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Abstract.  Deformation analysis is a major concern in many geotechnical applications. In this paper, the 
deformation behavior of a geocell mattress subjected to symmetric loads was studied. The mattress was 
idealized as an elastic foundation beam. The horizontal beam-soil interfacial shear resistances at the beam 
top and bottom sides were taken into account by assuming the resistances to be linear with the relative 
horizontal displacements. A decoupled iterative method was employed to solve the differential displacement 
equations derived from the force analysis of a beam element and to obtain the solutions for the deformations 
and internal forces of the geocell reinforcement. The validity of the present solutions was verified by the 
existing finite element method and power-series solutions. 
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1. Introduction 

 

A geocell is a three-dimensional interconnected geosynthetic material manufactured from 
different types of polymers. It has been increasingly applied in many geotechnical applications 
such as highway, railway and airport runway embankments because it can be used to improve base 
course properties by providing soil confinement to increase the soil stiffness and reduce 
deformations of the soil.  

In the past decades, much attention has been focused on the reinforcement mechanism and 
bearing capacity of geocell reinforcements through experimental and numerical investigations (for 
example, Krishnaswamy et al. 2000, Dash et al. 2003, 2007, Latha et al. 2006, Zhou and Wen 
2008, Zhang et al. 2010b). However, in some special cases, controlling the settlement of the 
superstructure is more important than increasing the foundation bearing capacity (Edgar et al. 
1987, Xie et al. 2004, Han et al. 2007, Shahira and Pak 2010). Although settlement analysis is a 
major concern in many geotechnical applications, the number of studies in the literature that deal 
with deformation analyses of geocell mattresses is still limited.  

According to existing studies, when analyzing the deformation behavior of a geocell-reinforced 
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mattress on a soft subgrade, the mattress can be regarded as a beam on elastic supports (Madhira 
and Hormoz 1988, Bourdeau 1989, Ghosh and Madhav 1994, Shukla and Chandra 1994, Yin 
2000a, b, Maheshwari et al. 2006). Recent studies have demonstrated that the horizontal beam-soil 
interfacial shear resistance has a considerable influence on the behavior of the beam, especially 
when the foundation soil body is stiff and the contact face between the beam and the soil bed is 
rough (Tan 1997, Ma and Ai 2002). Several approaches have been proposed to evaluate the 
deformations of the foundation beam while considering the horizontal interfacial resistance effect. 
Two-parameter foundation models, such as the Filonenko-Borodich model (Filonenko-Borodich 
1940) and Hetenyi model (Hetenyi 1946), are able to consider the horizontal interactions between 
the beam and the soil. In the Filonenko-Borodich and Hetenyi models, the horizontal tensile force 
along the beam is a constant. By using the conjugate beam method, an analogy for 
beam-foundation elastic systems was presented by Arici (1985). In the analogy (Arici 1985), the 
problem of an elastic beam on an elastic foundation was turned into an analogous problem of a 
conjugate beam on a conjugate foundation. Then, the beam was subjected to horizontal and 
vertical loads and imposed strains; the foundation reacted elastically both to the horizontal and 
vertical displacements and to the rotation. A partial solution for an infinite beam on an elastic 
foundation was proposed by Tan (1997). In his study, the foundation soil was idealized as 
horizontal and vertical springs. Closed-form solutions were obtained by Yin (2000a, b) to assess 
the performance of an infinite-reinforced Timoshenko beam. The beam in the study was subjected 
to a concentrated load in the mid-span and a uniform pressure loading at any location of the 
infinite beam. By using a finite element method (FEM), Ma and Ai (2002) discussed the effects of 
the horizontal beam-soil interfacial resistance on the behavior of the subgrade beam. By assuming 
different distribution patterns of the horizontal beam-soil interfacial resistance, Zhang et al. (2009, 
2010a) developed power-series solutions to assess the performance of the geocell reinforcement 
while considering the influence of the interfacial resistance.  

The purpose of this study is to develop solutions to assess the deformation of a geocell mattress 
with a decoupled iterative method. The mattress will be idealized as an elastic foundation beam. 
The differential equations with terms for the coupled horizontal and vertical displacements of the 
beam will be derived from a force analysis of a beam element. Moreover, it should be mentioned 
that the geocell products used to reinforce roadway and embankment often have different 
structures. The type of geocell with height of 100 mm~200 mm, weld distance of 400 mm, tensile 
strength more than 20 MPa, used normally in reinforcing of road subgrade, is suggested for the 
analytical model targeting in this study. The analytical model also is appropriate for the type of 
geocell which can make reinforced gravel mattress behaves as a stiffened platform. 
 
 
2. Analytical model development 

 
Only the case of symmetrical loads acting on the geocell mattress, as shown in Fig. 1, is 

analyzed in this study. In Fig. 1, q(x) is a distributed load; P is an applied concentrated load; pux 
and pdx are the horizontal interactions at the interfaces between the mattress and the soil above and 
below; pz is the vertical subgrade reaction; l is the half length of the mattress; and h is the height of 
the mattress.  

To simplify the problem, the following idealized conditions are assumed: 
(1) The geocell mattress is modeled as an Euler-Bernoulli beam. Based on the basic hypotheses 

of the Euler-Bernoulli beam theory, the following relationships hold for an elastic beam 
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3. Determination of displacements w and u0 
 

Eqs. (7) and (8) are the differential displacement equations with terms of coupled w and u0. A 
decoupled iteration method is introduced to solve them with the following process: 

(1) In the first step, the horizontal variables such as u0, pux, pdx, and T are neglected, and it is 
assumed that only the vertical displacement of the beam is generated under the vertical loads. 
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are satisfied for all i (i =1,…,n), where  is a specified tolerance, which is considered to be 10−6 in 
this study. 

The detailed calculation process to obtain the variables k
iw , k

i , k
iM , k

iQ , 0( )k
iu  and k

iT in 

the kth iterative step is presented in the following sections. 
 
3.1 Determination of vertical displacement w 
 
Eq. (8) in the kth iterative step can be written as 
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the superscript k means that the values of the variables are obtained in the kth step; and the 
superscript (k-1) means that the values of the variables can be obtained in the (k-1)th step. When 

k=1,  0 1( ) 0k
iu    . 

For practical simplifications, only linearly varying distributed loadings need be considered. 
Then, the distributed load qi in Eq. (8) that acts on the ith segment can be expressed as follows: 

i i i iq g d                               (12) 

where gi and di are constants. For a uniformly distributed load, gi=0 and di≠0, but for a triangularly 
distributed load, gi ≠ 0 and di ≠ 0. 

When 0( )iu   is regarded as a constant, the solution of Eq. (8) is 
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1
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i i l
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



 

 






  

                          (26) 

at the point 

1

1

i

j
j

x l




  into Eq.(24), then, by analogy, the vertical deformation, rotation angle, 

bending moment and shear force , ,k k k
i i iw M and k

iQ  can be expressed by the corresponding 

variables w0, θ0, M0 and Q0 at the beam center (x=0). 

  

0

0
1 2 1

0

0

1 2 2 1 2 2 1

...

      ... ...

k k
i
k k
i

i iik k
i
k k
i

k k k k k
i i i ii i

w w

M M

Q Q

 
 

   

   
   
       
   
   
      

                 

FF FF FF FF

FF FF FF FF P P P P    

  (27) 

with 

1 1
1 1 i i

i i l  
  FF FF ; 

1 1
1 1 i i

k k
i i l  
  P P  ; 1 1

, 1

0

0

0
k k

i i

i iP

 



 
 
  
 
 
 

P      (28) 

where, Pi,i-1 is the concentrated load acting at the point 

1

1

i

j
j

x l




 ; if there is no concentrated load 

acting at the point, Pi,i-1 = 0; and w0, θ0, M0 and Q0 can be determined by boundary conditions. 
Taking a beam with free ends and subjected to symmetric loads for example, the following 
boundary conditions exist 

(a) 
0

0 0

0

2

x

xQ P

 



 


 
  and (b) 

0

0

x l

x l

M

Q





 



                   (29) 

where P0 is the concentrated load acting at the point x=0. The boundary conditions in group (a) are 
from the symmetry of the beam, and those in group (b) are due to the free ends of the beam.  
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3.2 Determination of horizontal displacement u0 

 
Eq. (7) in the kth iterative step can be written as 

     0 0( ) ( ) ( )
2

k k k
i ux dx i ux dx i

bh
EA u b k k u k k w                 (30) 

When ( )k
iw   in the equation is regarded as a constant in calculation, the solution of Eq. (30) is 

0
,1 ,2( ) i ia ak k k k

i i i iu c e c e                           (31) 

with 

 ux dxb k k
a

EA


 ; 

 
 

( )

2

k
ux dx ik

i

ux dx

h k k w

k k


 
 


                (32) 

,1
k
ic  and ,2

k
ic  in Eq.(31) are two unknown coefficients.  

Then, the tension force k
iT  is 

   0
,1 ,2( ) i ia ak k k k

i i i iT EA u EAa c e c e                      (33) 

Similar to Eqs. (18) to (27), Eqs. (31) and (33) can be written into a matrix format as follows 
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

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k
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k
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i
ik

i

k
i

aa
a

a
a

EA

T

u

aa
a

a
a

EA

T
u 








  (34) 

where 0
,0( )k

iu  and ,0
k

iT  are the horizontal deformation on the neutral axis of the beam and the 

tension force within the beam at ξi=0 in the kth iterative step, respectively. Obviously, a in Eq. (34) 
cannot be zero, so kux and kdx cannot both be zero at the same time. In the calculation, if kux = kdx= 
0, kux = kdx+, where  is an assumed constant with an extremely small value.  

Combining with the continuity conditions 

1

1

0 0
,0 1,

,0 1,

( ) ( )
i

i

k k
i i l

k k
i i l

u u

T T









 



                           (35) 

at the point 

1

1

i

j
j

x l




 , the following matrix equation can be obtained by analogy: 
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  
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with 

1 1
1 1 i i
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sh( )
ch( ) 1

0sh( ) 1 ch( )
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k i i
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i i
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a
a a a


 

 

              

W            (38) 

0
0u  and 0T in Eq.(36) are, respectively, the horizontal deformation and tension force at the beam 

center (x=0), which can be determined by boundary conditions. For a free-ends beam subjected to 
symmetric loads, the following boundary conditions exist 

0
0 0

0

x

x l

u

T





 



                              (39) 

 
 
Table 1 Comparison of node deflections (kz=5×103 kN/m3) (Unit: mm)  

Calculation methods A B C D E 

FEM (Ma and Ai 2002) 13.18 13.68 13.61 17.99 16.62 
Power-series solutions (Zhang et al. 2010a) 12.90 13.64 14.69 16.74 16.77 

Current solutions 12.88 13.65 14.69 16.74 16.77 
Notice: the placements of nodes “A, B, C, D, and E” are shown in Fig. 3 

 
Table 2 Comparison of node shear forces (kz=5×103 kN/m3) (Unit: kN)  

Calculation methods A Bleft Bright C Dleft Dright E 
FEM (Ma and Ai 2002) 0 506.5 -715.5 83.6 1034.6 -1041.4 0 
Power-series solutions  
(Zhang et al. 2010a) 

0 498.1 -723.9 120.7 1066.2 -1009.8 0 

Current solutions 0 498.1 -723.9 120.8 1066.2 -1009.8 0 
Notice: (1) the placements of nodes “A, B, C, D, and E” are shown in Fig. 3 

(2) Bleft and Bright are the shear forces on the left- and right- section of the point B=0, respectively 
Dleft and Dright are the shear forces on the left- and right- section of the point D=0, respectively 
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Table 3 Comparison of node bending moments (kz=5×103 kN/m3) (Unit: kN∙m)  

Calculation methods A B C D E 

FEM (Ma and Ai 2002)  0 626.6 -629.5 1487.0 -552.3 
Power-series solutions (Zhang et al. 2010a) 0 612.5 -619.0 1700.0 -318.2 

Current solutions 0 612.5 -618.9 1700.0 -318.1 
Notice: the placements of nodes “A, B, C, D, and E” are shown in Fig. 3 
 
Table 4 Comparison of node deformations (kz=30×103 kN/m3) (Unit: mm) 

Calculation methods A B C D E 

FEM (Ma and Ai 2002)  2.16 2.55 1.60 3.76 2.20 
Power-series solutions (Zhang et al. 2010a) 2.22 2.31 2.20 3.09 2.70 

Current solutions 2.22 2.31 2.20 3.10 2.71 
Notice: the placements of nodes “A, B, C, D, and E” are shown in Fig. 3 
 
Table 5 Comparison of node shear forces (kz=30×103 kN/m3) (Unit: kN) 

Calculation methods A Bleft Bright C  Dleft Dright E 
FEM (Ma and Ai 2002)  0 544.3 -677.7 36.1 1022.7 -1053.3 0 
Power-series solutions 
(Zhang et al. 2010a)  

0 514.1 -707.9 78.1 1032.5 -1043.5 0 

Current solutions 0 515.1 -708.9 79.5 1033.4 -1042.6 0 
Notice: (1) the placements of nodes “A, B, C, D, and E” are shown in Fig. 3; 

(2) Bleft and Bright are the shear forces on the left- and right- section of the point B=0, respectively 
Dleft and Dright are the shear forces on the left- and right- section of the point D=0, respectively 

 
Table 6 Comparison of node bending moments (kz=30×103 kN/m3) (Unit: kN∙m) 

Calculation methods A B C D E 

FEM (Ma and Ai 2002)  0 614.6 -405.4 1174 -476.8 
Power-series solutions (Zhang et al. 2010a) 0 631.5 -575.6 1406.7 -560.1 

Current solutions 0 630.5 -578.6 1410.7 -558.4 
Notice: the placements of nodes “A, B, C, D, and E” are shown in Fig. 3 
 
 
4. Validation 
 

In order to make a comparative verification of the current solutions, the same foundation beam 
with length of 29.0 m, width of 3.0 m, height of 1.0 m and elastic modulus 20.5 × 103 MPa studied 
by Ma and Ai (2002) was employed in the analysis. The beam was subjected to symmetric 
concentrated loads, as shown in Fig. 3. The behaviors of the beam on both soft and stiff soil beds 
had already been assessed by the finite element method (FEM) developed by Ma and Ai (2002) 
and their results were also employed for comparison. The power-series semi-analytic solutions 
proposed by Zhang et al. (2010a) were also employed to assess the behaviors of the beam on 
different soil beds for comparison. In the calculation, the values of soil parameters were chosen the 
same as those in Ma and Ai’s study as follows: horizontal soil reaction kdx = 7.5 × 103 kN/m3 for 
soft soil and kdx = 200 × 103 kN/m3 for stiff soil; coefficient of vertical soil reaction kz = 5  103 

kN/m3 for soft soil and kz = 30103 kN/m3 for stiff soil.  
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Table 7 Soil reaction coefficients and beam elastic modulus in the parametric study 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

kz (kN/m3) 5000 5000 5000 5000 5000 5000 10000 10000 10000
kux / kdx 2 2 2 4 4 4 2 2 2 

E (MPa) 50 150 300 50 150 300 50 150 300 
 
 

Then, it can be said that, for softer soil foundations, more tension forces within the geocell 
reinforcements are contributed to reduce the embankment settlements. 
 
 
6. Conclusions 

 
A decoupled iterative method to assess the deformation behavior of a geocell mattress 

subjected to symmetrical loads was proposed by modeling the mattress as a supported beam 
resting on an elastic foundation. The horizontal beam-soil interfacial shear resistances were taken 
into account in the elastic foundation model. The decoupled iterative method was used to obtain 
final solutions of the deformations and internal forces including the horizontal and vertical 
deformations, rotation angle, bending moment, shear force and tension force of the reinforcement. 
The validity of the proposed solutions was verified by comparing the results with those of existing 
FEM solutions and power-series solutions. 

A parametric study was conducted to study the effect of the soil reaction coefficients and 
equivalent elastic modulus of the beam on the beam behavior. The results indicated that the 
maximum vertical deformation of the beam reduces with the increase of the beam elastic modulus 
and the increase of the vertical soil coefficient, while the maximum tension force within the beam 
reduces with the increases of the vertical soil coefficient, but increases with the increase of the 
beam elastic modulus and the increase of the ratio of the soil coefficient on the beam top side to 
that on the beam bottom side. 

It needs to be pointed out that the geocell mattress and the soil below were all treated as linear, 
elastic materials in current solutions. In application of larger deformation, the solution presented in 
this study may not be adequate. However, the presented decoupled iterative method is easy to be 
extended to solve the problem involving large deformations and this will be discussed in another 
paper. Moreover, the current analytical model is complicated and more work is needed in future 
studies before implementation in regular designs. 
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