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Abstract.   In this paper, two new methods called Improved Amplitude-Frequency Formulation (IAFF) and 
Energy Balance Method (EBM) are applied to solve high nonlinear oscillators. Two cases are given to 
illustrate the effectiveness and the convenience of these methods. The results of Improved Amplitude-
Frequency Formulation are compared with those of EBM. The comparison of the results obtained using 
these methods reveal that IAFF and EBM are very accurate and can therefore be found widely applicable in 
engineering and other science. Finally, to demonstrate the validity of the proposed methods, the response of 
the oscillators, which were obtained from analytical solutions, have been shown graphically and compared 
with each other. 
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1. Introduction 

 
Nonlinear vibration is an interesting filed in the mechanical and civil engineering. Nonlinear 

oscillator models have been widely used in many areas of physics and engineering and are of 
significant importance in mechanical and structural dynamics for the comprehensive 
understanding and accurate prediction of motion. In the last few decades applied mathematics and 
innovative methods to solve and obtain an accurate solution for nonlinear dynamic problems has 
been an interesting area in the field of mechanical vibration and dynamical systems. Generally, for 
many nonlinear problems, it is very difficult to obtain exact solutions of nonlinear differential 
equations; it is possible to prepare approximate solutions in many cases. Bayat et al. (2012a) did a 
complete review on the recent analytical methods for nonlinear vibrations equations in their review 
paper. Many new techniques have appeared in the open literature to overcome the shortcomings of 
traditional analytical methods such as: Variational Approach  (He 2006, Liu 2009, Bayat 2013a, 
Pakar 2011, 2012a), Variational iteration method (Pakar 2012b), differential transform method 
(Thongmoon 2010), Homotopy analysis method (Ganji 2009), Max-min approach (Pakar 2013, 
Bayat 2011, Shen 2009), Homotopy perturbation method (Baki 2011, Jalaal et al. 2010),  
Hamiltonian approach (He 2010a, Xu and He 2010, He et al. 2010b, Bayat 2012b, 2013b), energy 
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balance method (Fu 2011, He 2002, Zhang 2009) other numerical and analytical methods (Geng 
2007, He 2004, 2008, Zhang 2008, Konuralp 2009). 

 Zhang (2008) presented an application of He’s amplitude-frequency formulation in order to 
show the capability of this method to nonlinear oscillations even to some of equations which have 
fractional term. Finally the Improved Amplitude-Frequency Formulation (IAFF) is proposed by 
He using a modification and discussion on the crucial point of the equations to improve the 
Amplitude-Frequency Formulation (He 2008).  

Two practical cases have been considered to show the efficiency of Amplitude-Frequency 
Formulation (IAFF) and Energy Balance Method (EBM). We have solved the governing equations 
of circular cylindrical shell and nonlinear vibration of simply support edges beam. Many 
researchers have been studied on the vibrations of the shells and beams in the recent years (Amiro 
and Zarutsky 1981, Zarutsky 1993, Koiter 1966, Manevitch 1972, Andrianov et al. 2004, Ba datl 
2009, Piccardo 2012, Kural 2012). 

This paper has been collocated as follows: The first section contains the basic idea of improved 
amplitude frequency formulation and energy balance method. The second section is related to the 
application of these methods to the governing equations of circular cylindrical shell and simply 
support edges beam. In the third section, comparisons of the obtained results are also presented to 
demonstrate the accuracy and applicability of these methods. Finally, we show that the IAFF and 
EBM could be very useful mathematical tools to prepare a precise cyclic solution for nonlinear 
systems. 
 
 
2. Basic idea of Improved Amplitude-Frequency Formulation 
 

We consider a generalized nonlinear oscillator in the form (He 2008) 

                  0,        0 ,      0 0,F a         (1)

We use two following trial functions 

                  1 1 cos ,t a t   (2)

And 

                   2 2 cos ,t a t   (3)

The residuals are 

                
      2

1 1 1 1 cos cos ,R t a t F a t       (4)

And 

              
      2

2 2 2 2cos cos ,R t a t F a t       (5)

The original Frequency-amplitude formulation reads (He 2004, 2006) 

                

2 2
2 1 2 2 1

2 1

,
R R

R R

 






 (6)
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He used the following formulation and Geng and Cai improved the formulation by choosing 
another location point (Geng 2007). 

                 

   2 2
1 2 2  2 1 12

2 1

0 0
,

R t R t

R R

   


  



 (7)

This is the improved form by Geng and Cai (2007) 

                  

   2 2
1 2 2 2 1 12

2 1

3 3
,

R t R t

R R

     


  



 (8)

The point is: cos(ω1t) = cos(ω2t) =k 
Substituting the obtained ω into ξ(t) = a cos(ωt), we can obtain the constant k in ω2 equation in 

order to have the frequency without irrelevant parameter. 
To improve its accuracy, we can use the following trial function when they are required. 

                     
   1

1

cos ,
m

i i
i

t a t 


       and        2
1

cos ( ) ,
m

i i
i

t a t


   (9)

Or 

                   

 
 

 

 i 
1

1

1

cos  
,

cos  

m

i
i
m

j j
j

a t
t

b t














     and        

 

 
1

2

1

cos  
,

cos  

m

i i
i
m

j j
j

a t
t

b t
 











 (10)

But in most cases because of the sufficient accuracy, trial functions are as follow and just the 
first term 

                   1 cos ,t a t         and              2 cos cos ,t b t a b t      (11)

and 

                   1 cos ,t a t       and            
 2

1 cos
,

1 cos 2

a c t
t

c t










 (12)

Where a and c are unknown constants. In addition we can set: 
cost = k in ξ1, and cos(ωt) = k in ξ2 

 
 
3. Basic idea of Energy Balance Method 
 

In the present paper, we consider a general nonlinear oscillator in the form (He 2002) 

               
   0,f t    (13)

In which   and t are generalized dimensionless displacement and time variables, respectively, 

and  , , ,f f t     . Its variational principle can be easily obtained 
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    2

0

1 ,2

t

J F dt       (14)

Where T = 2π/ω is period of the nonlinear oscillator,     .F f d      

Its Hamiltonian, therefore, can be written in the form 

               
   21

,
2

H F F a      (15)

or  

               
     21

0,
2

R t F F a      (16)

Oscillatory systems contain two important physical parameters, i.e., the frequency ω and the 
amplitude of oscillation, a. So let us consider such initial conditions 

                 0   ,   0 0,a    (17)

We use the following trial function to determine the angular frequency ω 

                  cos ,t a t   (18)

Substituting Eq. (18) into Eq. (16), we obtain the following residual equation 

                 
        2 2 21

sin cos 0,
2

R t a t F a t F a       (19)

If, by chance, the exact solution had been chosen as the trial function, then it would be possible 
to make R zero for all values of t by appropriate choice of ω. Since Eq. (18) is only an 
approximation to the exact solution, R, can not be made zero everywhere. Collocation at ωt = π/4 
gives 

                 

    
 2 2

2 cos
 ,     rad/sec,

sin

F a F a t

a t







  (20)

Its period can be written in the form 

                  

    
 2 2

2
,

2 cos

sin

T
F a F a t

a t









 
(21)

 
 

4. Applications 
 

In order to achieve the accuracy and the applicability of Improved Amplitude-frequency 
Formulation and Energy Balance Method for solving nonlinear vibration equations, we will 
consider the following cases. 
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4.1 Case 1 
 
The linear theory of the shells can be found in many papers and discussed completely 

(Manevitch 1972, Amiro 1981).The non linear dynamic boundary value problems of theory of 
closed circular cylindrical shell eccentrically reinforced in the two principal directions are 
investigated within the framework of the structurally orthotropic scheme. The middle surface of 
the shell is chosen as the main one. Therefore we consider the final results. Fig. 1 shows the 
schematic of closed eccentrically circular cylindrical shell. 

In dimensionless form, the governing differential equation of closed eccentrically circular 
cylindrical shell with constant coefficient for the time function is given by Awrejcewicz et al. 
(1998) 

              

22 2
3 5

1 2 32 2
0,

d d d
A A A

dtdt dt

       
          
    

  (22)

With the initial conditions of 

              
   0   ,    0 0  ,

d
a

dt

    (23)

The expressions of the governing coefficients are presented in Appendix A. The complete 
formulation of Eq. (22) can be referred to Awrejcewicz et al. (1998) for details. 
 

4.1.1 Solution of case 1 using Improved Amplitude-Frequency Formulation 
We use trial functions for solving Eq. (22), as follows 

   1 cos ,t a t   (24)

And 

   2 cos 2 ,t a t   (25)

Respectively, the residual equations are 

          2 2 4 4 2 2 2
 1 2 31 cos cos cos 2 cos 1 ,a t A A a t A a t a t aR t        (26)

 
 

Fig. 1 schematic of closed eccentrically circular cylindrical shell 
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And 

              
          2 2 4 4 2 2 2

2 1 2 3cos 2 cos 2 cos 2 8 cos 2 4 4 ,R t a t A A a t A a t a t a      (27)

Considering cos(ω1t) = cos(ω2t) = k we have 

               

2 2 4 4
1 2 3

2 2

2 2
2 1 2 2 1

2 1
22

,
1

A A a kR R

R R

A a k

a k a 
 





 







 (28)

We can rewrite ξ(t) = a cos(ωt) in the form 

             
 

2 2 4 4
1 2 3 

2 2 22 1
cos  (  ),t

A A a k A a k

a k a
a t

 
 

 
  (29)

In view of the approximate solution, we can rewrite the main equation in the form 

22 2 2 4 4 2 2 4 4 2
3 51 2 3 1 2 3

1 2  32 2 2 2 2 2 2 2
,

2 1 2 1

d A A a k A a k A A a k A a k d d
A A A

dt a k a a k a dt dt

        
   

                                    
 

(30)

If by any chance Eq. (29) is the exact solution, then the right side of Eq. (30) vanishes 
completely. Considering our approach which is just an approximation one, we set 

 
22 2 4 4 2

3 51 2 3
1 2 32 2 2 20

2
cos 0  ,      ,

2 1

T A A a k A a k d d
A A A t dt T

a k a dt dt

        
  

                              

 

(31)

Considering the term ξ(t) = a cos(ωt) and substituting the term to Eq. (31) and solving the 
integral term, we have 

 

1
2

2
8 2 4 2 6 2 4

3 1 3 2 3 2

4 4 2 2 2 2 2 4 2 2 2 2
3 1 2 2 1  1 2 1 2 2 224 2 2

2 6 2 2 4 2 23
2 3 3

3

3 3 1

2

2

5 32 16 64
1 1

5 8 4 4 64 64 64 16 32
16 2 16 20 48 40 96

a A a A A a A A a A A

k a A A a A A A A a A A A a A a A
a A a A a A a A A a A a A A

   

       
  

                             

 

(32)

So, substituting Eq. (32) into Eq. (28), we have 

             

4 2
3 2 1

2

5 61
,

8

2 2

a A a A A

a


 


  (33)

We can obtain the following approximate solution 

              
   

4 2
3 2 1

2

51
co

6 8

2
s(  ) ,

2

a A a A
t a

A

a
t








 (34)

 
4.1.2 Solution of case 1 using Energy Balance Method 
Variational and Hamiltonian formulations of Eq. (22) can be readily obtained as 

142



 
 
 
 
 
 

Vibration analysis of high nonlinear oscillators using accurate approximate methods 

             
 

2 22
2 2 4 6

1 30 22

1 1 1 1 1

2 2 2 4 6

t d d
A A A

d
J dt

tdt

    
              

 


  

               

2 22
2 2 4 6

1 2 32

2 4 6
1 2 3

1 1 1 1 1

2 2 2 4 6

1 1 1
   

2 4 6

d d
A A A

dtdt

A a A

H

a A a

    
         

  

  


 

(35)

Choosing the trial function ξ(t) = a cos(ωt), we obtain the following residual equation 

             

         

 

2 2 2 4 2 2 2 2 2
1

4 4 6 6 2 4 6
2 3 1 2 3

1 1 1
sin  a cos sin cos

2 2 2
1 1 1 1 1

          cos cos ( )
4 6 2 4 6

a t t t A a t

A a t A a t

R t

A a A a A a

      

 





 

   
 (36)

If we collocate at ωt = π/4, we obtain the following result 

              

  2 2 4
 1 2 3

2

 2 12 9 7 6
,

6 2

a A A a A a

a






 





 (37)

We can obtain the following approximate solution 

               
 

  2 2 4
 1 2 3

2

 2 12 9
cos  (

7 6

6
),

2

a A A a A a
t

a
t a









 


 (38)

 
4.2 Case 2 

 
For the second case, the governing equation of the nonlinear beam vibration is considered 

(Andrianov et al. 2004) 

                
 

24 2 2
1

4 2 22 0
0

2 1

w EA w w w
EI dx A

xx x tl



             (39)

In this equation E is the Young’s modulus of the beam, I is the second moment of area of the 
cross section, w is the beam deflection, t is the time, A is the cross sectional area of the beam and L 
is the length of the beam in x direction. 

By a process which is applied on the governing equation in reference (Andrianov et al. 2004), 
we have the following Duffing equation for simply support edges of beam 

               
 

2
2 2

2
1 0,

d

dt

      (40)

With initial condition 

                
   0
0   ,     0  ,

d
a

dt


    (41)
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Fig. 2 Schematic of simply support beam 

 
 

Where coefficients of Eq. (40) are given in Appendix B. the complete formulation of Eq. (40) 
can be referred to (Andrianov et al. 2004) for details. 

 
4.2.1 Solution of case 2 using Improved Amplitude-Frequency Formulation 
We use trial functions for solving Eq. (40), as follow 

               1 cos ,t a t   (42)

And 

                 2 cos 2 ,t a t   (43)

Respectively the residual equations are 

               
      2 2 2 2

1 cos 1 cos ,R t a t a t     (44)

And 

               
      2 2 2 2

2 cos 2 -4  cos 2 ,R t a t a t    (45)

Considering cos(ω1t) = cos(ω2t) = k we have 

               
 

2 2
2 1 2 2 1

2 1

2 2 2 
-

1 a
-

,k
R R

R R


 


     (46)

We can rewrite ξ(t) = a cos(ωt) in the form 

                 2 21cos(  ), t a ta k    (47)

In view of the approximate solution, we can rewrite the main equation in the form 

                 

2
2 2 2 2 2 2 2 3

2
(1  ) - ,

d
a k a k

dt

             (48)

If by any chance Eq. (47) is the exact solution, then the right side of Eq. (48) vanishes 
completely. Considering our approach which is just an approximation one, we set 

              

2 2 2 2 3

0

2
[ - ]cos( )  0  ,          , 

T
a k t dt T

    


     (49)

Considering the term ξ(t) = a cos(ωt) and substituting the term to Eq. (49) and solving the 
integral term, we have 

            
2 3 4,k   (50)
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So, substituting Eq. (50) into Eq. (46), we have 

                
22 2 23

,
4

a     (51)

We can obtain the following approximate solution 

             
  2cos ( ) 

3
1

4
.t a ta    (52)

 
4.2.2 Solution of case 2 using Energy Balance Method 
Variational and Hamiltonian formulations of Eq. (40) can be readily obtained as 

             
 

0

2
2 2 2 41 1 1

2 2 4

t d
t

t
J d

d

   
 

   


      
  

  

               

2

2 2 2 4 2 2 2 41 1 1 1 1

2 2 4 2 4

d
a aH

dt

              
 

  

(53)

Choosing the trial function ξ(t) = a cos(ωt), we obtain the following residual equation 

       
     2 2 2 2 2 2 2 4 4 2 2 2 41 1 1 1 1

sin cos cos 0.
2 2 4 2

( )
4

a t a t a t aR t a               (54)

If we collocate at ωt = π/4, we obtain the following result 

                
 2

1 2
31 ,4 a     (55)

We can obtain the following approximate solution 

              
  23

1cos  ( ).
4

t a ta     (56)

 
 
5. Results and discussions 
 

In this section, to illustrate and verify the accuracy of these new approximate analytical 
methods, some comparisons are shown in Table 1 and Figs. 3 to 5 for case 1 and Table 2 and Figs. 
6 to 8 for case 2.  

From Table 1 it can be observed that the maximum relative error between the IAFF results and 
EBM results is 3.5094% for large amplitude of the system (A = 100) in closed eccentrically 
circular cylindrical shell case. An excellent agreement can be seen in this table. 

The Table 2 shows the same comparison between IAFF and EBM for the simply support beam, 
the results are identical completely as it can seen form Eqs. (51) and (55). Figs. 3 and 6 show 
comparisons of the IAFF solution of ξ(t) based on time with the EBM solution. The behaviors of 
the systems are periodic. Figs. 4 and 7 represent the phase plan diagram comparisons of IAFF and 
EBM solution of (ξ(t)/dt versus ξ(t) curve) of the Eqs. (22) and (40) to show the effect of small 
parameters of the closed eccentrically circular cylindrical shell and simply support edges of beam. 
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The amplitudes of the shell and beam vibration are a function of the initial conditions. The best 
accuracies can be seen at extreme points. To have a better understanding from the behavior of the 
system and the effects of other small parameters on the frequency of the system, we consider the 
three parameters simultaneously as sensitivities analysis of frequency in Figs. 5 and 8 for both 
cases. 
Fig. 5 shows the analysis of IAFF solution for these parameters:  

(a): 1 2 30 2, 0 2, 0.5,  0.5  , 0.5a A A A        

(b): 1 2 30 2, 0.5, 0 3, 0.5, 0.5a A A A         

(c): 1 2 30 2, 0.5, 0.5, 0 3, 0.5a A A A         

(d): 1 2 30 2, 0.5, 0.5, 0.5, 0 3a A A A        
And Fig. 8 shows the same analysis of IAFF and EBM solutions for these parameters: 

(a): 1, 0 5, 1 4a       
(b): 0.5, 0 5, 1 4a       
It is completely evident that IAFF and EBM show an excellent agreement with each other and 

quickly convergent and valid for a wide range of vibration amplitudes and initial conditions as it is 
indicated in the tables. The accuracy of the results shows that the IAFF and EBM can be 
potentiality used for the analysis of strongly nonlinear oscillation problems accurately. 
 
 

Table1 Comparisons of IAFF frequencies with EBM frequencies at α = 0.5, A1 = 1, A2 = 1, A3 = 1 for case1 

Amplitude a Improved Amplitude-frequency 
Formulation ωIAFF 

Energy Balance Method ωEBM Error % 

0.1 1.0025 1.0025 0.0002 
0.5 1.0744 1.0733 0.1063 
1 1.3784 1.3663 0.8889 
5 7.5235 7.2809 3.3324 

10 15.5983 15.0759 3.4654 
20 31.5132 30.4479 3.4987 
50 79.0127 76.3349 3.5081 
100 158.0918 152.7318 3.5094 
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(II) 

Fig. 3 (Case 1) Comparison of time history response of the IAFF solution with the EBM solution for circular 
cylindrical shell  (I): a = 0.5, α = 0.5, A1 = 1, A2 = 1, A3 = 1, (II): a = 2, α = 1, A1 = 2, A2 = 0.5, A3 = 0.2 
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Fig. 4 (Case 1) Effect of various parameters on phase-plan diagram for the following parameter 
(a): A1 = 0.5, A2 = 0.5, A3 = 0.5, (b): α = 0.5, A2 = 0.5, A3 = 0.5, (c): α = 0.5, A1 = 0.5, A3 = 0.5, (d): α = 0.5, 
A1 = 0.5, A2 = 0.5 
 

(a) 0 < a < 2, 0 < α < 2, A1 = 0.5, A2 = 0.5, A3 = 0.5 (b) 0 < a < 2, α = 0.5, 0 < A1 < 3, A2 = 0.5, A3 = 0.5

Fig. 5 (Case 1) Sensitivity analysis of frequency of IAFF solution for  the above parameter cases 
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(c) 0 < a < 2, α = 0.5, A1 = 0.5, 0 < A2 < 3, A3 = 0.5 (d) 0 < a < 2, α = 0.5, A1 = 0.5, A2 = 0.5, 0 < A3 < 3 

Fig. 5 Continued 

 
         Table 2 Comparison of IAFF frequency with EBM frequency at Ω = 3, γ = 0.5 for case 2 

Amplitude a Improved Amplitude-frequency 
Formulation ωIAFF 

Energy Balance Method ωEBM 

0.1 3.0056 3.0056 
0.5 3.1375 3.1375 
1 3.5178 3.5178 
5 9.6631 9.6631 

10 18.6145 18.6145 
20 36.8646 36.8646 
50 91.9048 91.9048 
100 183.7362 183.7362 
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Fig. 6 (Case 2) Comparison of time history response of the IAFF solution with the EBM solution for simply 
support beam: (I) a = 1, Ω = 3, γ = 0.5,   (II) a = 3, Ω = 0.5, γ = 2   
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(b) 

Fig. 7 (Case 2) Effect of various parameters on phase-plan diagram for the following cases (a): a = 3, Ω = 
0.5, (b): a = 3, γ = 0.5 
 

(a): γ = 1, 0 < a < 5, 1 < Ω < 4 (b): Ω = 0.5, 0 < a < 5, 1 < γ < 4 

Fig. 8 (Case 2) Sensitivity analysis of frequency of IAFF and EBM solution for  the above parameter cases 
 
 
6. Conclusions 
 

In this work, we used applications of Improved Amplitude-Frequency Formulation (IAFF) and 
Energy Balance Method (EBM) for solving the two nonlinear oscillatory systems. The methods, 
which are proved to be powerful mathematical tools to study of nonlinear oscillators, can be found 
widely applicable in engineering and science. The results obtained from these methods have been 
compared with each other. These cases have shown that the approximate analytical solutions are in 
excellent agreement. Improved Amplitude-Frequency Formulation and Energy Balance Method 
are easy and direct procedures for determining approximations to the periodic solutions. 
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Appendix A. 
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1 22 2 2 2 2 4 4 2 2
1 1 1 4 1 3 4 1 3 4 2 6 2

4 2 2 2 4 4
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3 31 1 1
16 2 4 4 32

; 2 1 ;

1 ; ;

t B R A p p s s

A s s A s s
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   

        

     
 

R is shell radius; ρ1 is densities of rib 
The ε1 parameter characterizes the relative thickness of shell; the ε2 characterizes the ratio of 

the bending rigidities; the ε3 characterizes the ratio of the torsion and bending rigidity in 
longitudinal direction; the ε4 characterizes the ratio of the membrane rigidities; ε6related to the 
eccentricities of stringer and rings. 

Here s1 = πml−1, s2 = n and m and n are the wave numbers in the axial direction. 
 
Appendix B. 

 
24

2 0 0
14

1

2 (1 ) 2
, 1 , sin sin , ,

2

x x A
r I A

r l EI

        
   

              
 

Where x0 is the phase shift and  is the length of oscillation wave.   
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