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Abstract.  The term “constructability” in regard to cast-in-place concrete construction refers mainly to the 
ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement 
and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. 
In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) 
is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization 
of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be 
optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the 
reinforcement used. The seismic response of the retaining walls is investigated using the well-known 
Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from 
numerical application of the proposed framework demonstrate its capabilities in solving the present multi-
objective optimization problem. 
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1. Introduction 

 
The economy of a reinforced concrete (RC) construction project does not depend only on the 

amount of concrete and steel used or the formwork cost, rather a poor constructability of the 
design may affect greatly the overall cost of the project. High steel congestion makes both steel 
and concrete placement difficult, which delays the construction time at the site, and consequently, 
imposes unforeseen costs to the project due to the interruptions occur during the project 
completion. On the other hand, a poor constructability deteriorates the integrity of concrete and 
steel, which has a significant impact on the ductility of the structure. Therefore, in order to achieve 
an actual optimal design of a RC structure, constructability should also be considered as one of the 
desired objectives in the optimization procedure. Undoubtedly, this is also true in the optimal 
design of RC retaining walls. 

Retaining walls constitute an integral part of the infrastructure that are frequently constructed 
for a variety of applications, most commonly for bridge abutments, roads, transportation systems, 
lifelines and other constructed facilities. Design of retaining walls should address at least two basic 
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requirements: “stability”, which means the structure as a solid should retain the backfill mass with 
respect to geotechnical requirements, and “strength”, which is ensured by providing sufficient 
resistance against bending moments and shear forces prescribed by structural concrete codes (Das 
2010). Another key factor for the optimal design of walls is the inclusion of a limitation on the 
deflections at the top of the wall. This serviceability check is performed to avoid excessively 
flexible walls that are not appropriate for practical purposes (Yepes et al. 2008). 

An economic optimization of RC retaining walls has been conducted in several studies. Saribas 
and Erbatur (1996) applied a nonlinear programming method to solve a seven design variables 
problem. Ceranic et al. (2001), for the same size problem, utilized simulated annealing to 
minimize the costs. Yepes et al. (2008) performed a parametric study with simulated annealing for 
optimum RC retaining walls by formulating the problem containing 20 design variables. Harmony 
search and charged system search algorithm with seven design variables were adopted by Kaveh 
and Shakouri-Mahmud-Abadi (2010) and Kaveh and behnam (2012) as the optimization 
algorithms, respectively. Minimizing the embedded carbon dioxide emissions was studied by 
Yepes et al. (2012) through employing a variable neighborhood search strategy, based on their 
previous work in 2008. CO2 optimization was also considered by Khajezadeh et al. (2013), using a 
gravitational search algorithm for a structural model with eight design variables. 

This paper presents a new framework for optimal design of RC cantilever retaining walls, 
consisting of two objective functions that are the reinforcing bar congestion and the economic cost. 
The meta-heuristic utilized here is NSGA-II, a popular, fast sorting and elitist multi-objective 
genetic algorithm (Deb et al. 2002). The wide application of this algorithm in engineering 
problems proves its great abilities in covering the Pareto front and solving the multi-objective 
optimization problems (Kaveh et al. 2012). Its particular fitness assignment scheme consists of 
sorting the population in different fronts using the non-domination order relation. Solutions which 
dominate other solutions receive higher rank value and are preferred to generate the next 
generation. In order to form the next generation, the algorithm combines the current population 
and its offsprings generated with the crossover and mutation operators. Finally, the best 
individuals in terms of non-dominance and diversity are chosen (Deb et al. 2002). In this research, 
a new version of polynomial mutation for discrete representation is developed using basic and 
simple concepts, which will be fully explained in Section 5. 

In the model established for the structure, to provide more practical designs applicable in real-
world constructions, 35 design variables are considered consisting of seven geometric, two 
material types, and 26 variables for reinforcement setup. A structural evaluation module is 
developed to check all the relevant geotechnical and structural requirements needed to be 
considered according to (AASHTO 2002) and (ACI 318-08) specifications for the design of 
common RC retaining walls. In this paper, for improving the robustness of the proposed method, 
the seismic response of the retaining walls is also investigated during the analysis process. 

Excessive dynamic lateral earth pressure on retaining structures resulting from earthquakes has 
caused several major damages in the past. The increase of lateral earth pressure during earthquakes 
induces sliding and/or overturning to the retaining walls. The dynamic response of even simplest 
type of retaining wall is quite complex. Wall movement and pressure depends on the response of 
the soil underlying the wall, the response of the backfill, the inertial and flexural response of the 
wall itself, and the nature of the input motions (Das et al. 2010). Here, we adopt one of the 
methods widely used by most of the design engineers for determining the dynamic lateral pressure 
on retaining structures that has been developed by Okabe (1926) and Mononobe (1929). This 
method is generally referred to as the “Mononobe-Okabe analysis”, recommended by AASHTO 
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(2002) for seismic evaluations of retaining structures. Mononobe-Okabe method considers pseudo-
static approach. In recent years, some studies conducted on developing pseudo-dynamic 
procedures, e.g., Giri (2011) used a pseudo-dynamic method to compute the distribution of seismic 
earth pressure on a rigid cantilever retaining wall supporting dry cohesionless backfill. 

After this opening section, the paper is organized as follows: Section 2 explains the 
optimization problem and its objective functions; section 3 concerns structural modeling and 
defines the design variables; in Section 4, the structural evaluation module and constraints of the 
problem are formulated; section 5 briefly introduces the NSGA-II; the proposed framework is 
presented in Section 6; numerical results on design of a typical RC retaining wall of 8 m in height 
and 100 m in length are investigated in Section 7 and finally the paper is concluded with Section 8. 
 

 
2. Optimal design problem 
 

The present optimization problem deals with a bi-objective optimization of the economic cost 
and reinforcing bar congestion of the RC retaining walls. This can be expressed as 


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                                  (1) 

where },...,,{ 21 nxxxx   are the design variables and )(xg  represents all the constraints and 

requirements that the structure must satisfy according to the design codes. The first objective 
function as defined by Eq. (2), is the economic cost of the structure, where p are the unit prices, m 
measures the steps the construction process of a common RC retaining walls is divided into, and r 
is the total number of these steps. The cost function comprises of the cost of materials (concrete 
and steel) and the cost of all construction steps required to evaluate the entire cost of the wall per 
meter of length, e.g., formworking, earth removal, backfill and concrete placing. The unit prices 
considered for the construction steps are given in Table 1. These prices were provided by a local 
Iranian contractor of road construction in November 2012. 
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Optimization of concrete structures based only on cost often results in structures whose 
constructability is poorly treated, since results tend to reinforcement arrangements with close 
spacings of small diameter bars. In this sense, the number of bars is regarded as an indicator of 
reinforcing steel congestion. Fewer bars involve larger diameters with greater spacings, leads to 
better constructability, since lower bar congestion implies fewer execution errors, less complex 
quality controls and faster construction processes (Martinez-Martin et al. 2012). The second 
objective function computes the total number of bars in the structure as 


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k

i
inCongestion
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                                                       (3) 

where ni is the number of bars of the ith reinforcement set per meter length of the wall, calculated 
by dividing the corresponding bar spacing from the dimension that is distributed along. Different 
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Table 1 Unit prices of the construction steps 

Unit Cost (US$) 

Cubic meter of earth removal 11.41 
Cubic meter of backfill 38.1 

Kilogram of steel (4000 kg/cm2) * 1.54 
Kilogram of steel (3000 kg/cm2) 1.51 

Cubic meter of concrete (20 MPa) * 94.45 
Cubic meter of concrete (25 MPa) 99.49 
Cubic meter of concrete (30 MPa) 104.51 
Cubic meter of concrete (35 MPa) 108.53 
Cubic meter of concrete (40 MPa) 118.05 

Square meter of foundation formwork 36.82 
Square meter of stem formwork 37.08 
Cubic meter of concrete placing 35.48 

*For steel materials indicates the specified yield strength and for concrete materials 
 indicates the compressive strength. 

 
 
reinforcement sets may be considered for the common RC retaining walls, such as bending and 
shear reinforcement or secondary reinforcement for shrinkage and thermal effects; k is the total 
number of reinforcement sets in the structure.  
 
 
3. Structural modeling 
 

The model of the structure comprises of 35 design variables, which define the geometry, the 
type of concrete grades, and the reinforcement used. The geometric properties and the 
reinforcement setup of the developed model is shown in Fig. 1. Design variables includes 7 
geometric values, i.e., bottom thickness of the stem wbottom, thickness of the base slab hslab, length 
of the heel wheel, length of the toe wtoe, thickness of the shear key wkey, depth of the shear key hkey, 
and location of the shear key bkey. The top thickness of the stem wtop is assumed to be constant. As 
well, two variables indicate the concrete grades used in the stem and the base slab, respectively. 
The strength of a concrete mix is measured in grades that the grade of concrete means the concrete 
compression resistance after 28 days (fc).  

The remaining 26 variables describe the reinforcement setup, which includes two groups of 
variables. One group represents the bar diameters of the reinforcement sets containing 15 
variables, and the other defines the spacings between the bars  with 11 variables. Different 
reinforcement sets are considered in the model developed for the structure in different parts of the 
stem and the base slab, demonstrated in Fig. 1(b). In this figure, each reinforcement set is 
identified by two types of variables, one indicating the diameter of the bars (D), and the other the 
spacing of them (S). The difference between the number of variables assigned to the diameters and 
the spacings is for the attention to the ease of reinforcement placing, since it is desirable that the 
extra bars are bundled together with the existing bars. In Fig. 1(b), the reinforcement sets have the 
same spacing are specified by the identical spacing variable number. As each reinforcement set has 
a specific variable for its bars diameter, hereinafter, the reinforcement sets are denoted by the 
number of their D variable.  
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Fig. 1 The model developed for RC retaining walls; (a) geometric properties, (b) reinforcement setup 
 
 
Vertical flexural steel includes three sets of reinforcement bars for the bending of the stem 

(variables D1, D2 and D3). Lengths of these bars are 100, 50 and 25% of the height of the stem, 
respectively. Shear reinforcement in the stem is specified by variable D4, which is the diameter of 
reinforcement from the bottom of the stem up to a height l. This height is where the concrete shear 
capacity is sufficient to carry the applied shear force, so that there is no need for further 
reinforcement. In this study, as illustrated in Fig. 1(b), tie bars are used as the shear reinforcement 
in both the stem and the base slab. Variables D5 and D6 are the vertical and variables, D7 and D8 
are the longitudinal secondary reinforcements that are inserted in the stem to avoid shrinkage and 
thermal effects. Lengths of the reinforcement D5and D6 are equal to the total and half-height of the 
stem, whereas reinforcement D7 and D8 are distributed longitudinally through top half and bottom 
half of the stem, respectively. 
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Bending bars in the base slab include variables D9 and D10 for the heel and D11 and D12 for the 
toe. Reinforcement D9 and D11 are the bars of the total width of the base slab and length of the 
reinforcement D10 and D12 are equal to the half-length of the heel and the toe, respectively. Shear 
reinforcement in the base slab is expressed by variable D13, whereas variable D14 corresponds to 
the secondary reinforcement. Variable D15 represents the bending reinforcement in the shear key. 
Thus far, 15 reinforcement sets with a total of 15 variables for the bar diameters and 9 variables for 
the spacings are defined. The numbering of these variables is shown in Fig. 1(b). The last two 
variables of the spacings group denote the number of shear bars in the stem and the base slab per 
meter length of the wall. The allowable values for these two variables are 3, 4, 5, 8, and 10 that 
correspond to 33, 25, 20, 15, and 10 cm spacing of the tie bars, respectively.  

In conventional design procedures, the required reinforcement areas are taken as the variables. 
Hence for determining the reinforcement setup, the designer just needs to select an allowable value 
for either the diameter or spacing of the bars, the other one is computed subsequently. However in 
this study, both diameter and spacing of the bars are considered to be variable that follows two 
purposes. (1) Automation: in this approach all values needed to define the reinforcement setup, are 
determined in the optimization procedure and not by the designer. (2) Diversification: in the 
constructability optimization, this approach makes the heuristic search more diversified, since in 
the conventional procedures, the interference of the designer perhaps confines the solutions that 
can be generated. 

To complete the structural modeling, in addition to the presented design variables, some 
parameters should be determined. The parameters of a typical RC retaining wall are all of the 
magnitudes taken as fixed data, consisting of some geometric values, properties of the base soil 
and backfill, and some design specifications, which will be introduced in the subsequent sections.  
 
 
4. Structural evaluation module 
 

In the optimization program, after modeling the structure in terms of the design variables, a 
structural evaluation module needed to analyze the structure and check all the design constraints. 
Structures that meet all the constraints are called feasible solutions, and those that do not are 
unfeasible ones.  

There are two phases in the design of a common RC retaining wall. First, with the lateral earth 
pressure being known, the structure as a whole is checked for “stability”  under the service loads, 
i.e., the structure is examined for possible “overturning”, “sliding”, and “bearing capacity” 
failures. Second, each component of the structure is checked for “strength”  under the combined 
factored loads, and the required steel reinforcement of each component is verified. In what 
follows, a brief summary for determining the stability of the retaining walls is presented; checks 
for strength can be found in any text book on reinforced concrete. For more information on the 
terminology and details, interested readers may refer to Das (2010). 

The seismic behavior of retaining walls depends on the total lateral earth pressure that develops 
during the earth shaking. This total pressure includes both the static gravitational pressure that 
exist before earthquake occurs and the transient dynamic pressure induced by the earthquake. 
AASHTO (2002) specifies that, for the analysis of the retaining walls, the pseudo-static 
Mononobe-Okabe analysis method is to be used. Fig. 2 demonstrates the key forces considered in 
the Mononobe-Okabe solution: The weight of the concrete wall (W1), the weight of the backfill 
(W2), the weight of soil on the toe (W3), the surcharge load (ω), the inertial force in the horizontal  
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Fig. 2 Main forces in the Mononobe-Okabe solution 

 
 

direction (khW1) and in the vertical direction (khW1), and finally the seismic active and passive 
earth pressures (PAE and PPE). 

The computation of W1, W2, and W3 is straightforward, multiplying the unit weights by the 
respective volumes, applied at their center of mass. A surcharge load results from forces that are 
applied along the surface of the backfill behind the wall, such as an embankment load, car parking, 
floor load or temporary loads like construction traffic and stockpiles of material. The surcharge 
produces an active pressure against the wall. For considering this effect in the analysis, the 
uniform surface pressure may be converted to an equivalent height of fill, and then the earth active 
pressure is calculated for the correspondingly greater height, i.e., heq = ω/γsoil, where γsoil is the unit 
weight of soil and heq is the equivalent height that is added to the height of the backfill. 

The Mononobe-Okabe method makes use of the acceleration coefficient (based on the 
geographic location of the wall), which is decomposed into horizontal and vertical components. 
According to AASHTO (2002) seismic specifications, for free standing retaining walls, the 
horizontal acceleration coefficient kh is taken as half of the acceleration coefficient A, i.e.,  kh = A/2, 
and the vertical acceleration coefficient kv is considered to be zero. The active force under seismic 
condition is computed as follows (Das et al. 2010) 
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where 
h = height of the backfill, 
  = internal soil friction angle,  

 = slope of rear face of the stem with respect to the vertical, 

 = angle of friction between soil and the rear face of the stem, 
i  = the backfill slope angle with respect to the horizontal. 

The force AEP  acts at h  from the bottom of the base slab, given by:  
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where PA  is the static active earth pressure defined as PA = 1/2γsoilh
2KA; assuming θ to be zero, the 

formula for calculation of KA  will be the same as for KAE. The dynamic passive force, using the 
same parameters given for the active force, is expressed as 
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As mentioned above, three constraints verify the stability of the wall for possible failures. 
Firstly, the stabilizing moments must be greater than the overturning moments to prevent rotation 
of the wall about the toe. The stabilizing moments result mainly from the self-weight of the 
structure and the weight of the backfill, whereas the main source of overturning moments is the 
seismic active earth pressure. The factor of safety against overturning is derived as 


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O

R
overturing M

M
FS                                                         (12) 

where ƩMO is sum of the moments of forces tending to overturn about the overturning point (see 
Fig. 2), and ƩMR is sum of the moments of forces tending to resist overturning.  
Secondly, the total horizontal reactions must be such that prevents the wall from sliding along its 
base. The factor of safety against sliding is calculated from 


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where ƩFR is sum of the horizontal resisting forces and ƩFd is sum of the horizontal driving forces. 
In considering the criterion of sliding, the major driving force produced by the lateral earth 
pressure while the sliding resistance of retaining walls is derived from the base friction between 
the wall base and the foundation soil.  

To increase the sliding resistance of retaining walls, other than providing a large self-weight or 
a large retained soil mass, shear keys can be installed at the base. The main purpose of installation 
of shear keys is to increase the extra passive resistance developed by the height of shear keys. 
Friction angle between the base and the foundation soil (δ’) is normally about a fraction of the 
angle of internal resistance, i.e., δ’< φ, where φ is the angle of internal friction of foundation soil. 
When a shear key is installed at the base of a retaining wall, the failure surface at the left side of 
the key is changed from the base/soil horizontal plane to a plane within the foundation soil, shown 
in Fig. 2 with dashed lines. Therefore, the friction angle mobilized in this case is φ instead of δ’ in 
the previous case and consequently the sliding resistance would be enhanced (Das 2010). 

Finally, the bearing capacity of the foundation soil must be large enough to resist the pressures 
transmitted to the soil by the base slab. The factor of safety against bearing capacity failure is 
determined by 

max

33.1

q

q
FS a

bearing                                                          (14) 

where qa is the allowable bearing capacity of the foundation soil and qmax is the maximum contact 
pressure occurs at the end of the toe section. AASHTO (2002) permits the value of qa used for 
static loading designs to be increased by 33% for the seismic loading conditions; the factor 1.33 in 
the numerator of Eq. (14) refers to this point. As shown in Fig. 3(a), the distribution of pressure by 
the base on the foundation soil is not uniform and calculated from 

)
6

1(
min
max B

e
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P
q                                                      (15) 

where P is sum of the vertical loads. B and L are the width and length of the base, respectively. 
The distance e = M/P is the eccentricity of the resultant of reaction forces, where M is the sum of 
the moments on the base slab.  

In relation with the bearing capacity failure, one additional constraint is needed to check the 
minimum contact pressure. When the value of the eccentricity becomes greater than B/6, qmin 
becomes negative. Thus, there will be some tensile stress at the end of the heel section. This 
upward pressure is not desirable because makes a part of the base to lose contact with the 
supporting ground during loading and consequently intensifies the potential of overturning. If the 
analysis of a design shows that e > B/6, then the solution is discarded.  

The strength calculations of the wall are performed per linear meter for ultimate flexure and 
ultimate shear at different cross sections of the stem and the base in accordance with ACI 318-08. 
These sections are identified in Fig. 2 with dotted lines. It should be considered that the critical 
sections for bending moments in the base are taken at the face and back of the stem, whereas the 
critical sections for shear are taken at a distance d from the face of the stem for the toe and from 
the back of the stem for the heel section, where d is the effective depth of section. After the 
ultimate bending and shear capacities at the critical sections are verified, it must be checked 
whether the secondary reinforcement of the stem and the base comply the minimum requirements 
of the provisions for the thermal and shrinkage effects. 
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Fig. 3 Pressure distribution under an eccentrically loaded foundation; (a) when the resultant force is 
within the middle third of the base, (b) when the resultant force is outside the middle third of the base 

 
 
For the structural design of the base slab, the distribution of ground pressure under the factored 

load combinations is required. Perhaps in some situations, the minimum contact pressure from Eq. 
(15) becomes negative, since the check for the eccentricity is done under the service loads. This 
means tension will develop over a length of the heel, and then there will be a separation between 
the base and the soil underlying it. In these situations, i.e., when e > B/6, AASHTO (2002) 
suggests a triangular distribution over an effective length of the base (B – 2e)  as shown in Fig. 
3(b). The value of qmax is obtained by 

)2(3

4
max eBL

P
q


                                                       (16) 

In order to avoid the problems caused by the large eccentricities, in this study, the permissible 
value of e, under the factored loads, is bounded to B/4. 

As declared by Yepes et al. (2008), another important constraint which is usually ignored is a 
limitation on deflections at the top of the stem. Optimal design of walls without checking this 
serviceability limit state may lead to extremely flexible stems, not feasible for practical purposes. 
He reported that a limit of 1/150 of the stem height could be considered as an acceptable threshold 
level. The service load produces major deflections is the static active earth pressure, which has a 
triangular distribution over the height of the stem with maximum intensity of q0 = KAγsoilhstem (see 
Fig. 4(a)). In this paper, we present a simple formulation for calculation of the stem deflection 
based on the well-known second theorem of Castigliano. This theorem states the first partial 
derivative of the total strain energy in a linearly elastic structure with respect to the force applied at 
any point is equal to the deflection at the point of application of that force in the direction of its 
line of action (Kaveh 2006). In a cantilever beam with a transverse loading, the flexural and shear 
deformations generally define the strain energy. Thus in order to compute the deflection, as shown 
in Fig. 4(b), it is just enough to impose a dummy concentrated force at the top of the stem and 
determine the bending moment and shear force distribution over the height of the stem. This can 
be expressed as 
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Fig. 4 Calculation of the stem deflection at the top using the Castigliano’s second theorem 
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where δb  and δs are the deflection at the top of the stem due to flexure and shear, obviously the 
total deflection is obtained by summing up the values of these two parameters. E is the modulus of 
elasticity and G is the shear modulus. R  represents the dummy force and α is the shear shape factor 
of the cross section. By calculating the area and the moment of inertia of the cross-section as well 
as the bending moment and the shear at a distance x from the top, and substituting them in the 
above equations, we obtain 
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where 0A and 0I are the area and the moment of inertia of the cross-section at the top of the stem 

per meter length of the wall and k is a dimensionless parameter given by toptopbottom wwwk /)(  .  
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5. Metaheuristic algorithm: NSGA-II 
 

In the following, a general description of the NSGA-II will be presented. The algorithm and its 
detailed implementation procedure can be found in Deb (2009). Once the population is initialized, 
two fitness values are assigned to each individual. Firstly, the NSGA-II uses a “non-dominated 
sorting” algorithm for the fitness assignment, in which all individuals not dominated by any other 
individuals, are assigned front number 1. Then all individuals only dominated by individuals in 
front number 1 are assigned front number 2, and so on. Secondly, a value called “crowding 
distance” is calculated for each individual that is a measure of how close an individual is to its 
neighbors. A higher fitness value is assigned to individuals located on the sparsely populated part 
of a front. 

Parent selection is made using a “binary tournament selection” based on the assigned fitness 
values. This selects, between two random individuals, the one with the lowest front number, if the 
two individuals are from different fronts. While the individuals are from the same front, the 
individual with the highest crowding distance is chosen. Next, the selected individuals generate 
offsprings using the genetic operators. The offspring population is combined with the current 
generation’s population and replacement is performed to set the individuals of the next generation. 
Since all the previous and current best individuals are included, elitism is ensured. The combined 
population is now sorted based on the non-domination rule. The new generation is filled by each 
front subsequently until the population size exceeds the given size. If by adding all the individuals 
from the ith front, the population size exceeds, then individuals in the ith front are selected based 
on their crowding distance in the descending order until the population is fulfilled. And hence, this 
process repeats to generate the subsequent generations, until the termination criteria is met.  

 
 5.1 Genetic operators  
 
The chosen genetic operators are the well-known 1-point crossover and a modified version of 

polynomial mutation developed to solve our integer-valued problem. The role of crossover 
operator is to inherit some genetic materials of two parents to generate the offsprings whereas 
mutation alters one or more gene values in a chromosome from its initial state. Hence, the 
mutation and crossover operators are complementary, that is, mutation maintains genetic diversity 
from one generation of a population of algorithm chromosomes to the next while the crossover 
operator preserves the heritability between generations (Talbi 2009).   

In the 1-point crossover, a crossover point is randomly selected at the same position in the two 
individuals, and then two offsprings are created by interchanging all the information of the parents 
positioned after this cut point in their chromosomes. Thus the new individuals have information 
from the two initial individuals but they are different. In general, a uniform random distribution is 
used to select the crossover point (Talbi 2009). After the crossover operator is performed, mutation 
takes place on the newly formed individuals.  

In the polynomial mutation, which was originally introduced for real-valued optimization, the 
offspring is generated as follows (Talbi 2009) 

i
l
i

u
iii xxxx )(                                                          (21) 

where u
ix (resp. l

ix ) represents the upper bound (resp. lower bound) for ix , the ith variable (gene) 

of parent. The parameter i is computed from the following polynomial probability distribution: 
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Fig. 5 Discrete polynomial mutation of the ith gene 
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where ηm denotes the distribution index and ri  is a random number in [0, 1]. Mutation should 
produce a minimal change and the size of mutation should be controllable. The parameter ηm 
provides these features, e.g., taking ηm to be 5, limits the values of δi in [−0.4, 0.4].  

Mutation in discrete representation consists generally in changing the value associated with a 
variable by a new value from the vector of allowable values. In this paper, we have utilized the 
polynomial probability distribution in determining the new value of the mutation. This procedure 
is schematically depicted in Fig. 5. As is shown, based on the value generated by Eq. (22), a value 
is selected among the values are on the left side of the current value in the vector (when δi < 0), or 
among the values are on the right side (when δi  > 0). Considering two portions for each value, the 
probability of choosing a value from the left side is 2/(2(m−1)+1),  and from the right side 
2/(2(k−1)+1), where m defines the position of the current value and k is the size of the vector. 
Hence, the new value is obtained by 
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where iR  is the vector of allowable values for the ith gene.  
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5.2 Constraint handling 
 
In order to handle the given constraints, a relatively simple scheme is adopted. Whenever two 

individuals are compared, for sorting the population in different fronts, first, they are checked for 
constraint violation. If both are feasible, the non-domination rule is directly applied to decide the 
winner. If one is feasible and the other is unfeasible, the feasible dominates. If both are unfeasible, 
then the one with the lowest amount of constraint violation dominates the other. This is the 
approach that has been utilized in (Deb et al. 2002, Coello et al. 2004) to handle the constraints.  
 
 
6. The proposed framework 
 

Now, all of the introduced components in the previous sections are incorporated in a simple 
framework, which makes it possible to perform the multi-objective optimal design of retaining 
walls. The main procedure, which is based on the NSGA-II genetic algorithm, is as follows. The 
relevant section to some steps are noted in brackets: 
Main procedure { 

1. Set parameters. 
1.1. Set the NSGA-II user defined parameters, e.g., population size, number of parents, 
number of offsprings, number of generations, etc. 
1.2. Structural modeling [Sect. 3]. 

2. Initialize the population. 
2.1. Generate a random individual. 
2.2. Perform structural evaluation module [Sect. 4]. 
2.3. Calculate the constraint violation. 
2.4. Evaluate the objective functions [Sect. 2].  

3. Sort the initial population based on the constraint handling rule [Sect. 5.2]. 
4. Until termination criterion met. 

4.1. Select parents using binary tournament selection. 
4.2. Generate offsprings by performing crossover and mutation operators [Sect. 5.1]. 

4.2.1. Generate a new individual. 
4.2.2. Perform structural evaluation module [Sect. 4].  
4.2.3. Calculate the constraint violation. 
4.2.4. Evaluate the objective functions [Sect. 2].  

4.3. Form an intermediate population from merging the current population with the 
offsprings. 
4.4. Sort the intermediate population based on the constraint handling rule [Sect. 5.2]. 
4.5. Perform replacement on the intermediate population to determine the new population. 

}. 
 
 
7. Numerical results 
 

The proposed framework is implemented in MATLAB® and a program is developed for 
contractibility optimal design of RC retaining walls. As a test problem, design of a typical wall of 
8 m in height and 100 m in length is studied in this section. Details of the parameters assumed in  
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Table 2 Parameters of the reported retaining wall.  

Parameter Value 
Top thickness of the stem (wtop) 0.5 m 
Height of soil on the toe (hfront) 0.8 m 

Surcharge load (ω) 1000 kg/m2 
Backfill slope (i) 0

o
 

Internal friction angle of backfill (ϕ) 30
o
 

Friction angle between stem and backfill (δ) 0
o
 

Internal friction of foundation soil (φ) 30
o
 

Friction angle between base and foundation soil (δ’) 24
o
 

Inclination of backfill pressure 0
o
 

Allowable ground stress (qa) 3.5 kg/cm2 
Unit weight of backfill (γsoil) 1850 kg/m2 

Unit weight of concrete (γconc) 2400 kg/m2 
Overturning safety factor 1.5 

Sliding safety factor 1.125 
Bearing capacity safety factor 1.5 

Allowable stem deflection 1/150hstem 
 
 

this example are listed in Table 2. The reported partial safety factors are in accordance with 
AASHTO (2002), which permits the factors of safety against sliding and overturning failure under 
seismic loading reduced to 75% of the factors of safety used for the static loading designs. The 
specified yield strength of flexural reinforcement is considered to be 4000 kg/cm2 and for the shear 
reinforcement is taken as 3000 kg/cm2. 

In order to achieve a more precise cost evaluation of the wall, both the development and 
anchorage length are added to the required length of the bars wherever needed, according to the 
ACI 318-08 provisions. In this paper, the entire search takes place in a discrete decision space. The 
allowable values considered for the design variables, and their lower and upper bounds are 
summarized in Table 3. It should be noted that if the depth of the shear key is obtained to be less 
than 0.5 m, the shear key is omitted and all the design variables assigned to the shear key are 
considered to be zeros. 

The present study tries to enhance constructability by using practical reinforcement 
arrangements and ensuring that bar spacing satisfies the design code limitations. ACI 318-08 
contains detailed provisions for determining spacing limits between reinforcement bars. The 
values considered in this study for the allowable maximum and minimum clear spacing between 
parallel flexural bars in a layer, or spacing of shear reinforcement placed perpendicular to axis of 
member, reported in Table 3, last two rows, covers the requirements of ACI 318-08.  

In order to investigate how much the considered objective functions are in conflict with each 
other, a random search was performed with 100,000 iterations, including both feasible and 
unfeasible solutions. Fig. 6 depicts the linear regression of the cost on the number of bars for the 
obtained solutions. The low determination coefficient of R2 = 0.2048 indicates that the objectives 
are quite independent. The percentage of feasible solutions is 0.15%, which means only about one 
and half in a thousand randomly generated solutions are feasible. This low percentage shows that 
the optimization problem is highly constrained 
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Table 3 Allowable values of the design variables 

Description Allowable value Unit 
fc {20, 25, 30, 35, 40} MPa 

wbottom [wtop + 0.02× hstem: 0.2 : 3] * m 
hslab [0.6 : 0.2 : 3] m 
wheel [0 : 0.2 : hstem] m 
wtoe [0 : 0.2 : hstem] m 
hkey [0 : 0.2 : 3] m 
wkey [0 : 0.2: 2] m 
bkey [0 : 0.2 : wheel + wbottom + wtoe − wkey] m 

Flexural bar diameter {16, 18, 20, 22, 25, 26, 28, 30, 32} mm 
Shear bar diameter {6, 8, 10, 12} mm 

Flexural bar spacing [Di
**+5: 5 : 30] cm 

Shear bar spacing [Di +5: 5: 30] cm 
*Generates values from the lower to the upper bound with a constant step size (the middle value). 
**Denotes the diameter of the ith reinforcement set. 

 

 
Fig. 6 Linear regression of the cost on the number of bars 

 
 

Because of the stochastic nature of the solution algorithm, this problem was solved 6 times. 
The obtained Pareto fronts are shown in Fig. 7. In this example, a population of 1000 individuals is 
employed for optimization process and the main algorithm performs 150 generations. The 
computational time required for solving this problem using the developed program was 
approximately 1.4 h on an Intel® Core™ i7 @ 2.0 GHz processor equipped with 8 GBs of RAM, 
for each run. 

In order to compare the properties of the different optimal designs achieved in the shown 
Pareto fronts, two characteristic designs are investigated. These designs are the extreme points 
corresponding to the single-objective optimal designs where the economic cost and the number of 
bars are the objective functions, i.e., the designs with minimum cost and minimum reinforcing bar 
congestion. The properties of these two designs are listed in Table 4. As is presented, while the 
cost of design B compared to design A is increased by 32.6%, the corresponding reinforcing bar 
congestion is decreased by 40.7%. 
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Fig. 7 Pareto fronts obtained in six different runs for the reported retaining wall 
 

Table 4 Properties of two characteristic designs of the reported retaining wall 

Optimal design variables 

No. 
Design 

variable* 
Design 

A** 
Design 

B*** 
No. 

Design 
variable

Design 
A 

Design 
B 

No. Design variable Design A 
Design 

B 

1 wbottom 0.86 1.26 14 5D  18 22 27 3S  23 22 

2 hslab  0.60 1.00 15 6D  30 22 28 4S  17 27 

3 wheel 1.60 4.20 16 7D  18 20 29 5S  23 23 

4 wtoe 4.60 2.00 17 8D  16 30 30 6S  13 18 

5 hkey 1.00 0.00 18 9D  18 32 31 7S  16 26 

6 wkey 0.40 0.00 19 10D  30 22 32 8S  22 27 

7 bkey 4.60 0.00 20 11D  25 32 33
9

S  28 0 

8 fc(stem) 25 25 21 12D  30 18 

34

Number of 
shear bars in 

stem per meter 
length of wall 

4 3 9 fc (base) 30 30 22 13D  8 12 

10 D1 20 32 23 14D  16 18 

11 D2 26 28 24 15D  32 0 

35

Number of 
shear bars in 

base per meter 
length of wall 

3 3 12 D3 20 22 25 1S  18 28 

13 D4 10 8 26 2S  16 26 

Fitness function evaluation 

 Cost ($) Number of bars Cost improvement 
Congestion 

improvement 
Design A 533046 44200 24.61% -68.70% 
Design B 707053 26200 -32.64% 40.72% 

*Units are in accordance with Table 3 

**Indicates the design with minimum cost 
***Indicates the design with minimum reinforcing bar congestion 
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8. Conclusions 
 

A multi-objective framework is proposed for constructability optimal design of RC retaining 
walls considering minimization of the economic cost and the reinforcing bar congestion as two 
objectives of the optimization problem. An advanced model of structure with 35 design variables 
is presented, including seven geometric, two material types, and 26 variables for reinforcement 
setup. The seismic response of the walls is investigated during the analysis process in accordance 
with the AASHTO provisions. NSGA-II genetic algorithm is employed as the optimization 
algorithm, equipped with a new version of polynomial mutation formulated for discrete 
representation. In this study, we have tried to consider all the relevant constraints included in the 
guidelines and practical matters in a way that the results can be useful for the engineers in real-life 
projects. 

A computer program is developed based on the proposed framework and operated for the 
design of an RC retaining wall of 8 m in height and 100 m in length. As was reported, 
optimization of such structures based only on the cost tends to the reinforcement arrangements 
with close spacings of small diameter bars and poor constructability. Therefore, obtaining the 
Pareto front of all the possible optimal designs for these two objectives provides invaluable 
information that helps designers and investors to make the best decisions. This problem is 
specifically more involved in large-scale construction projects. It is demonstrated that by the use of 
the proposed framework, the constructability optimal design of RC retaining walls can be 
performed within acceptable amount of time while providing a convenient Pareto front of possible 
optimal designs. 
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