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Abstract.  In this paper, a topology optimization method based on the element independent nodal density 
(EIND) is developed for continuum solids with multiple load cases and multiple constraints. The 
optimization problem is formulated as minimizing the volume subject to displacement constraints. Nodal 
densities of the finite element mesh are used as the design variables. The nodal densities are interpolated into 
any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without 
using additional constraints (such as the filtering technique), mesh-independent, checkerboard-free, distinct 
optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the 
topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) 
method and a dual programming optimization algorithm. The computational efficiency is greatly improved 
by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of 
parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the 
developed techniques. 
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1. Introduction 
 

Structural optimization seeks to achieve the best performance for a structure while satisfying 

various constraints such as given displacements. The types of structural optimization may be 

classified into three categories, i.e., size, shape and topology optimization (Lee 2007, Lee and Park 

2011). Compared with other types of structural optimization, topology optimization of continuum 

structures is the most challenging technically but the most rewarding economically (Lee et al. 

2012). 

Topology optimization can greatly enhance the performance of structures for many engineering 

application. Starting with the landmark paper of Bendsøe and Kikuchi (1988), numerical methods 
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for topology optimization of continuum structures have been investigated extensively. Most of 

these methods are based on finite element analysis (FEA) where the design domain is divided into 

a fine mesh of finite elements. The most popular methods for topology optimization include the 

homogenization design method (HDM) (Bendsøe and Kikuchi 1988), the solid isotropic material 

with penalty (SIMP) method (Bendsoe 1989, Rozvany et al. 1992, Yang and Chuang 1994, 

Rozvany 2001), the evolutionary structural optimization (BESO) method  (Xie and Steven 1993, 

Xie and Steven 1997) and its later version, the bi-directional ESO (Huang and Xie 2010), and the 

level set method (Sethian and Wiegmann 2000, Wang et al. 2003, Rong and Liang 2008). 

In these methods, the elements within the design domain are used for discretizing both the 

material distribution and the displacement fields. Elemental densities which are assumed uniform 

within each element are taken as design variables. The element-wise topology optimization 

performed by these methods exhibits various numerical problems, such as grey-scale, 

checkerboard pattern and mesh-dependency. 

Diaz and Sigmund (1995) discussed the reasons for the formation of checkerboard patterns and 

demonstrated that solid and void materials arranged in element-wise checkerboard patterns are 

given artificial stiffness. Sigmund and Petersson (1998) discussed many of the numerical 

instability problems encountered in topology optimization. The usage of higher order finite 

elements, the imposition of a perimeter constraint and spatial filtering techniques are proved to be 

effective in suppressing the numerical instabilities. Filtering techniques such those proposed by 

Sigmund and Petersson (1998), Swan and Kosaka (1997), Huang and Xie (2007) are widely used 

due to its simplicity. However, the resulting optimal topologies highly depended on the filtering 

characteristics. 

In order to overcome the numerical instability and to ensure a clear and smooth optimal 

topology, a topology optimization method based on nodal design variables is developed. An 

essential issue for a topology optimization approach is how to construct the material density field 

using the continuous values of the density design variables. In some studies, conventional 

displacement shape functions have been used to interpolate the nodal density values to the 

element-wise material density distribution (Carbonari et al. 2004, Matsui and Terada 2004, 

Rahmatalla and Swan 2004, Paulino and Le 2009). However, these approaches are restricted to the 

case of bi-linear elements, since higher-order finite element (e.g., 8-node quadrilateral element) 

shape functions possess no range-restricted property. Poulsen (2002) used wavelet basis functions 

to interpolate the nodal design variables and achieved designs which are nearly free of 

checkerboard and one-node connected hinge. 

In the above mentioned interpolation scheme, the nodal design variables are converted to 

element-wise constant densities when evaluating elemental stiffness matrices. The approaches can 

successfully achieve optimal topologies with non-smooth contour. However, Topology 

optimization methods based on continuous distribution of material densities can overcome 

checkerboard patterns and obtain smooth topology by virtue of the continuous approximation. The 

basic idea is to construct the continuous density field from the design variables within the whole 

design domain rather than within each element through the interpolation scheme. Jog and Haber 

(1996) found both the Q4/U and Q4/Q4 implementations to be unstable, even with the Q9/U and 

Q8/U implementations, and introduced the interpolation with control parameters. Matsui and 

Terada (2004) presented a so-called CAMD (continuous approximation of material distribution) 

model into the homogenization topology optimization method. Rahmatalla and Swan (2004) 

proposed a Q4/Q4 implementation of the SIMP method, in which the checkerboard patterns can be 

effectively avoided. Meanwhile, a new problem, namely the so-called “islanding” phenomenon, 
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was observed. Kang and Wang (2011) presented a non-local density interpolation method so that 

the “islanding” phenomenon can be avoided. 

In many topology optimization references, the compliance is taken as the objective function, 

and structural volume is treated as a constraint. But in engineering practice, the final volume is 

often unpredictable. Most real structures are subjected to different loads at different times. This is 

referred to as multiple load cases. An optimal topology for multiple loads is much safer if the 

loading conditions are not precisely known or subject to change. So a topology optimization 

method of the element independent nodal design variables is developed for continuum solids with 

multiple load cases and multiple constraints in this paper. This paper applies the developed method 

to the topology optimization of continuum solids with the objective of minimizing the volume 

subject to displacement constraints.  

 

 

2. Nodal design variables and the interpolation scheme 
 

In continuous formulations of topology optimization problems, elemental densities are defined 

as the design variables and a penalty is applied to the design variable field, i.e. as in the so-called 

“power law approach” or density distribution method. However, element independent nodal 

densities are taken as the design variables of the topology optimization problem in this paper. The 

densities are distributed as point densities within the whole design domain. Element density is not 

constant so that the density field must be determined to obtain structural stiffness etc. properties. 

Here, Shepard interpolation scheme is adopted to obtain the density field. Thus, the relative 

density of any point must be interpolated by an interpolation scheme.  

 

2.1 The influence domain and node identifications inside it 
 

In order to determine the relative density of any point x in the design domain, the influence 

domain of this point and corresponding nodes need to be determined. As proposed by Guest et al. 

(2004), Kang and Wang (2011), the scale parameter rmin is set to identify the nodes that influence 

the density of point x，as shown in Fig. 1(a). Nodes are included in the influence domain if they are 

located within a distance rmin of the point x. This can be visualized by drawing a circle (or sphere in 

3D cases) of radius rmin centered at the point x, thus generating the circular (or spherical) 

sub-domain x . Nodes located inside Ω
x
 contribute to the computation of density ρ(x) of point x. 

As the mesh is refined, rmin and consequently Ω
x
 do not change. The only difference between the 

two meshes is the number of nodes located inside Ω
x
 and included in the interpolation function, as 

shown in Fig. 1(b). This is essential to generating mesh-independent solutions. 

 

2.2 Shepard interpolation scheme 
 

Interpolation will provide continuum of density field and mesh-independent solutions, so as to 

alleviate numerical instability and checkerboard effects (Diaz and Sigmund 1995). In 

implementing continuum structural topology optimization formulations, many functions are 

available to interpolate nodal density onto the points inside the element space—for example, the 

standard C
0
 shape functions used in the finite element method. However, each node’s shape 

function influences only the elements connected to that node. Mesh-independent solutions cannot 

be obtained if interpolation functions are influenced by mesh size. The scale parameter rmin should 
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be based on a physical length scale which does not change with mesh refinement. 

In this study, Shepard (Shepard 1968, Brodlie et al. 2005, Kang and Wang 2011) interpolation 

method is used to achieve the mesh-independency effect. Let ρi(i = 1, 2, …, n) denote a set of 

density of nodes inside Ω
x
 centered at the point x = (X, Y, Z), where (X, Y, Z) define the location of 

the point x in the Cartesian coordinate system. Thus the relative density at point x is calculated by 

the nodal densities inside the influence domain Ω
x
 with Shepard interpolation method as. 
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where Sx is the set of design variables whose corresponding nodes are located within the influence 

domain Ω
x
 of point x, and ρi is the density value of the thi  node. xi is the position of the point 

associated with the thi node. The parameter β dictates the curvature of Eq. (2). Eq. (2) is linear 

when β = 0, and approaches the Heaviside step function as β approaches infinity (Guest et al. 

2004). In this paper, β = 5 is set. The white-black solution can be obtained with Eq. (2). The 

corresponding interpolation function Ni(x) is defined as 
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where Ri(x) = 1/ri(x) and  
2i ir x x x   being the Euclidean distance from the points x to xi. n is 

the total number of nodes inside the influence domain Ω
x
. 

 

 

  
(a) (b) 

Fig. 1 The same rmin: (a) The influence domain of the point x. (b) The influence domain of the point x 

      when the mesh is refined 
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In the method using element independent nodal density variables, the density in the element 

space is not constant, and the global density field of the structure has C
0
 continuity. It is also easy 

to know that 0 ≤ ρx ≤ 1 holds if 0 ≤ ρi ≤ 1 )( xSi  from the bounded property of Shepard 

interpolation. Moreover, the property Ni(x) ≥ 0 guarantees that the derivative of the density with 

respect to the design variable will be always non-negative. This property is essential for ensuring a 

correct searching direction in seeking the optimal material distribution by a gradient-based 

algorithm. 

 

 

3. Formulation of topology optimization and numerical implementation 
 

In the SIMP method (Bendsoe 1989, Yang and Chuang 1994, Rozvany 2001, Kang and Wang 

2011), the discrete topological variables ρi that only take value 0 or 1 are relaxed by continuous 

topological variables between 0 and 1. Consequently, the difficulty of the discrete optimization 

problem is avoided by penalization. Similarly, the rational approximation for material properties 

(RAMP), which was proposed by Stolpe and Svanberg (2001), is adopted and stated as 

  
 

( )
( ( ))

1 1 ( )

x
f x

q x







 
                           (4) 

where q is the penalization factor. In this paper, q = 5 is used so that the intermediate density 

approaches either 0 (void) or 1(solid). The relation between the Young’s modulus and the material 

density at point x is expressed by 

  0( ( ))E x f x E                              (5) 

where E0
 is Young’s modulus of the fully solid material. 

The function ( ( ))f x  has the following properties: 

( ( )) 0 ( ) 0

1
( ( )) / ( ) 0 ( ) 0

1

f x as x

d f x d x as x
q

 

  





 

  


 

The actual volume of an element is given by 

 0
( )

i
i

V
V x dV                               (6) 

where 
0

iV  is the original volume of the ith element. 

 

3.1 Optimal model  
 

Topology optimization of continuum structures aims to optimize the material densities which 

are considered as design variables in the design domain. In this study, minimum volume with the 

reference domain Ω in 2R  or 3R is considered while satisfying displacement constraints. The 

topology optimization problem can be stated as 
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                   (7) 

where V is the structural volume being optimized, Vi is the volume of the ith element，Nel is the 

number of all elements. f

ju  is the displacement of the jth degree of freedom of the structure 

under the fth load case, Uj is its constraint limit. J is the number of the displacement constraints 

for each load case, L is the number of the load cases acting on the structure. ρi is the density of ith 

node, i  is its lower limit. Nnod is the total number of the nodes in the design domain. Here the 

small positive lower bound 0.0001i   is set to avoid the singularity of the problem. 

 

3.2 Sensitivity analysis 
 

A number of numerical methods are available for optimum search. Here, SQP (Sequential 

Quadratic Programming) is used. The solution of the gradient-based optimization problem requires 

the computation of sensitivities of the objective function and the constraints.  

In a finite element analysis, the static behavior of a structure for any load case can be expressed 

by the stiffness equation as  

 Ku F                                   (8) 

where K is the global stiffness matrix of a structure being optimized and, u and F are the global 

nodal displacement and nodal force vectors respectively.  

It is assumed that the nodal density ρi has no effect on the applied load vector. Assuming ti = 1/ 

ρi, the partial derivative of the displacement vector with respect to tiis calculated from Eq. (8) as 
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u K
K u                              (9) 

The sensitivity of the jth displacement can be calculated using the adjoint method (Bendsoe and 

Sigmund 2003). To find the partial derivative of uj with respect to ti, a virtual force vector Fj in 

which only the jth component is equal to unity and the others are equal to zero is introduced. 

Multiplying Eq. (9) by T

jF , the following equation can be obtained 
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where uj is the displacement vector due to the unit virtual force Fj, And u
e
 and e

ju  are the element 

displacement vectors containing the entries of u and uj, respectively, which are related to the eth 

element. Ncon is the number of element influenced by ρi. K
e
 is the element stiffness matrix of the 

eth element.  

The sensitivity of the displacement requires the computation of the sensitivity of the stiffness 

matrix with respect to the design variable. The derivative of the elemental stiffness matrix with 

respect to the design variable is expressed by 
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where B is the conventional displacement-strain matrix and D0 corresponds to the constitutive 

matrix of the solid material. 

For example, the formulation of the constitutive matrix for 3D isotropic solid structures is 
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The stiffness matrix integrand is evaluated at the Gauss points and the densities at these Gauss 

points are directly computed from the design variables using interpolation function. Numerical 

quadrature, such as Gaussian quadrature, is commonly reduced to the evaluation and summation of 

the stiffness integrand at specific Gauss points. 

The sensitivity analysis of the objective function in Eq. (7) can be calculated similarly. The 

derivative of the total material volume with respect to the design variables can be computed by 

Gauss quadrature method over the influence domain. The elemental volume is 
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and the total structural volume of the structure is 
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The derivative of V with respect to the design variable is 
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3.3 Topology optimization with varying displacement limits 
 

The displacement constraints cannot be satisfied easily because the actual values of the 

displacements may far away from their constraint values. In order to make the approximation 

functions of displacement constraints in Eq. (7) hold true at each iteration process and make the 

optimum topology obtained be of good 0-1 distribution topology variable property at the same 

time, an equivalent optimization model (20) with varying displacement constraint limits is built. 

And these varying displacement constraint limits are of the function of design variable 

trust-regions. 
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where, α is a displacement limit changing factor. Typical values of α between 0.01 and 0.20 have 
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been used for displacement constraints in the example problems in this paper. k f

ju  is the 

displacement of the jth degree of freedom of the structure under the fth load case at the kth 

iteration. ( 1,2, , )l f

jU j J  are varied according to Eq. (21) at every iteration. It can be seen that 

the above approximate displacement constraints l f

jU  gradually approach the original 

displacement constraints jU . 

The first-order series expansion for the displacement function uj at ti (i = 1, 2, …, Nnod) can 

expressed as 
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Thus, the jth displacement in the next iteration, 1k

ju  , can be estimated by the jth displacement in 

the current iteration. 
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Therefore, Eq. (20) can be transferred into Eq. (24) 
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As the constant items in the objective function can be omitted, Eq. (24) is equivalent to Eq. (25) 
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here 
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The above optimization problem can be rewritten as the following dual optimization model 

(Beckers 1999, Rong et al. 2010).  

max : ( )
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where λ  are the Lagrange multipliers and 
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The first and second order partial derivatives of the objective function in Eq. (26) with respect 

to the Lagrange multipliers are derived as follows  
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The following equation can be obtained by the K-T condition and the Lagrange function.  
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Setting  *1 ( 1,2, , )a i i nodI i t t i N     as an active design variable set, from the second 

case in Eq. (29), the Eq. (30)can be derived directly 
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Therefore, the following equations can obtained         
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and 
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Moreover, from the first and third cases in Eq. (29), the following equation can be obtained 
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*

(( 1) )/ 0i f J kt                                 (33) 

From Eqs. (27)-(28) and (30)-(33), the first and second order partial derivatives of the objective 

function with respect to Lagrange multipliers are simplified as follows 
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When the constant items of the second order approximation of ( ) λ  are omitted, the 

following quadratic programming model dealing with Lagrange multipliers can be built.  

1
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In this paper, 
*( 1,2, , )i nodt i N  and λ  are iteratively obtained. For instance, the design 

variables 
*

it  replaced by the design variables it  in the previous iteration are substituted into Eq. 

(37) to obtain D and H. Then λ  can be obtained by solving the quadratic programming model 

(36). Finally, 
*

it  can be obtained from Eq. (30). 

 

 

4. Numerical examples 
 

This section illustrates the proposed approach with four numerical examples which include 
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under a single load case and multiple load cases. For simplicity, all the quantities are 
dimensionless. In addition, Young’s modulus is chosen as 2.1×10

11
 and Poisson’s ratio as 0.3 for 

all examples. The scale parameter rmin = 1.5d is selected where d denotes the length of the element 
diagonal. All finite element analyses are carried out using the commercial software package, 

ABAQUS. 
 

4.1 L-bracket   
 

Fig. 2 shows the design domain of L-bracket which is fixed at the upper end and a concentrated 
force P = 4000 is applied downward at the point A. The thickness of the L-bracket is 0.5. The 

initial vertical displacement of the point A is 4.72×10
-5

 downward. The displacement constraint, 
1.0×10

-4
 is specified at the point A in the vertical direction. The design domain is divided into a 

mesh with 1600 four-node plane stress elements. There are totally 1701 design variable points 
distributed within the design domain.  

 
 

 
Fig. 2 The L-bracket design domain and its boundary condition 

 

  
(a) (b) 

 
(c) 

Fig. 3 The L-bracket: (a) optimal topology obtained from the element-wise method; 

              (b) material density distribution at the design variable points; (c) optimal topology 

              obtained from EIND 
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Fig. 4 The evolution histories of structural volume and displacement at point A of the L-bracket 

 

 
Fig. 5 The design domain and its boundary condition. 

 

 

4.2 Multiple load cases and multiple displacement constraints 
 

Fig. 5 shows a design domain with length of 6, height of 3 and thickness of 0.2, which is fixed 
at two lower corners. Two load cases are specified with P1 = 4000 for load case one and P2 = 4000 

for load case two. The design domain is divided into 60×30 four-node elements. There are 61×31 
design variable points distributed within the design domain. The displacement constraints are 

applied at points where the forces are acted. The maximum displacements in both load cases at the 
constraint points are 9.007×10

-7
 downward for the initial full design and their constraints are set to 

be 1.500×10
-6

. 
The optimal designs denoted by the material density at points and its contour are shown in Fig. 

6. Once again, the proposed approach provides a clear and smooth topological contour. Figure 7 
gives the evolution histories of the structural volume and the displacement constraints (note that 

the both displacement constraints are the same due to the symmetric nature of the problem). In this 
case, the objective function converges to the final value of 1.960 and the displacements are 

successfully constrained to the specified value, 1.500×10
-6

 after the 53 iterations. 
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(a) (b) 

Fig. 6 Topology optimization designs: (a) material density distribution at the design variable 

     points; (b) optimal topology obtained from EIND 

 

 
Fig. 7 The evolution histories of the structural volume and displacements at the constraints 

 

 

Fig. 8 The design domain and its boundary condition 

 

 

Fig. 8 shows the rectangular design domain with width of 2, height of 1 which are fixed at the 

both ends. The uniform thickness of 0.1 is assigned for the whole design domain. The initial full 

design is divided into 40×20 four-node elements with 41×21 design variable points. In the load 

case one, P1 = 4000 is acted downward at the middle of the top edge. In the load case two, P2 = 

4000 is acted upward at the middle of the bottom edge. The displacement constraints are applied at  
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1 
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P2 
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(a) (b) 

Fig. 9 Topology optimization designs: (a) material density distribution at the design 

variable points; (b) optimal topology obtained from EIND 
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Fig. 10 The evolution histories of the structural volume and displacements at the constraints 

 

 

the locations where the forces are acted. Both displacements at the constraint points for the initial 

full design are 5.846×10
-7

, but one is downward and another is upward. The both constraint values 

are set to be 1.500×10
-6

. 

The volume optimization history of the structure above is presented in Fig. 10, and the 

displacement optimization history at the constraint point of the structure above is also depicted in 

Fig. 10. In this case, the objective function converges to the final value of 0.128 and the 

displacement constraint remains 1.500×10
-6

 after the 66th iteration step. 

The optimal design denoted by the densities at the design points is shown in Fig. 9(a) and its 

contour obtained from element independent nodal density is shown in Fig. 9(b). The contour gives 

the clear and smooth optimal design without any checkerboard pattern. Figure 10 shows the 

evolution histories of the structural volume and the displacements at the constraint points. After 66 

iterations, the structural volume converges to its final value of 0.128 and both displacements 

converge to their constraint values 1.500×10
-6

. 

When the same mesh is used, computational cost for the topology optimization based on 

element independent nodal density is higher than the element-based approach. This mainly 

attributes to the large number of density nodes in the influence domain. However, the topology 

773



 

 

 

 

 

 

Jijun Yi, Jianhua Rong, Tao Zeng and X. Huang 

resolution resulting from the proposed approach based on EIND is higher than that of the 

element-based approach. To improve the efficiency of the proposed approach especially for a 3D 

large-scale optimization problem, the parallel programming technique will be used to carry out the 

finite element analysis in the next example. 

  

4.3 A cubic block 
 

Now that all commercial processors have become multi-cores, OpenMP can provide one of the 

few programming models that allow users to easily carry out the parallel computation of these 

processors. Even with multiple slow cores, it is still possible to achieve higher computational 

efficiency than that using a super-fast single processor (Chapman et al. 2007). Nowadays personal 

computers using the multi-core processing technology become widely available to consumers. In 

order to use a multi-core processor at full capacity, a new multi-thread code is programmed and 

run on a multi-core system. Such improvements will provide a faster solution for the following 3D 

example. 

A cubic domain shown in Fig. 11(a) is divided into mesh size of 40×40×40 eight-node 

elements. Two load cases are considered with P1 = 4,000 and P2 = 4,000 applied to the top face in 

the y direction respectively. The four lower corners are fixed, as shown in Fig. 11(a). Three 

displacements at the locations of load P1 and P2 and the center of the top face are constrained to 

the given limits. The y directional displacements at the locations of P1 and P2 for the initial full 

design are identical to be 8.944×10
-11

, and their constraint values are taken as 1.5×10
-10

. The x 

directional displacement at the center of the top face for the initial full design is 7.524×10
-12

, and 

its constraint value is taken as 1.0×10
-11

. 

The resulting optimal topology obtained from the NDEI approach is shown in Fig. 11(b). 

Numerical experience indicates that the parallel computational time is approximately three times 

shorter than that of the serial computation when the four-core processor was used, Although the 

computational efficiency does not increase proportional to the number of the core, the parallel 

programming technique achieves adequate benefit in term of the computation time especially 

when the number of design variables increases. The use of parallel programming technique has 

also been reported to achieve high computational efficiency (Colominas et al. 2009) but it only 

requires an acceptable additional programming effort when OpenMP directives are used. 

 

 

 

  
 

(a) (b) 

Fig. 11 (a)The 3D design domain and its boundary condition; (b) Optimal topological design 
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5. Conclusions 
 

This paper has considered the topology optimization problem which minimizes the volume of 

the structure subject to multiple displacement constraints under multiple load cases. A topology 

optimization method has been developed using element independent nodal density values as 

design variables. Traditionally a constant element density within a finite element is used. In 

contrast to the element-based procedure, point density values are interpolated by Shepard function 

and the Heaviside function in this paper to avoid checkerboard patterns and mesh-dependency for 

the low order finite elements. Sequential quadratic programming algorithm and dual programming 

are employed with an iterative scheme for updating the design variables. Finally, almost black and 

white design can be obtained based on the point densities. These density values are further to 

determine a smooth iso-line/surface to describe the boundary of the optimal layout. As a result, a 

smooth optimal topology is obtained. 

Numerical examples demonstrate the effectiveness of the proposed method based on EIND to 

obtain optimal solutions by comparing with the typical solutions of element-based topology 

optimization. The numerical results also indicate that the numerical instability problems related to 

a finite element mesh are successfully overcome by the proposed method. Furthermore, the 

multi-thread parallel computation technique with OpenMP has been implemented so that the 

computational efficiency has significantly improved especially for the 3D optimization problem. 
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