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Abstract.   In this study, the modified finite element- transfer matrix methods are proposed for free vibration 
analysis of asymmetric structures, the bearing system of which consists of shear wall-frames. In the study, a 
multi-storey structure is divided into as many elements as the number of storeys and storey masses are 
influenced as separated at alignments of storeys. The shear walls and frames are assumed to be flexural and 
shear cantilever beam structures. The storey stiffness matrix is obtained by formulating the governing 
equation at the center of mass for the shear walls and the frames in the i.th floor. The system transfer matrix 
is constructed in the dimension of 6×6 by transforming the obtained stiffness matrix. Thus, the dimension, 
which is 12n×12n in classical finite elements, is reduced to the dimension of 6×6. To study the suitability of 
the method, the results are assessed by solving two examples taken from the literature. 
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1. Introduction 
 

 It is observed in the studies conducted on past earthquakes that the buildings having even a 
small amount of shear wall survive with little damage. The structural performance analysis of 
buildings subject to free vibrations can clearly identify the strong and weak aspects of building 
structures. There are many methods proposed for static and dynamic analysis of structures, the 
bearing system of which employs shear wall-frames. 

One of them is the method in which the continuum system calculation model is used. The 
continuum system calculation model is frequently used in particular at the pre-dimensioning stage 
and there exists many studies carried out intended for the method in the literature  (Rosman 1964, 
Heidebrecht and Stafford Smith 1973, Basu et al. 1979, Bilyap 1979, Balendra et al. 1984, 
Stafford Smith and Crowe 1986,  Nollet and Stafford Smith 1993, Zalka 1994, Li and Choo 1996, 
Toutanji 1997, Miranda 1999,  Mancini and Savassi 1999, Hoenderkamp and Snijder 2000, Kuang 
and Ng 2000, Ng and Kuang 2000, Wang et al. 2000, Hoenderkamp 2001,  Swaddiwudhipong et 
al. 2001, Zalka 2001, Hoenderkamp 2002, Miranda and Reyes 2002, Zalka 2002, Potzta and 
Kollar 2003, Zalka 2003, Aksogan et al. 2003, Tarjan and Kollar 2004, Savassi and Mancini 2004, 
Boutin et al. 2005, Miranda and Taghavi 2005, Reinoso and Miranda 2005, Taghavi and Miranda 
2005, Georgoussis 2006, Michel et al. 2006, Rafezy et al. 2007, Kaviani et al. 2008, Rafezy and 
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Howson 2008, Laier 2008, Meftah and Tounsi 2008, Lee et al. 2008, Bozdogan 2009, Savassi and 
Mancini 2009, Kuang and Ng 2009, Zalka 2009, Yang et al. 2010, Rahgozar et al. 2010, 
Malekinejad and Rahgozar 2011a, b, Kazaz and Gulkan 2012, Bozdogan and Ozturk 2012, 
Wdowicki and Wdowicka 2012, Tekeli et al. 2012, Jahanshahia and Rahgozar 2012). Ng and 
Kuang (2000) recommended a method for dynamic analysis of structures, the bearing system of 
which consists of shear wall-frames. In this study, the angular frequencies are computed by 
solving the governing differential equations which are formulated at the the center of bending 
rigidity idealizing the multi-storey structure as a constant system. It is also assumed that the 
structure attributes are fixed throughout the height of structure and eccentricity between the center 
of shear rigidity and the center of bending rigidity is at negligible levels. Rafezy and Howson 
(2008) obtain the governing differential equations at the center of bending stiffness for the 
vibration analysis of structures which consist of shear wall-frames and construct the storey 
dynamic stiffness matrix by solving the differential equation system. The dynamic stiffness matrix 
method is used and the mass of storeys is assumed to be disrubuted uniformly. Bozdogan and 
Ozturk (2012) suggested transfer matrix method for free vibration analysis of asymmetric wall-
frame structures. This study allows for step changes properties along the height of structures but 
eccentricity between the center of shear rigidity and the center of bending rigidity are ignored. 

In our study, the modified finite element- transfer matrix is proposed for free vibration analysis 
of asymmetric structures the bearing system of which consists of shear wall-frames. The storey 
masses are applied at the alignments of the storeys in the proposed method.  In the study, with a 
rigid diaphragm assumption, the shear walls and the frames are treated as flexural and shear 
cantilever beam structures respectively and the contribution of bending on the shear walls, the 
local bending on the frames and axial deformations on the columns are ignored. 
 
 
2.  Physical model and method 
 

Fig. 1 shows a typical floor plan of asymmetric, three dimensional wall-frame structures (Ng 
and Kuang 2000). If shear deformations on the wall and the axial deformations on columns and 
beams are ignored, the wall-frame structures exhibit the shear- flexure-torsion coupled beam 
behaviour. In the method, first of all, the storey stiffness matrices are obtained at the center of 
mass and then the element stiffness matrix is formulated for the i. storey by adding these matrices. 
Then, the system matrix is constructed using the resulting storey stiffness matrix by means of the 
known transformations utilized in the literature.  The frequency equation is formulated using the 
boundary conditions. 

 
 

3.  Storey stiffness matrix 
 
3.1 Storey stiffness matrix of shear wall 

 
Under horizontal excitations, the governing equations of the ith storey for shear walls can be 

written as 
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where ui  and vi are the lateral deflections of the geometric center, respectively, θi is the torsional 
rotation of  the floor plan about geometric center at the given height, zi is the vertical axis of each 
storey. 
(EI)xi and (EI)yi  are the equivalent flexural stiffness of the storey for walls in x and y directions 
and can be calculated as follows (Ng and Kuang 2000, Rafezy and Howson 2008) 
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 (EI)wi are the warping stiffness of ith storey and can be calculated as follows (Ng and Kuang 2000) 

(EI)wi =  
j

jyi,
2

cjjxi,
2

cj ](EI))xx((EI))yy[(                                        (5) 

where jy  and jx   are the coordinates at the location of the geometric center of the j-th bent at i-th 

storey in coordinate system ( jy , jx ). 

where yc and xc represent the distance from the geometric center to flexural center and can be 
calculated as follows (Ng and Kuang 2000, Rafezy and Howson 2008) 

 

 
Fig. 1 Typical wall-frame system 
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occ yyy                    occ xxx                                      (6, 7) 

oy  and ox  are  the  coordinate of  flexural center and can be calculated as follows  (Ng and Kuang 
2000 ) 
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When Eqs. (1), (2) and (3) are solved with respect to the zi, ui(zi) and vi(zi) and θi(zi) can be 
obtained as follows 
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where c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12 are integral constants. 
By using Eqs. (10), (11) and (12), the rotation angles in x and y direction (ui’, vi’), the rate of 

twist (θi’), bending Moments in x and y directions (Mxi, Myi) and bi-moment (Mwi), shear forces in 
x and y direction (Vxi, Vyi) and torque (Ti) for i.th storey can be obtained as follows 
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   For zi = 0 and zi = hi, using Eqs. (10), (11), (12), (13), (14) and (15) the following matrix 
equation can be written 
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   For zi = 0 and zi = hi, using Eqs. (16), (17), (18), (19), (20) and (21) the following matrix 
equation can be written  
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(23)

When vector c is solved by implementing Eq. (22) and substituted in Eq. (23), then Eq. (24) would 
be obtained. 
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kwi represents the storey stiffness matrix of shear walls.  
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   3.2 Storey stiffness matrix of frame 
 
Under the horizontal excitation governing equations of the ith  storey for frame can be written as 
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where ui  and vi are the lateral deflections of the geometric center, respectively, θi is the torsional 
rotation of  the floor plans about geometric center at the given height, zi is the vertical axis of each 
storey. 
where ys, xs represent the distance from the geometric center to shear rigidity  center and can be 
calculated as follows (Rafezy et al. 2007, Kuang and Ng 2009) 

css yyy                                                                (28) 

css xxx                                                                (29) 

sy  and sx  are the coordinates of shear rigidity center and can be calculated as follows (Kuang and 
Ng 2009) 
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 (GA)xj and (GA)yj  are the equivalent shear rigidity of the storey for framework in x and y 
directions. For frame elements which consists of n columns and n-1 beams, GA can be calculated 
as follows (Baikov and Sigalov 1983, Stafford Smith and Crowe 1986) 
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where ∑Ic/hi  represents the sum of moments of inertia of the columns per unit height in ith  storey 
of frame j, and ∑Ig/l  represents the sum of moments of inertia of each beam per unit span across 
one floor of frame j.  
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For ith storey,  j framework in x direction and m framework in y direction  (GA)xi and (GA)yi can 
be calculated as follows 





m

1t
txi GAGA )()(                                                     (33) 





m

1t
tyi GAGA )()(                                                     (34) 

(GJ)i are the St. Venant torsion stiffness of  ith storey and can be calculates as follows (Kuang and 
Ng 2009) 

 
j

yjcjxjcji GAxxGAyyGJ ])()()()[()( 22                                 (35) 

where jy  and jx  are the coordinates at the location of the geometric center of the j-th bent at i-th 

storey in coordinate system ( jy , jx ). 

When Eqs. (25) ,(26) and (27) are solved with respect to the zi, ui(zi)  and vi(zi) and θi(zi) can be 
obtained as follows 

iii zcczu 21)(                                                      (36) 

iii zcczv 43)(                                                      (37) 

iii zccz 65)(                                                      (38) 

where c1, c2, c3, c4, c5, and c6    are integral constants. 
For zi =0 and zi =hi, using Eqs. (36), (37) and (38) the following matrix equation can be written 
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By using Eqs. (36), (37) and (38), the shear force in x and y direction, and torsion moment can be 
obtained as follows 

6
)(

2
)()()()( c

s
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xi
GAc
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GA

i
dz

i
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GA

i
dz

i
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V 


                (40) 

 6csxyiGA4cyiGA
idz
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cxyiGA
idz
idv

yiGAyiV )()()()( 


               (41) 
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idz
id

i
)GJ(

2
idz

idv

c
x

idz
idu

c
y

xi
)GA()

i
z(

ti
M


 

6
c)GJ(

4
c

s
x

yi
)GA(

2
c

s
y

xi
)GA(                                   (42) 

For zi = 0 and zi = hi, using Eqs. (40), (41) and (42) the following matrix equation can be 
written 




































































































 













6

5

4

3

2

1

*

6

5

4

3

2

1

*

00

- 00

00

 000

s
x000

00

)(

)(

)0(

0

00

00

0

00

)(

)0(
)0(

c

c

c

c

c

c

i
B

c

c

c

c

c

c

i
GJ

yi
GA

s
x

xi
GA

s
y

yi
GA

s
x

yi
GA

xi
GA

s
y

xi
GA

i
GJ

yi
GA

s
x

xi
GA

s
y

yi
GA

yi
GA

xi
GA

s
y

xi
GA

i
h

ti
M

i
h

yi
V

ti
M

ixi

yi

xi

hV

V
V

               (43) 

When vector c is solved by implementing Eq. (39) and substituted in Eq. (43), then Eq. (44) would 
be obtained. 

 

(44)

In order add the walls and frames stiffness matrices, the frames matrix   must be enlarged The 
storey stiffness matrix of frame can be obtained as 
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Where t are the transformation matrix and can be calculated as 
 

(46)

 
3.3 Total storey stiffness matrix 
 
Storey stiffness matrix pertaining to shear wall-frame system can be written as below as the 

sum of  stiffness matrices of shear wall and frames.  

fiwii kkk                                                       (47) 

 
 
4. Transfer relationship of modified finite element transfer matrix method 
 

Numerical methods are more suitable for the solution of the initial value problems than the 
boundary value problems (Xue 1994, Choi 2003, Rong et al. 2011). For this reason, the 
generalized stiffness equation, which relates the force vector to the displacement vector on the 
output end of the i.th strip, is introduced by Xue and Choi (Xue 1994, Choi 2003, Rong et al. 
2011, Ozturk et al. 2012). 

)1()1,()1,(   idTF iiiii                                                 (48) 

For  ith storey the following matrix equation can be written (Rong et al. 2011) 
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Where Si is the dynamic stiffness matrix of ith  storey and can be calculated as 
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i
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S *

2                                                         (50) 

ki is the i.th storey stiffness matrix and Mi is the mass matrix of  ith  storey and can be calculated as 
follows 
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where, mi is the mass of ith storey and rmi is the inertial radius of gyration of the ith  storey. 
 Matrix Eq. (49) can be written in two matrix equation as 
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Using Eq. (48), Eq. (52) can be written as 
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Eq. (54) can  yield 
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Combining Eqs. (48) and (53) the following equation can be obtained 
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Combining Eqs. (55) and (56) can yield  
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From Eq. (57), the following recursion relationship can be obtained  
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2)(        )( 4213

1
1  
 issTssT i,i,ii,i,i                                        (58) 

At the base, the lateral deflections of the geometric center (u, v),  the torsional rotation (θi), the 
rotation angles in x and y direction (ui’, vi’) , the rate of twist (θi’) are zero. According to this 
boundary conditions 
1)  ubase = 0  2)  vbase = 0     3) θbase = 0  4)  u’base = 0   5)  v’base = 0     6) θ’base = 0   
For the first segment (storey), applying the boundary condition at the base, T1 can be obtained as 
follows 

T1 = s4,i                                                          (59) 

For the last segment Eq. (48) can be written as 

F(n,n+1) = Tndn,n+1                                                (60) 

The size of system matrix (Tn) is 6×6. In the classical finite element when applying the boundary 
condition the dimension of   system matrix is equal the 3×storey number.  

In the top of structures the shear force in x and y direction, the bending moment in x and y 
direction, warping torsion and St. Venant torsion moment should be zero. According to this 
boundary conditions, the eigenfrequency equation can be obtained: 

  0nT                                                             (61) 

The values of ω which set the determinant to zero, are the angular frequencies of the building 
 
 
5.  Numerical examples 
 

A numerical example has been solved by a program written in MATLAB to verify the 
proposed method in this part of the study. The results are then compared with those given in the 
literature.  

 
5.1 Numerical example 1 
 
A typical asymmetric wall-frame structure (Fig. 1) is analyzed as an example. The structure has 

30 storeys with total height H = 90 m, and floor dimensions L = 42 m and B = 24 m. The structure 
consists of eight walls of 0.25-m thick and the multibent frames. An elastic modulus E=20×106 
kN/m2 and the density of floor slabs ρ = 2.350 kg/m3. The structural properties are given in Table 
1. The natural frequencies calculated by this method are compared with the results in the reference 
(Ng and Kuang 2000). The results are presented in Table 2, Table 3 and Table 4. 

In the method presented in the literature, the storey masses are considered as uniformly 
distubuted and the eccentricity between the center of shear rigidity and bending rigidity is not 
taken into account in the calculations. On the other hand, in this study, storey masses are assumed 
as separated at storey alignments in the presented method and the eccentricity between the center 
of shear rigidity and the center of mass is also taken into account in the calculations. Therefore, the 
results obtained by the method presented in this article yielded much closer results to the results 
obtained by ETABS. 
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                        Table 1 Structural property of asymmetric wall-frame structures (Example 1) 

Structural Properties

(EI)x 990.70×106 kNm2 
(EI)y 574.53×106 kNm2 
(EI)w 356.940×109 kNm4 
(GA)x 274.29×103 kN 
(GA)y 297.14×103 kN 
(GJ) 77.633×106 kNm2 
xc 7.81 m 
yc −7.63 m 
xs 6.57 m 
ys −5.32 m 
m 355.41 kNsn2/m 
rm 13.964 m 

 
 
    Table 2 Comparison of first three natural frequencies in Example 1 (rd/s) 

Natural frequencies of the second three modes (rd/s) 

Proposed Method Ng and Kuang ETABS (Ng and Kuang 2000)
ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3 

1.199 1.548 2.323 1.163 1.587 2.437 1.197 1.539 2.299 
 
 
    Table 3 Comparison of second three natural frequencies in Example 1 (rd/s) 

Natural frequencies of the second three modes (rd/s) 

Proposed Method Ng and Kuang ETABS (Ng and Kuang 2000)
ω4 ω5 ω6 ω4 ω5 ω6 ω4 ω5 ω6 

5.694 7.430 11.888 5.799 7.655 12.348 5.898 7.313 11.642 
 
 
    Table 4 Comparison of third three natural frequencies in Example 1 (rd/s) 

Natural frequencies of the second three modes (rd/s) 

Proposed Method Ng and Kuang ETABS (Ng and Kuang 2000)
ω7 ω8 ω9 ω7 ω8 ω9 ω7 ω8 ω9 

14.898 19.648 28.705 15.317 20.265 33.108 14.775 19.455 31.350 
 
 

5.1 Numerical example 2  
 

A typical asymmetric 10 storeys wall-frame structure (Fig. 2) is analyzed as an example. The 
structural properties are given in Table 5. The natural frequencies calculated by this method are 
compared with the results in the reference (Rafezy and Howson 2008). The results are presented in 
Table 6. 
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              Table 5 Structural property of asymmetric wall-frame structures (Example 2) 

Structural Properties 

(EI)x 91.13×106 kNm2 
(EI)y 64×106 kNm2 
(EI)w 28.114×109 kNm4 
(GA)x 564.7×103 kN 
(GA)y 517.6×103 kN 
(GJ) 63.289×106 kNm2 
xc 6 m 
yc 3 m 
xs 2.727 m 
ys 2.5 m 
m 237.8 kNsn2/m 
rm 11.619 m 

 
 Table 6 Comparison of  frequencies (Hz) in Example 2 

Frequency No Proposed Method Rafezy and Howson ETABS (Rafezy and Howson 2008) 

1 0.8602 0.9337 0.8703 
2 1.0106 1.1085 1.0283 
3 1.2924 1.4082 1.2981 

 
 
6. Conclusions 
 

In this article, a method is proposed for determining free vibration periods of structures, the 
bearing system of which contains shear wall-frames. In this method, first, the storey stiffness 
matrix is obtained summing up the stiffness matrices of shear walls and frames and then the 
system transfer matrix is constructed by means of the calculated storey stiffness matrices and a 

4*6=24 m 4.5  1.5  1.5  4.5

B
=

3*
6=

18
  

2 
2

Fig. 2 Wall frame system (Example 2) 
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widely used transformation method in the literature. The angular frequencies are computed by 
applying the boundary conditions in the system transfer matrix and formulating the frequency 
equation. 

The results are assessed by solving the samples taken from the literature to justify the 
suitability of the method at the end of the study. The assessment suggests that the results of 
presented method are closer to the results obtained by ETABS in comparison to the results 
obtained by other methods proposed in the literature. The presented method calculates the angular 
frequencies quite fast and can be easily programmed due to the fact that it predicates on the 
transfer matrix. The dimension which is 12n×12n in classical finite elements, is reduced to 6×6. 
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