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Abstract.  In structural reliability analysis, the response surface method is a powerful method to evaluate 
the probability of failure. However, the location of experimental points used to form a response surface 
function must be selected in a judicious way. It is necessary for the highly nonlinear limit state functions to 
consider the design point and the nonlinear trend of the limit state, because both of them influence the 
probability of failure. In this paper, in order to approximate the actual limit state more accurately, 
experimental points are selected close to the design point and the actual limit state, and consider the 
nonlinear trend of the limit state. Linear, quadratic and cubic polynomials without mixed terms are utilized 
to approximate the actual limit state. The direct Monte Carlo simulation on the approximated limit state is 
carried out to determine the probability of failure. Four examples are given to demonstrate the efficiency and 
the accuracy of the proposed method for both numerical and implicit limit states. 
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1. Introduction 

 
In structural reliability analysis, Monte Carlo simulation (MCS) is an accurate technique to 

estimate the probability of failure. Although it gives the exact solution, it is time-consuming for 
the large and complex structures with low probabilities of failure and implicit limit state functions. 
To reduce the number of structural analyses, the first-order reliability method (FORM) and the 
second-order reliability method (SORM) were developed (Hasofer and Lind 1974, Rackwitz and 
Fiessler 1978, Kiureghian et al. 1987, Liu and Kiureghian 1991, Ditlevsen and Madsen 1996, 
Lemaire 2009). However, FORM and SORM are also difficult as the actual implicit limit state 
function (LSF) usually cannot be easily expressed explicitly. In some cases, FORM and SORM 
may suffer convergence problems (Wang and Grandhi 1996). Therefore, approximation methods 
are desirable to perform the reliability analysis, such as the response surface method (Khuri and 
Cornell 1997, Myers and Montgomery 1995). In the response surface method (RSM), the LSF is 
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replaced by the response surface function (RSF) of basic random variables. The RSF is then used 
instead of the actual LSF for the estimation of the failure probability. The RSM approximates the 
actual LSF by using experimental points and explicit mathematical functions (typically quadratic 
polynomials). As the approximated LSF is explicit, FORM or SORM can be applied to estimate 
the probability of failure directly. Alternatively, MCS can be used efficiently since the evaluation 
of the RSF requires very little computational effort. 

Several researchers proposed improvements of the RSM in order to evaluate efficiently the 
failure probability of complex structures. Bucher and Bourgund (1990) proposed a quadratic 
polynomial response surface without mixed terms. A saturated experimental design with 2n+1 
experimental points is built, where n is the number of random variables. Rajashekhar and 
Ellingwood (1993) proposed some ideas to improve the response surface obtained from Bucher's 
algorithm, in which more iterations are repeated until the convergence parameter becomes very 
small or zero. Kim and Na (1997) proposed to arrange the experimental points in order to bring 
them close to the actual LSF by using the gradient projection technique. Linear RSFs are utilized 
and the reliability indices are evaluated by the Rackwitz-Fiessler algorithm. Gayton et al. (2003) 
proposed a RSM named CQ2RS (Complete Quadratic Response Surface with ReSampling). The 
method takes into account the knowledge of the engineer and the statistical resampling technique 
is used to determine the design point. Wong et al. (2005) suggested to choose 2n+1 axial point 
designs and to select the parameter f as a decreasing function of the coefficient of variation of the 
random variables. Kaymaz and Chris (2005) utilized the sign evaluation for the random variables 
to form a reduced design space, the experimental points are also selected from the region where 
the design point is most likely to exist. Duprat and Sellier (2006) proposed a quadratic polynomial 
response surface with mixed terms. In this scheme, points efficiently positioned with respect to the 
design point are reused in the next iteration. Gavin and Yau (2008) presented the use of higher 
order polynomials for response surface approximations. The authors proposed to use a polynomial 
without a fixed degree in order to fit the LSF better. According to this approach high order terms 
may not be necessary. The degree of the polynomial is determined on the basis of a statistical 
analysis of the polynomial coefficients. Nguyen et al. (2009) proposed an adaptive RSM based on 
a double weighted regression technique. The main features of this method are the choice of the 
response surface expression, for the first iteration, a linear response surface is chosen, for the 
following iterations, a quadratic response surface with mixed terms is considered according to 
complementary points. Kang et al. (2010) proposed an efficient RSM applying the moving least 
squares approximation instead of the traditional least squares approximation. The linear RSF and 
the quadratic RSF are formed using the axial experimental points. The RSF is updated 
successively by adding the most probable failure point to the previous set of experimental points. 
Allaix and Carbone (2011) discussed the locations of the experimental points used to evaluate 
parameters of the response surface. The locations of the experimental points are chosen according 
to the importance sensitivity of each random variable. The response surface is then built after 
rotating the coordinate system. Basaga et al. (2012) proposed an improved RSM. In the algorithm, 
a quadratic approximate function is formed and design point is determined with FORM, a point 
close to the LSF is searched using the design point, vector projected method is used to generate the 
sample points, and SORM is performed to obtain reliability index and probability of failure. Li et 
al. (2013) compared three collocation point methods associated with the odd order stochastic RSM 
in a systematical and quantitative way. The results indicate that the origin often used as a 
collocation point is not absolutely necessary. 

As seen from above short literature review, most of the proposed improvements to the RSM 
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focus on the location of experimental points and the design point, so that a quadratic polynomial 
can better approximate the actual LSF in the neighbourhood of the design point. However, a 
quadratic polynomial cannot fit highly nonlinear LSF over a large region accurately. There is the 
difference between the RSF and actual LSF outside the region of the experimental points resulting 
in calculation errors of failure probabilities, especially for highly nonlinear LSFs and problems 
with low probabilities of failure. 

In this study, a different approach is proposed to approximate the actual LSF. Three aspects of 
the RSM are discussed in the following: the location of the experimental points, the degree of 
polynomial of the RSF and the estimation of the failure probability.  

Concerning the first aspect, since the region around the design point gives the main 
contribution to the probability of failure, experimental points should be selected close to the design 
point so that the RSF can approximate the LSF near the design point accurately. On the other hand, 
for a highly nonlinear LSF, the accuracy of the approximation of the failure probability does not 
depend very much upon the region around the design point. In this case, experimental points 
should be selected close to the design point and consider the nonlinear trend of the LSF, so that the 
RSF can approximate the LSF over a larger region containing the design point. In fact, for 
complicated and large structural system, the nonlinear degree of the LSF is unknown generally. 
Thus, it is necessary for the nonlinear LSF to consider the design point and the nonlinear trend of 
LSF because both of them influence the probability of failure.  

Concerning the second aspect, the degree of polynomial of the RSF should be a compromise 
between accuracy and efficiency. Considering the accuracy, a high order polynomial should be 
chosen. However, the high order polynomial involves time-consuming, and the rate of 
improvement of the approximation decreases with the degree of polynomial (Allaix and Carbone 
2011). Thus, the high order terms of polynomial may not be necessary (Gavin and Yau 2008). With 
respect to the efficiency, the choice of the degree of the polynomial aims generally to reduce the 
computational effort. Thus, the degree of polynomial should be as low as possible. For these 
reasons, quadratic polynomial functions without mixed terms are generally used (Allaix and 
Carbone 2011). Thus, in this paper, linear, quadratic and cubic polynomials without mixed terms 
are utilized to approximate the actual LSF. 

Concerning the third aspect, FORM and SORM are perfectly adequate for linear LSFs and 
slightly nonlinear LSFs. However, these methods are not accurate enough for highly nonlinear 
LSFs. The MCS can give the exact solution regardless of the complexity of the system or the limit 
state. When the probability of failure is estimated by using the MCS considering the RSF, the 
accuracy of the result becomes more important than the efficiency of the simulation method 
because the RSF is the explicit expression. Thus, in the proposed method, the values of the 
adjusted R2, indicating the accuracy of the approximation, are calculated from the statistical data of 
each RSF. The RSF in terms of the best adjusted R2 is used to estimate the failure probability by 
using the direct MCS. 

 
 

2. Classical response surface method 
 

In the RSM, the actual LSF G(X) is replaced by a polynomial function ( )G X , typically a 
quadratic polynomial function without mixed terms, given as 
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2

1 1

( )
n n

i i i i
i i

G a b x c x
 

   X                           (1) 

where n is the number of random variables X , and a, bi, and ci are the 2n+1 unknown coefficients. 
The unknown coefficients are obtained from discrete evaluations of the implicit LSF, such as 
through evaluation of the finite element method. 

It is seen that Eq. (1) does not contain mixed terms, hence the function ( )G X  basically 

represents the original function ( )G X along the coordinate axes. The experimental points required 

to obtain ( )G X are chosen to be the mean values ix  and i i ix x f  , 1,2, ,i n  , in which f is 

an arbitrary factor and i are the standard deviations of xi, respectively. Next, using the 2n+1 

function values of ( )G X  at these points, the parameters a, bi, and ci are obtained from a set of 
linear equations. If there are more points than 2n+1 coefficients in Eq. (1), a least squares or 
similar methods may need to be employed to approximate the surface. 

The original LSF cannot be properly represented by the RSF evaluated using the information 
obtained at the experimental points chosen in the vicinity of the mean values of basic random 
variables. To improve the accuracy of the RSM, Bucher and Bourgund (1990) suggested an 
alternative process of selecting the experimental points. In the first step of this algorithm, the mean 
vector is selected as the center point. Then the RSF obtained is used to find an estimate of the 
design point DX . In the next step, the new center point MX is chosen on a straight line from the 

mean vector X to DX so that ( )G X =0 at the new center point MX from linear interpolation, i.e. 

( )

( ) ( )M D
D

G

G G



X

X = X + (X X)
X X

                       (2) 

Next, the same interpolation is repeated to find an updated RSF ( )G X , as described above, by 

using MX as the new center point. 
In order to compare the results of the proposed method with those of the classical RSM and 

FORM, the convergence criteria of the classical RSM and FORM are checked by the following 
two convergence criteria at the same time. First, the relative difference between the reliability 
indices,  , in two subsequent iterations is small. 

1

1

i i

i

  







                                (3) 

Second, the value of the LSF at the design point DX should be close to zero. For simplicity, it is 
required that the ratio between the values of the LSF at the current iteration and at the point of 
mean value is small. 

( ) ( )DG G X X                              (4) 

where the constant is assumed to be equal to 0.001. 
 
 
3. Improvement of the response surface 
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Fig. 1 Step 1 of the proposed method 
 
 

3.1 Selection of the experimental points 
 
In the proposed method, the experimental points are close to the actual design point and the 

actual limit state, and consider the nonlinear trend of the LSF. The location of the experimental 
points is discussed as following. 

Step 1 Determine the linear RSF 
1.1 Select (n+1) experimental points along the negative direction of each coordinate axis. 
1.2 Evaluate the LSF with respect to the experimental points selected in sub-step 1.1. 
1.3 Obtain the linear RSF, as described by Eq. (8), by using the (n+1) experimental points 

selected in sub-step 1.1.  
The experimental points of step 1 in the two-dimensional standard normal space are shown in 

Fig. 1, where f =3.0. 
Step 2 Determine the approximate design point 
2.1 Determine the design point using FORM for the linear RSF obtained by step 1, the design 

point is denoted by XDL.  
2.2 Bring the XDL close to the actual limit state by using successive linear interpolation, i.e. 

1 1

1

( )

( ) ( )
i

i i i i

i i

M
M M M M

M M

G

G G 






X
X = X + (X X )

X X
                  (5) 

For the first iteration, the Eq. (5) becomes the Eq. (2). Check the convergence, if the 
convergence is not achieved, repeat Eq. (5) for a new iteration. The convergence of the Eq. (5) is 
checked by the following convergence criterion. 

1
( ) ( )

iMG G 


X X                            (6) 

where the constant is assumed to be equal to 0.001. 
For convenience, the final experimental point satisfying with Eq. (6) is also denoted by DX . In 

this way, the approximate design point DX lies on the original limit state surface and does not  
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Fig. 2 Step 2 of the proposed method 
 
 

deviate from the actual design point excessively.  
The experimental points of step 2 in the two-dimensional standard normal space are shown in 

Fig. 2. 
Step 3 Select experimental points considering the nonlinear trend of the LSF 
3.1 Obtain the tangent hyperplane by using the vector from X to DX and DX . The expression of 

the tangent hyperplane is given by 

( ) 0T
DX X                               (7) 

where   is the unit vector from X to DX . 

It is noted that DX is the approximate design point in this step, thus the vector from X to DX is 

the approximate normal vector of the LSF in DX . Therefore, the tangent hyperplane obtained by 

using the vector from X to DX and DX is the approximate tangent hyperplane to the LSF in DX . 
3.2 Solve for the coordinate of each intersection between the tangent hyperplane with each 

coordinate axis.  
3.3 Select one experimental point on each straight line from DX to each intersection obtained by 

sub-step 3.2, respectively. The total number of experimental points selected by this sub-step is n. 
The experimental points of this sub-step in the two-dimensional standard normal space are shown 
in Fig.3, where k=2-4. 

3.4 Evaluate the LSF with respect to the experimental points selected in sub-step 3.3. If 
( )iG X >0, select one experimental point along the positive direction of the vector of  . If 

( )iG X <0, select one experimental point along the negative direction of the vector of  . The total 
number of experimental points selected by this sub-step is n. The experimental points of this sub-
step in the two-dimensional standard normal space are shown in Fig. 4. 

3.5 In order to improve the fitting precision of the RSF to the LSF around the region of design 
point, the midpoints between the experimental points obtained by sub-step 3.4 and DX are selected 
as new experimental points. The total number of experimental points selected by this sub-step is n. 
The experimental points of this sub-step in the two-dimensional standard normal space are shown 
in Fig. 5. 

50



 
 
 
 
 
 

An efficient response surface method considering the nonlinear trend of the actual limit state 

 

x1 

x2 
Tangent 
hyperplane 

Linear RSF 

LSF 
Failure region 

Safe region 

XD 

XDL 

 

x1 

x2 
Tangent 
hyperplane 

Linear RSF

LSF 
Failure region 

Safe region 

XD 

XDL 

 

 

Fig. 3 Sub-step 3.3 of the proposed method Fig. 4 Sub-step 3.4 of the proposed method 
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Fig. 5 Sub-step 3.5 of the proposed method 
 
 
The proposed technology can be divided into 3 steps with respect to the experimental points. 

The number of experiment points of step 1 is n+1. The number of experiment points of step 2 is 
equal to the number of successive linear interpolation +1, where 1 expresses the LSF evaluation 
with respect to XDL obtained by linear RSF. The number of experiment points of step 3 is 3n. 
Hence, the total number of LSF evaluations of the proposed method is (n+1) + (the number of 
successive linear interpolation+1) +3n = 4n+3+the number of successive linear interpolation. 

 
3.2 Selection of the function of the RSF 

 
In this paper, linear, quadratic and cubic polynomials without mixed terms are used to 

approximate the actual LSF, as follows 

1
1

( )
n

i i
i

G a b x


 X                              (8) 
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2
2

1 1

( )
n n

i i i i
i i

G a b x c x
 

   X                          (9) 

2 3
3

1 1 1

( )
n n n

i i i i i i
i i i

G a b x c x d x
  

     X                     (10) 

where n is the number of random variables X , and a, bi, ci and di are unknown coefficients.  
As seen from the above analysis, the experimental points of steps 2-3 in section 3.1 are close to 

actual limit state and actual design point, and these experimental points consider the trend of the 
LSF. Thus, the experimental points of steps 2-3 in section 3.1 are used to solve for the unknown 
coefficients of Eqs. (8), (9) and (10). In addition, the values of the adjusted R2, indicating the 
accuracy of the approximation, are calculated from the statistical data of each RSF (Gavin and Yau 
2008, Nguyen et al. 2009). The definition of the adjusted R2 is given by 

Adjusted 
 2

2 1
2

1 1

( 1) ( ) ( )

1
1

( 1) ( ) ( )

P

i i
i

P P

i j
i j

P G G

R

P N G G
P



 

 
 

 
    

 



 

X X

X X

                 (11) 

where P is the total number of experimental points, N is the total number of coefficients.  
The adjusted R2 is bounded by the interval [0, 1]. If its value tends to 1, the RSF is close to the 

actual LSF at the experimental points. Since three RSFs are utilized to approximate the actual LSF, 
three adjusted R2 can be obtained. Thus, in this paper, the RSF is used in terms of the best adjusted 
R2. 

 
3.3 Estimation of the failure probability 

 
In this paper, the direct MCS is performed to assess the accuracy of the failure probability 

obtained by the RSF. Then 1,000,000 simulations are performed by using the LSF and the RSF 
respectively. From this comparison it is possible to understand if the RSF is close to the actual LSF. 
A parametric analysis is performed with respect to the parameter k of the proposed method. The 
values 2, 3 and 4 are considered. In addition, the forward finite difference is applied in FORM to 
compute the first order partial derivatives of the LSF with respect to the random variables even if 
the LSF is expressed in the explicit form. The probabilities of failure obtained by FORM are given 
by ( )fP    , where is the standard normal cumulative distribution function.  

 
 

4. Numerical examples 
 

4.1 Example 1: a cubic LSF 
 

A hypothetical cubic LSF with two independent standard normal variables is considered 
3

1 2 1 2( ) 0.16( 1) 4 0.04sin( )G x x x x    X                  (12) 

For this example, if the coefficient before sin(x1x2) is large, the nonlinear of the LSF will be 
very high. Thus, the sine term represents the small effects of higher order terms (Gavin and Yau  
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Table 1 Comparison of analysis results of example 1 

Method Failure probability Adjusted R2 LSF eval. 

Monte Carlo 3.249×10-2 - 1,000,000 
Classical RSM(f=3) 5.106×10-2 - 36 

FORM 0.621×10-2 - 13 
Improved method(k=2) 3.257×10-2 0.9996 15 
Improved method(k=3) 3.214×10-2 0.9999 15 
Improved method(k=4) 3.213×10-2 0.9999 15 
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Fig. 6 Example 1-Response surface approximations 

 
 

2008). For the example, the adjusted R2 of the cubic polynomial is always the best when k=2, 3 
and 4. Thus, the cubic polynomial is used to approximate the actual LSF. The numerical results are 
listed in Table 1 and also shown graphically in Fig. 6. As seen from the results in Table 1, the 
proposed method yields better results in terms of the probability of failure, regardless of the values 
of the parameter k. As seen from Fig. 6, since the experimental points of the proposed method 
consider the trend of the LSF, the proposed method is able to reach a better approximation of the 
LSF over a large region than the classical RSM.  
 

4.2 Example 2: a quadratic LSF 
 
A quadratic LSF with a mixed term is expressed as 

2
1 2 2( ) 20 ( 0.2 ) 5G x x x   X                        (13) 

where x1 and x2 are independent standard normal variables, respectively. 
Since the proposed method and the classical RSM do not contain mixed terms, the example is 

used to show the influence of mixed terms on two methods. For the example, the adjusted R2 of the 
cubic polynomial is the best when k=2 and 3. The adjusted R2 of the quadratic polynomial is the 
best when k=4. The numerical results are listed in Table 2 and also shown graphically in Fig. 7. As 
seen from Table 2 and Fig. 7, the result of proposed method is better then that of the classical 
RSM. The improvements in terms of the failure probability and the approximation of the LSF are  
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Table 2 Comparison of analysis results of example 2 

Method Failure probability Adjusted R2 LSF eval. 

Monte Carlo 5.41×10-4 - 1,000,000 
Classical RSM(f=3) 6.45×10-4 - 30 

FORM 3.96×10-4 - 22 
Improved method(k=2) 5.45×10-4 0.9660 12 
Improved method(k=3) 5.24×10-4 0.9112 12 
Improved method(k=4) 5.23×10-4 0.9088 12 
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Fig. 7 Example 2-Response surface approximations 

 
 

due to the location of the experimental points considering the trend of the LSF. 
 

4.3 Example 3: a nonlinear LSF 
 
This example has been reported in a number of papers (Nguyen et al. 2009, Kaymaz and Chris 

2005, Elegbede 2005). The LSF is expressed as 

1 2( ) exp[0.4( 2) 6.2] exp[0.3 5] 200G x x     X                (14) 

where x1 and x2 are assumed to be independent and have a standard normal distribution with zero 
mean and unit standard deviation. 

For the example, the adjusted R2 of the cubic polynomial is always the best when k=2, 3 and 4. 
The numerical results are listed in Table 3 and also shown graphically in Fig. 8. As seen from the 
results in Table 3 and Fig. 8, the proposed method yields a better approximation of the LSF over a 
large region then the classical RSM. 
 

4.4 Example 4: a finite element problem 
 
In order to illustrate the accuracy of the proposed method for dealing with complex finite  

54



 
 
 
 
 
 

An efficient response surface method considering the nonlinear trend of the actual limit state 

Table 3 Comparison of analysis results of example 3 

Method Failure probability Adjusted R2 LSF eval. 

Monte Carlo 3.656×10-3 - 1,000,000 
Classical RSM(f=3) 3.586×10-3 - 30 

FORM 3.365×10-3 - 19 
Improved method(k=2) 3.665×10-3 0.9979 12 
Improved method(k=3) 3.664×10-3 0.9992 12 
Improved method(k=4) 3.650×10-3 0.9998 12 

 
Table 4 Comparison of analysis results of example 4 

Method Failure probability Adjusted R2 LSF eval. 

Monte Carlo 0.1394 - 1,000,000 
Classical RSM(f=3) 0.1393 - 88 

FORM 0.0862 - 45 
Improved method(k=2) 0.1367 0.9253 46 
Improved method(k=3) 0.1371 0.9363 46 
Improved method(k=4) 0.1386 0.9445 46 
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Fig. 8 Example 3-Response surface approximations 

 
 
element problems, a 10 bar truss structure (Chowdhury et al. 2009) is considered as illustrated in 
Fig. 9. Young’s modulus of the material is 107psi or 68947.573MPa. Two concentrated forces of 
105lb or 444.822kN are applied at nodes 2 and 3. The cross-sectional area xi, i =1, 2, ..., 10, for 
each bar follows normal distribution and has the mean x =2.5in2 or 1.6129×10-3m2 and standard 
deviation σx = 0.5in2 or 3.2258×10-4m2. According to the loading condition, the maximum vertical 
displacement occurs at node 3, where a permissible displacement is limited to umax =18in or 
0.4572m. Hence, the LSF is 
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Fig. 9 10-bar truss structure 
 
 

max 3( ) ( )G u u X X                            (15) 

For the example, the adjusted R2 of the quadratic polynomial is always the best when k=2, 3 and 
4. The numerical results are listed in Table 4. As seen from the results in Table 4, the results 
obtained by using the proposed method can be reasonably accepted in terms of the number of LSF 
evaluations. Through this example, it can be seen that the proposed method gives promising results 
even for problems of high dimension with a large number of random variables and implicit 
performance functions. It is noted that the results obtained by FORM are not the same as by 
Chowdhury et al. (2009) because the convergence criterion of FORM is not given in the study of 
Chowdhury et al. (2009). The different convergence criteria result in the different the probabilities 
of failure and the number of LSF evaluations. 
 
 
5. Conclusions 

 
In the paper, the classical RSM is improved by considering the significance of design point and 

the nonlinear trend of the LSF simultaneously. The proposed method can yield a better 
approximation of the actual LSF over a large region than the classical RSM. Numerical examples 
show that the proposed method can give a better evaluation of the failure probability in terms of 
the number of experimental points. The proposed method also gives an indication of the accuracy 
of the estimated failure probability by using the adjusted R2. Moreover, unlike the classical RSM, 
the failure probabilities obtained by using the proposed method do not show any significant 
dependence on the parameter k.  

However, since the approximate design point is used to reduce the computational effort, 
estimation results may become more inaccurate if the approximate design point is far from the 
actual design point, especially for multiple design points. In addition, if the adjusted R2 is small, 
the fitting precision of the RSF to the LSF at selected experimental points will be bad. However, 
the experimental points with the big fitting errors may be far from the limit state surface. Thus, if 
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the adjusted R2 is small, the accuracy of proposed method may be incredulous. Therefore, the 
further investigation of the proposed method should be required without increase in the 
computational effort. 
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