
 
 
 
 
 
 
Structural Engineering and Mechanics, Vol. 46, No. 1 (2013) 39-51                               39 

 
 
 
 

An extremum method for bending-wrinkling predictions of 
inflated conical cantilever beam 

 

Changguo Wang1,2, Zhenyong Du1 and Huifeng Tan2a 
 

1Center for Composite Materials, Harbin Institute of Technology, Harbin, 150080 China 
2National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, 

Harbin Institute of Technology, Harbin, 150080 China 
 

(Received January 20, 2011, Revised January 12, 2013, Accepted March 6, 2013) 

 
Abstract.  An extremum method is presented to predict the wrinkling characteristics of the inflated cone in 
bending. The wrinkling factor is firstly defined so as to obtain the wrinkling condition. The initial wrinkling 
location is then determined by searching the maximum of the wrinkling factor. The critical wrinkling load is 
finally obtained by determining the ratio of the wrinkling moment versus the initial wrinkling location. The 
extremum method is proposed based on the assumption of membrane material of beam wall, and it is 
extended to consider beam wall with thin-shell material in the end. The nondimensional analyses show that 
the initial wrinkling location is closely related to the taper ratio. When the taper ratio is higher than the 
critical value, the initial wrinkles will be initiated at a different location. The nondimensional critical 
wrinkling load nonlinearly increases as the taper ratio increases firstly, and then linearly increases after the 
critical taper ratio. The critical taper ratio reflects the highest load-carrying efficiency of the inflated cone in 
bending, and it can be regarded as a measure to optimize the geometry of the inflated cone. The comparative 
analysis shows fairly good agreement between analytical and numerical results. Over the whole range of the 
comparison, the mean differences are lower than 3%. This gives confidence to use extremum method for 
bending-wrinkling analysis of inflated conical cantilever beam. 
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1. Introduction 
 

The inflated booms are used to support tents used for temporary medical facilities, disaster-
relief shelters, and military applications (Hampel et al. 1996, Quigley et al. 2003). In recent years, 
the inflated booms have received widely attentions in applications of inflatable space-based 
structures including inflatable antennas, solar sails, truss structures and inflatable wings (Jenkins 
2001, 2006, Norris and Pulliam 2009) etc. As a supported component, the inflated booms need to 
meet high load-carrying efficiency and wrinkle-free requirements. However, the inflated booms 
are typical thin-walled structures which are very easy to be wrinkled. The inflated booms subject 
to bending were found to develop short wavelength periodic ripples on the compressed side, and 
the inflated booms buckled locally and collapsed soon after the appearance of the wrinkles (Wang 
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et al. 2006, 2007, 2009b). Accurate evaluation of bending-wrinkling characteristics is important 
for better understanding the load-carrying ability of inflated booms. 

For inflated beams, bending-wrinkling behavior may be divided into problems in which the 
wall material is regarded as either a true membrane or a thin-shell, which result in two cases, that 
is, the membrane case (Stein and Hedgepeth 1961, Comer and Levy 1963, Main et al. 1994, Wang 
et al. 2008, 2009c) and the thin-shell case (Wang et al. 2009a, Wood 1958, Zender 1962, Wielgosz 
and Thomas 2002, 2004, Veldman et al. 2005, 2006a, b). The distinctions between these two cases 
are depending on whether the bending and compression stiffness of the beam wall material are 
considered or not. The wrinkling predictions using these two cases are both based on beam stress 
analysis. During beam stress analysis, three different stress states can be observed when the beam 
is bent: the taut state, the partially wrinkled state and the collapsed state. Based on the membrane 
assumption, the wrinkles will immediately occur when the beam wall material is compressed 
(Stein and Hedgepeth 1961, Main et al. 1994, Wang et al. 2008). Based on the thin-shell 
assumption, the wrinkles will occur when the compressive stress reaches a critical value, which is 
the local buckling stress. (Wang et al. 2009a, Thomas and Wielgosz 2004, Veldman et al. 2006a). 
The axial stress of inflated beam may be obtained by adding the stress of a pressurized membrane 
to the stress of an unpressurized thin-shell (Wood 1958, Zender 1962). The stress analysis based 
on the membrane assumption corresponds to the perfect model which is different from the 
experimental observations. The experimental results reveal that the collapse moment for the 
pressurized membranes is higher and should be reduced to some a smaller value by multiplying by 
a modified factor (Thomas and Wielgosz 2004, Veldman et al. 2005). Based on the thin-shell 
assumption, several different formations of the critical compressive stress (Veldman et al. 2005, 
2006a, b) may be chosen to perform the beam stress analysis. The inflated cone is regarded as the 
optimum geometry of the straight cylindrical boom, and has the larger possible load-carrying 
efficiency (Veldman 2003). Several researches on the inflated cones are mainly focused on the 
predictions on the wrinkling and collapsed moments. These predictions were also compared with 
the bending experimental results of inflated cones (Veldman et al. 2006a, b). However, little work 
has been done in study of the bending-wrinkling behaviors of the inflated cones. 

Increasing use of inflated cones in aerospace application has spurred a need in deeply and 
accurately evaluating structural properties of inflated conical beams in bending. The purpose of 
this paper is to presents an approximate formula based on beam stress analysis for accurately 
predicting bending-wrinkling characteristics of inflated beam. The nonlinear shell finite element 
numerical computations on the inflated cone are used to verify the accuracy of our approximate 
formula. The understanding of bending-wrinkling behaviors will be helpful to design a wrinkle-
free inflated beam. 
 
 
2. Beam stress analysis 
 

The inflated cone under bending is shown in Fig. 1. As shown in Fig. 1, r0 and r1 are the free-
end and the fixed-end radius of an inflated cone, respectively. α is the half cone angle. r is the 
cross-sectional radius at point A. t is the wall thickness of the inflated cone. P is the inflated 
pressure. 

When the tip transverse load F isn’t taken account, the force equilibrium of the inflated cone is 
given by 
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Fig. 1 Inflated conical cantilever beam under bending 
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Where, the subscripts 1 and 2 denote the axial and hoop coordinates, respectively. The axial stress 
σ1 is obtained as follows 

0 0
1

2

2 cos cos

r r
prdr prdr

rt rt
  


  

                            (2) 

At point A, the first and the second radius of curvature are expressed as 

1 2, / cosR R r                                 (3) 

The stress at point A can be obtained by substituting Eq. (3) and Eq. (2) into Eq. (1). 

1 2 cos

pr

t



， 2 cos

pr

t



                          (4) 

In Fig. 1, r0 is assumed to be constant. Thus, the radius of the inflated cone r can be expressed 
as a function of the free-end radius r0 and the axial coordinate z. 

0tanr z r   ( 00 z z  )                         (5) 

Here, z0 is the total height of the inflated cone. 

        0 1 0( ) cotz r r    (6)

At point A (the axial coordinate), the moment M of the inflated cone under tip transverse load F 
is obtained as 

M Fz                 (7) 
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The moment equilibrium at point A (the axial coordinate z) is then written as 

22
10
cos cos 0M r t d 


                         (8) 

Where, 1  is the axial stress resultant of the inflated cone. 
The wrinkles will be formed when the moment at point A reaches a critical value. The moment 

corresponding to the first wrinkle is defined as the wrinkling moment, Mw. 
A wrinkling factor is defined as the ratio of the moment M at point A versus the wrinkling 

moment Mw. According to the definition of the wrinkling factor, the wrinkles will occur when λ ≥ 
1, which responds to the wrinkling condition.  

1

1

wrinkling

no wrinkling


 

 
  

               (9) 

Based on the wrinkling condition (Eq.(9)), the wrinkles will be firstly formed when the 
wrinkling factor reaches its maximum. Thus, the initial wrinkling location can be indirectly 
obtained by searching the extremum (the maximum) of the wrinkling factor, which is named as the 
extremum method. 
The maximum of the wrinkling factor can be obtained and expressed in the form 

2

2
0 0

d d
   and  

dz dz
  

 
                     (10) 

 
 
3. Bending-wrinkling characteristics analysis 
 

Based on above beam stress analysis, we use membrane and thin-shell to consider the beam wall 
material, respectively, which results in two cases. During wrinkling analysis, these two cases 
correspond to different wrinkling criterions. Further, the distinction between thin-shell and 
membrane cases is only that in the former wrinkling is defined to occur at a specified maximum 
compressive stress while in the latter that maximum is taken to be zero (Stein and Hedgepeth 1961, 
Wang et al. 2008).  

The wrinkling criterion for isotropic membrane is given by 

 1

0
min

cr

membrane case

thin shell case


     




                  (11) 

The axial stress resultant of the inflated cone, 1  , may be decomposed into two parts: the stress σ1 

due to inflated pressure P and the stress 1  due to tip transverse load F.  

 1 1 1 0 cos
2 cos

pr
C

t
       


                   (12) 

C0 can be determined according to the wrinkling stress criterion (Eq. (11)). 
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 

 
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              (13) 

Further, the wrinkling moment can be obtained by substituting Eq. (13) into Eq. (8). 
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3 2
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  
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

   
                (14) 

In addition, different from prior definitions of the critical wrinkling load (Veldman et al. 2006a, 
b, Wang et al. 2008), the critical wrinkling load Fw in this paper is defined as the ratio of the 
wrinkling moment Mw versus the initial wrinkling location zw, which isn’t identically equal to the 
ratio between the wrinkling moment and the total height of the inflated cone. 
 

3.1 Membrane case 
 
For the membrane case, the wrinkling factor can be expressed as 

  
3

2

w

M Fz

M p r
 


                           (15) 

where, r = ztanα + r0. Substituting Eq. (15) into Eq. (10), we have 
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2 ( 2 tan )
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( tan )

4 [ (1 4 tan ) 3 tan ]
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 
 

                      (16) 

Solving the equality of Eq. (16), we get 

   0

1
cot

2
z r                                   (17) 

Substituting Eq. (17) into the inequality of Eq. (16), we find 

   
2

0
2

5
0

2 (cot 2 tan )
3

( )
2

d Fr

dz p r


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  


            (18) 

Given the case of r0 < r1, we obtain the condition of 0 < α < π/2. We further determine that the 
inequality d2λ/dz2 < 0 is identically satisfied. In other words, the initial wrinkling location is zw = 
r0/2 cotα for the membrane case. 

Substituting Eq. (17) into the span of axial coordinate z in Eq. (5) (0 ≤ z ≤ z0), we have r1 ≥ 1.5r0 
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with the condition of zw = r0/2 cotα. For the case r1 ≥ 1.5r0, the initial wrinkling location arises at 
the interior of the inflated cone. For the case r0 ≤ r1 ≤ 1.5r0, the initial wrinkling location zw 
obtained from Eq. (17) goes beyond the height limitation of the inflated cone (z0). For this case, 
the initial wrinkling location is determined at the fixed-end of the inflated cone, that is zw = z0. 
Specially, the initial wrinkling location of an inflated booms (r1 = r0) in bending is identical at the 
fixed-end. 

The initial wrinkling location can be interpreted by using a concept of the wrinkling hinges. We 
find that one can make an analogy between plastic hinges and wrinkled regions which arise in 
inflated beams in bending. When the plasticity appears at the interior of a beam, the load, which 
gives the beginning of plasticity, seems to the wrinkling load of an inflated beam. When the tip 
load is increased, the wrinkled region will spreads around the hoop cross-section. This process 
isn’t over until the inflated beam is entirely collapsed. Thus the initial wrinkling location can be 
regarded as a wrinkling hinge, where the moment is the wrinkling moment. 

Next we have the critical wrinkling load 
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1 0
0 0
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0 1 0
0 0

27
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      




              (19) 

 
3.2 Thin-shell case 
 

In using the “thin-shell model”, the material is considered as a thin-shell with a small but non-
zero bending stiffness. The wrinkles are formed and treated as the local buckling ripples after the 
minimum principal stress reaches the critical compressive stress σcr. The thin-shell axial stress 
resultant and the wrinkling moment may be obtained from Eqs. (13) and (14). 

The thin-shell wrinkling condition has the same definition formation as the membrane case. 
Then we have the thin-shell wrinkling factor 

  
3 2

2

2 cosw cr

M Fz

M p r r t
 




   
                    (20) 

Based on the idea of the extremum method, we need obtain the maximum of the wrinkling 
factor to further determine the initial wrinkling location, wz . Based upon the extremum condition, 

Eq.(10), and the thin-shell wrinkling factor, Eq.(20), we have  

  

 

 
2

2 2 2
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2 tan 2 tan 2 tan
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F A Bz
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A
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


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

  
               (21) 

Here, A = pπr3 + 2πr2tσcrcosα, C = B' = A″. 
Under the assumption of infinite inflated pressure, P, solving the equality of Eq. (21), we have  
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0 cos
cot

2 2
crr t

z
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 
  
 

                              (22) 

Substituting Eq. (22) in the in equation of Eq. (21), we find that the in equation of Eq. (21) can 
also be identically satisfied when 0 < α < π/2. Thus we obtain the thin-shell initial wrinkling 

location 0 cos
cot

2 2
cr

w

r t
z

p

 
  
 

   . 

Substituting Eq. (22) in Eq. (5), we also have the thin-shell initial wrinkling location 
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 
  
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    when 1 0
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2 2
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 

 
. For this case, the initial wrinkling 

location occurs at the interior of the inflated cone. When 0 1 0

cos3

2 2
crtr r r

p
  

 
, we obtain 

the initial wrinkling location at the fixed-end of the inflated cone, which responds to the case of zw 
= z0. For the case of the inflated thin-shell boom, r0 = r1, the initial wrinkling location is also at its 
fixed-end identically. 

In order to deeply understand the distribution of the initial wrinkling location, we perform a 
nondimensional analysis of 0wz z z  versus 1 0r r r . Combining Eq. (6) with Eq. (22), we 

have 

    
1

2( 1)
z

r







                                 (23) 

Here, we give 
0

coscrt

pr

  . 

We further analyze the nondimensional relationship of z  versus r , and plot it in Fig. 2. 

3
1 1

2
1 3

2( 1) 2

r

z
r
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      




 

           ( )

     ( )
                      (24) 

As shown in Fig. 2, the initial wrinkles occur at the fixed-end ( z = 1 or zw = z0) of the inflated 
cone when 1 < r  < 3− ξ/2. When r  ≥ 3− ξ/2, the initial wrinkling location is changed from the 
interior to the free-end of the inflated cone with r  increases. Thus the taper ratio r  = 3− ξ/2 is a 
turning point for the initial wrinkling location. When ξ = 0, the thin-shell model is simplified as the 
membrane model. For the membrane model, r = 1.5 is the turning point. 

For the thin-shell critical wrinkling load, we use the same definition as membrane case in this 

section. In addition, we use the nondimensional formations of F = 2Fwz0/πp 3
0r  versus r =r1/r0  

to express the thin-shell critical wrinkling load as follows and plot it in Fig. 3. 
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Fig. 2 Nondimensional relationship z  versus r  
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Fig. 3 Nondimensional relationship F  versus r  
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As shown in Fig. 3, F  is nonlinear when 1 ≤ r < 3−ξ/2, it then linearly increases as r  
increases when r ≥ 3−ξ/2. 
 
 
4. Structural efficiency and load-carrying efficiency 
 

In Fig. 2 and Fig. 3, the essential meaning of the turning points can be interpreted based on the 
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structural efficiency. The structural efficiency is defined as a ratio of the nondimensional critical 
wrinkling load versus the nondimensional structural weight, and it can be used to reflect the 
bending capacity per unit structural weight. 

Take membrane case as an example, the structural efficiency is defined as 

 100
F

%
W

                                  (26) 

Where, F is the nondimensional critical wrinkling load of membrane case, and it can be given by 

  
 

3 1 1.5
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r r
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 

 

       ( )

    ( )
                       (27) 

W (in Eq. (26)) is the nondimensional structural weight, which is expressed as 

  
   2

0

icA r t
W A r

r t
 



                            (28) 

Here, ρ is the density of the membrane. Aic( r ) is the surface area of the inflated cone. )(rA  is 
the nondimensional structural surface area, which can be expressed as a function of the taper ratio. 

       
1 222 21 1 1cA r r r z r                        (29) 

Where, zc = z0/r0 is the nondimensional structural height.  
Based on Eq. (27), Eq. (28) and Eq. (29), we then have the structural efficiency in the form 
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      ( )
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
  

         
  

        

  (30) 

For a given inflated cone, the taper ratio r = r1/r0 is assumed as a variable parameter, and the 
other parameters are assumed to be constant. Considered a inflated cone, with 1m height (z0), 
2.510-2m free-end radius (r0), 1104Pa inflated pressure (P), 3109Pa Elastic modulus (E) of 
wall material, 0.34 Poisson ratio (v), and 2.510-5m wall thickness (t), we then obtain the 
structural efficiency η and plot it in Fig. 4 with increasing taper ratios r . 

It can be seen from Fig. 4 that the structural efficiency increases as the taper ratio increases. It 
shows that the structural bending capacity can be improved by increasing taper ratio. However, we 
still find a turning point occurs at r = 1.5, after where the curvature has a reversely change. In 
order to deeply understand the physical essential of this turning point, we perform a further study 
on the relationship between the structural efficiency and the taper ratio. We defined a concept of 
the load-carrying efficiency which is the ratio of the incremental structural efficiency versus the 
incremental taper ratio. The load-carrying efficiency is written as  
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r

 


                                    (31) 

The load-carrying efficiency reflects the influence of the structural geometry on the structural 
load-carrying ability. It can be regarded as a measure to optimize the geometry of the inflated cone 
in bending. Fig. 5 depicts a plot of the load-carrying efficiency versus the taper ratio. 

Based on Fig. 5, the load-carrying efficiency increases firstly, and then decreases as the taper 
ratio increases. The load-carrying efficiency reaches the maximum when the taper ratio is equal to 
1.5. It reveals that the structural load-carrying ability can not be infinitely improved by increasing 
the taper ratio, although a higher taper ratio is of benefit to the structural efficiency (Fig. 4). For 
the bending case, an inflated cone with r = 1.5 is an optimized geometry which can be designed 
to behave the highest load-carrying ability. 
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5. Numerical verification 
 

A numerical simulation is used to verify the validation of proposed extremum method for the 
bending-wrinkling predictions of the inflated cone. In this simulation, the structural and material 
parameters of the inflated cone are the same as those described in SECTION 4. Here the fixed-end 
radius is given as 1r =510-2m, which is twice of the free-end radius (i.e., r = 2). The inflated 

cone is modeled by using 3200 ANSYS nonlinear SHELL181 elements among which there are 32 
hoop elements and 100 axial elements. The Newton-Raphson iteration is used to perform the 
bending-wrinkling computation.  

Here, the minimum principal stress is used to determine the critical wrinkling load and the 
initial wrinkling location. Here the critical wrinkling load is determined when the minimum 
principal stress closely reaches the critical compressive stress. The first wrinkle occurs at the 
location where the minimum principal stress reaches the absolute maximum, as shown in Fig. 6.  
 

 

Fig. 6 Initial wrinkling location of inflated cone in bending 
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Fig. 7 Comparison of the initial wrinkling location Fig. 8 Comparison of the critical wrinkling load 
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According to the numerical results, the critical wrinkling load is 1.73N, and the initial 
wrinkling location is 0.51m far from the free-end of the inflated cone. In our predictions, r1 = 2r0, 
and ξ = 0.04. Based on Eq. (25), the predictive value of the critical wrinkling load is 1.75N. The 
initial wrinkling location is 0.48m which is obtained from Eq. (24). These results show that the 
proposed prediction formula based on beam stress analysis agrees very well with nonlinear shell 
finite element numerical computations. 

In order to obtain the further verifications, five cases of the taper ratio are used to compare the 
numerical results with our predictions on the critical wrinkling load and the initial wrinkling 
location. These comparisons are shown in Fig. 7 and Fig. 8, respectively. 

Based on Fig. 7, the mean difference in the initial wrinkling location between the simulated and 
the predicted results is less than 3%. In Fig. 8, the mean difference in the critical wrinkling load is 
less than 2%. These comparisons show the validation and accuracy of proposed extremum method 
for the bending-wrinkling predictions of the inflated cone. 

 
 
6. Conclusions 
 

The extremum method presented in this paper can be accurately used to predict the bending-
wrinkling characteristics of the inflated conical cantilever beam. The predictions agree ver well 
with nonlinear shell finite element numerical computations, which show the validation of 
extremum method. Based on these results, there important conclusions can be drawn as follows. 

• The extremum method is not only suitable for the membrane inflated beam, but can also be 
used by the thin-shell inflated beam. When the critical compressive stress is considered, the 
extremum method is extended from the membrane case to the thin-shell case. The initial wrinkling 
location can be determined by searching the maximum of the wrinkling factor. The initial 
wrinkling location is changed from the interior to the free-end of the inflated cone with r  
increases. The taper ratio r  = 3−ξ/2 is a turning point for the initial wrinkling location. In 
addition, the inflated straight boom is a special case of the inflated cone with case r1 = r0. For 
inflated straight booms, the initial wrinkling location occurs at the fixed-end identically. 

• The critical wrinkling load is defined as the ratio of the wrinkling moment versus the initial 
wrinkling location, which can not be directly determined by the ratio of the wrinkling moment 
versus the total height of the inflated cone. The initial wrinkling location equals to the total height 
of the inflated cones, if and only if in the case of 1 ≤ r  < 3−ξ/2. 

• For membrane inflated beam, the critical taper ratio r = 1.5 corresponds to the highest load-
carrying efficiency, which is defined as the ratio of the incremental structural efficiency versus the 
incremental taper ratio. The load-carrying efficiency increases firstly, and then decreases as the 
taper ratio increases. It reveals that an inflated cone with the critical taper ratio is an optimized 
geometry, which can be designed to behave the highest load-carrying ability. 
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