ϕ = [0, π]. The material 
properties are E = 2.06 × 1011 N/m2, G = 0.79 × 1011 N/m2 and ρ = 7900 kg/m3. The representative 

length of the arch, L, in the solution is set equal to sinha2 . A comparison of the free-vibration 
frequencies calculated by using the present computer program and obtained from I-DEAS (Fig. 7) 
are shown in Table 2. It can be seen from Table 2 that the results of the present model demonstrate 
a good agreement with the FEM results. It should be noted that, in the present method, only 16 
elements with V = 20 and P = 15 are used to achieve the desired accuracy as opposed to 26765 
body elements needed in I-DEAS. 

After having tested the validity of the present model, the free-vibration frequencies of the 
reciprocal spiral arch with other types of boundary conditions are presented in Table 3; namely, 
fixed-hinged and hinged-hinged. As expected, the natural frequencies increase as the constraints of 
the boundary conditions increase, from hinged-hinged to fixed-hinged to fixed-fixed if the 
geometry parameters remain constant. 
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6. Conclusions 
 

•The governing equations for free vibration of spatial curved beams with variable curvature and 
torsion are derived. The effects of rotary inertia, shear and axial deformations are taken into 
account. 

•Frobenius’ theory and the dynamic stiffness method are applied to solve the governing 
equations. 

•The numerical results show that only a limited number of terms are needed in series solutions 
and in Taylor expansion series to ensure an accurate solution. 
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