
 
 
 
 
 
 
Structural Engineering and Mechanics, Vol. 45, No. 5 (2013) 613-629                            613 

 
 
 
 

Out-of-plane elastic buckling of truss beams 
 

Alexis Fedoroff1 and Reijo Kouhia2 
 

1Department of Civil and Structural Engineering, Aalto University, Rakentajanaukio 4 A, 
Otaniemi, Espoo, Finland 

2Department of Engineering Design, Tampere University of Technology, Korkeakoulunkatu 10,  
33720 Tampere, Finland 

 
(Received July 6, 2011, Revised January 12, 2013, Accepted February 19, 2013) 

 
Abstract.    In this article we will present a method to directly evaluate the critical point of a non-linear 
system by using the solution of a polynomial eigenvalue approximation as a starting point for an iterative 
non-linear system solver. This method will be used to evaluate out-of-plane buckling properties of truss 
structures for which the lateral displacement of the upper chord has been prevented. The aim is to assess for 
a number of example structures whether or not the linearized eigenvalue solution gives a relevant starting 
point for an iterative non-linear system solver in order to find the minimum positive critical load. 
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1. Introduction 
 

In civil engineering and building construction the truss is, indeed, a widely used structural 
element. As soon as the span is long enough, the only practical choice left to support the roof of an 
industrial building or sports hall is a steel truss. More recently long-span wood trusses have 
become popular in wooden construction, too, and even in lightweight building structures trusses 
made up from cold formed profiles have made their breakthrough. In the situations that have just 
been exposed the advantages of a steel truss over a hot rolled or welded profile are obvious. For 
equal load carrying capacity a truss provides a much lighter structure than rolled or welded profile, 
and additionally the open spaces between the diagonals of a truss can be naturally used to support 
ducts or other mechanical equipment. Finally, if we think of the construction time logistics, the 
truss alternative provides more flexibility: it is fairly easy to design a long-span truss made up of 
partial assemblies that are manufactured and delivered on site independently. 

After having set forth the advantages of a truss structure over a beam made of a solid cross-
section (i.e., a hot rolled or welded structure), let's examine some of the drawbacks, or rather some 
problems related to the analysis of truss structures. As a rule of thumb, bulky structures are stable 
by nature whereas slender structures are prone to geometric instabilities. Let's qualitatively 
compare the geometric instabilities which may occur for various types of cross-sections of a 
flexurally loaded beam. If we first consider a rectangular solid cross-section, the beam can be 
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loaded until material failure without any geometric instability. Now if we consider a thin-walled 
profile1, depending on the dimensions and loading, we can potentially observe lateral buckling, 
cross-sectional distortional buckling, and local plate buckling, or any combination thereof. All of 
these buckling phenomena have been widely studied by Vlasov (1961), who set up the global 
buckling theory for thin-walled beams. Later, distortional buckling has been studied by Sridharan 
and Rafael (1985), Hancock et al. (1990), Vrcelj and Bradford (2006), and in general local-global 
buckling interaction has been the object of a large number of studies. Now if we come back to our 
main subject of interest, the truss beam, we can only imagine the number of possibilities for 
geometric instabilities if we assume that each member of the truss structure is a thin-walled beam 
with axial and flexural loading. Consequently any member of the truss can buckle flexurally, 
torsionally or laterally in a memberwise global way, and additionally each member can exhibit 
distortional or local buckling. However, memberwise buckling is not all we have. Assuming that 
the nodal points of the truss are free to move out of the plane in which they were initially set, we 
can possibly observe “rigid body rotation” of the truss members, in addition to memberwise 
buckling. This out-of-plane rigid body motion can be viewed as some sort of lateral buckling of 
the entire truss frame. 

As we can see, the range of geometric instability phenomena in an assumed perfectly elastic 
structure is very large. In addition, any given buckling mode of a truss structure is typically a 
combination of those “elementary buckling modes”. Attempts to systematically classify instability 
phenomena related to frame and truss structures2 have been made in Trahair (1975), Trahair and 
Chan (2003). Even if it has been clear from the early days that plane trusses are prone to global 
out-of-plane instabilities (Masur and Cukurs 1956), most of the recent studies are concentrated on 
memberwise out-of-plane buckling with nodal lateral displacement explicitly restricted (Trahair 
2009), although Iwicki (2010) considers a truss example with elastic springs in the lateral direction 
applied at top chord nodes while the lower chord nodes are free to move. In Chan and Cho (2008) 
an interesting full scale experiment is made with a Warren truss, and although nodal lateral 
displacement is not restricted, the buckling mode is clearly of memberwise out-of-plane type. 

Real buckling behavior is often so complex, that it makes sense to discard by assumption some 
of the elementary buckling possibilities based on physical and engineering considerations. 
Therefore we shall assume in our kinematical model that for instance local and distortional 
buckling is prevented, which simplifies our modeling task. The kinematics and the resulting 
system of differential equation that modelizes the behavior of a given member of the truss 
structure are the ones first introduced in Vlasov (1961), commonly referred to as the “buckling 
equations” or “second order theory equations”. Although more developed beam theories are 
available since then (Schardt 1966, Attard 1990), traditional beam theory has been estimated 
accurate enough, at least as a first approach, to analyze buckling phenomena in trusses. Since we 
assume that external forces apply only on nodal points and the displacements and rotations at the 
nodal points are by definition the system's state variables, the mathematical model of a given 
member can be seen as a boundary control system modeled by a homogeneous ODE. If we 
substitute the boundary controlled solution of this ODE in the continuous formulations of the 

                                          
1The cross-sectional normal dimension (wall thickness) is small compared to the tangential dimension 
(width/height of the beam) 
2Traditionally a truss is a structure with moment free connection and a frame is a structure with moment 
rigid connections. In this article we consider all connections to be moment rigid unless otherwise specified. 
Hence a truss and a frame can be viewed as synonyms. 
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equilibrium and criticality conditions, we get as a result a discrete non-linear formulation. The 
discrete non-linear formulation of the equilibrium and criticality conditions for the whole truss is 
then just the assembly of the memberwise discrete formulations. This rather unorthodox way to 
implement a discretization is just a finite element method where the test functions fulfill the 
homogeneous differential equations pointwise. 

Usually engineers designing long-span truss beams are well aware of the lateral buckling risk in 
case the upper chord of the beam is free to move sideways. Non-linear analysis is then performed 
using finite element model together with some sort of numerical tool to find the critical point. This 
could be either a path following method or it could be a method based on the linearization (with 
respect to the load parameter) of the non-linear eigenvalue problem. However, this kind of 
situations where non-trivial computation is needed are usually avoided by designers, which prefer 
to use structural solutions that are inherently stable for example by applying bracing to avoid 
lateral movement of the upper chord. Besides, this kind of situation arises often naturally if we 
consider that purlins and roof sheeting provide sufficient stiffness to oppose to any lateral 
movement of the upper chord of the truss beam. Then, by analogy with the Vlasov theory applied 
to thin-walled solid cross-section beams, one can argue that the lateral buckling load of a thin-
walled beam with upper chord lateral movement restricted is infinitely high. Using that result, one 
can say that if the structure does not buckle as a whole, then the only thing that needs to be 
checked is the memberwise buckling of each member. However, as we will soon show in this 
article, the analogy between lateral buckling of truss beams and lateral buckling of solid cross-
section beams does not, unfortunately, hold. Indeed, we will show examples of trusses where we 
can observe, in addition to memberwise buckling, “rigid body rotation” of the diagonals, even 
when the lateral movement of the upper chord is restricted. 

The existence of this given buckling mode is one part of the problem. Of course we must asses 
whether it occurs within the elastic bounds of the material, and if it does, whether the post-
buckling path in the neighborhood of the critical point is stable or unstable. But, in addition to that, 
we must be able to compute numerically the critical point and eventually, by using numerical 
Lyapunov-Schmidt reduction (Govaerts 2000), the post-buckling stability assessment. We already 
stated two numerical tools to find the critical point, namely the path following method and the 
linearization method. The first one has proven to be robust, but since we have to compute a 
number of equilibrium points, it is often time consuming and requires interaction from the operator 
in the choice of parameters such as the arc-length step. The second method is usually more 
expeditive. The criticality condition can be viewed as a non-linear eigenvalue problem and can 
therefore be approximated by a linearization with respect to the load parameter and evaluated at 
the origin. Probably simplicity of this method, both in use and implementation, has made it so 
popular in commercial finite element packages. However, here, too, some caveats have to be taken 
into consideration. First, if the system behavior is highly non-linear in the pre-critical state, then 
obviously the linearized eigenvalue problem will lead to a very bad approximation. This is actually 
what is happening with the truss beam with restricted upper chord lateral motion. One can easily 
intuitively feel that if we compare two identical trusses, one with non-restricted upper chord lateral 
motion and a second one with restricted upper chord lateral motion, the critical load in the second 
case must be much higher due to higher stiffness of the system. Therefore the pre-critical path in 
the second case will extend much further in the non-linear domain, which leads to bad 
approximations if we use linearized eigenvalue problem. A remedy will be proposed, and it is the 
quadratic (or higher order polynomial) approximation of the eigenvalue problem. One can even 
imagine a more radical case: what if the first order coefficient matrix vanishes altogether or 
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degenerates in such a way that the result is physically meaningless? 
Now we shall expose more in details some of the ideas given in this introduction. First, section 

2 will be devoted to the main issues of the mathematical model, which will be used as a basis for 
subsequent stability analyses. Then, in section 3, a procedure for direct computation of the critical 
point will be set up and finally critical properties of some example trusses will be analyzed in 
section 4. 
 
 
2. The mathematical model 
 

We would like to set up here a mathematical model that enables us to perform a stability 
analysis of a given truss structure, assumedly geometrically perfect. As we already stated in the 
introductory part, the study will focus on plane trusses with out-of-plane buckling modes. An 
example of such a truss is given in Fig. 1. 
 
 

 
Fig. 1 Initially plane truss with in-plane primary path and out-of-plane buckling mode 

  
 

Consider intuitively what could happen if we start loading this example truss with a load that 
lies in the plane P. When we start loading the truss in a quasi-static way, the truss will deform, but 
the deformed shape will still stay within the initial plane P. This in-plane state of deformation, 
which lasts up to the critical point, will be referred to as the primary state. We will assume that 
neither limit points (i.e., snap through) nor bifurcations (i.e., in-plane buckling) will occur in the 
primary state, which enables us to concentrate on the out-of-plane buckling behaviour. When the 
critical load is reached, the primary state is no longer stable and hence the system bifurcates to the 
secondary state of equilibrium, which is characterized by out-of-plane displacements of some of 
the members and/or nodes of the truss. Analysis of the post-buckling behaviour in the 
neighbourhood of the critical point requires a mathematical technique called the Lyapunov-
Schmidt reduction (Koiter 1945, Golubitsky and Schaeffer 1985), but in order to analyze the post-
buckling behaviour we need first to compute the critical point and the buckling mode, so we shall 

P

F < F
cr

P

F = F
cr
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concentrate on that aspect first. 
Now let's find out how to define the state variables of our system in such a way that we have a 

minimal amount of them. The answer is of course that we should have one element per member, 
i.e. twelve degrees of freedom per member (three displacement d.o.f. plus three rotational d.o.f. at 
each end). Implementation is done by choosing test functions in such a way that they pointwise 
fulfil the homogeneous differential equations given by the strong form of the equilibrium and 
criticality conditions. The state variables are then defined as the Dirichlet boundary conditions to 
the given differential equations. A remark can be made on the definition of stability used in our 
approach. We will use the energy criterion for stability and assume that it is, for all practical 
purposes, equivalent to the Lyapunov (dynamic) criterion for stability. The equivalence theorem 
has been proven in (Koiter 1945). Criticality criterion (i.e., Trefftz condition) is then just defined 
as the boundary between stable and unstable domains. 

The truss system we are about to investigate for equilibrium and criticality consists of a finite 
number of members and nodes. Each member is modeled using any of the available beam theories: 
Euler-Bernoulli or Timoshenko beam theory for prismatic cross-sections, Vlasov beam theory for 
open or closed thin-walled cross-sections, or any other second order theory, provided we are able 
to solve it analytically. Consider a very general way of noting the equilibrium in primary state (1a) 
and criticality (1b) differential equations. The equilibrium in primary state and criticality 
conditions can be given as a boundary controlled Dirichlet problem where the homogeneous ODE 
linear operator Iˆ|uL depends on the boundary control value Iû  and in general the linear operator 

is not constant. (The ODE may be assumed homogeneous since we consider external loads to be 
applied only on truss nodes.) 
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The notation I)(  implies that the vector or vector valued function is restricted to the subset of 
6R  such as all out-of-plane displacements and rotations are zero. If we now consider the internal 

energy contribution to the equilibrium condition )(| II
vuU  (i.e. the variation of the internal 

energy in the direction Iv  evaluated at Iu ) and the internal energy contribution to the criticality 
condition   )(|| ½

I

2 wvuU  (i.e. the variation of the second variation of the internal energy in 
the direction w  evaluated at v ), we may say that both those objects are bilinear symmetric 
functionals that depend on the boundary control value Iû . Integration by part of these functionals 
will yield a boundary term and a field term 
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The field term vanishes due to the relations (1a) and (1b). From now on, let's explicitly mention 
the elementwise character of any given quantity by apposing the superscript )()( e . If we introduce 
the following new notation for the boundary control terms (e)p , (e)q  and 12R(e)r  which take 
entries of the vectors  TTT )1(ˆ)0(ˆ uu ,  TTT )1(ˆ)0(ˆ vv  and  TTT )1(ˆ)0(ˆ ww  and rearrange 
them appropriately, we end up with the following elementwise notation 
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Note that the block diagonal form of the non-linear stiffness matrix in the criticality condition is a 
direct consequence of the fact that in the strong form of the criticality condition (1b), which has to 
be viewed as a system of ODE, the equation lines related to the primary state variables are 
uncoupled with respect to the equation lines related to secondary state variables. Considering the 
transform matrix )(eα  which maps the global state vector p  to the elementwise local state 

vector )(ep  and taking the sum over all elements we can express the internal energy contribution 
of the full system to the equilibrium and criticality conditions, where the global stiffness matrices 

are given by the relations  e
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therefore assess the equivalence between the continuous formulations of equilibrium and criticality 
conditions 
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Equivalence between the relations (4a) and (4b) can be seen as the main result of section 2. If we 
solve the discrete non-linear system of equations given by (4b), then we have the exact analytic 
solution to the continuous non-linear system given by (4a). 
 
 
3. Numerical evaluation of critical point 
 

Numeric computation of the critical point by indirect methods, which are essentially of path 
following type, have been object of a large number of publications: Riks (1974), Seydel (1979), 
Rheinboldt (1986) and more recently Lopez (2002). Those methods are certainly robust, but they 
are relatively slow to use, need a certain amount of experience from the user and in case we want 
to run a big number of critical point estimations with parameter variations in the system, indirect 
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methods don't seem to be the easiest way to implement an automated procedure. Instead, direct 
computation methods to find the critical point would are more appropriate. By direct computation 
of the critical point we mean here an iterative method which converges to the critical point as 
opposed to an indirect method, which merely gives upper and lower bounds, such that the 
determinant of the defining function jacobian changes sign in between. 

A classical way to compute directly the critical point is to solve the augmented system of non-
linear equations made up of the equilibrium, criticality and normalization conditions, (Keener and 
Keller 1973, Moore and Spence 1980, Wriggers and Simo 1990), more recently (Battini et al. 
2003) and (Mäkinen et al. 2011). However, if we start the Newton iteration which solves the 
augmented non-linear system at the origin (with random initial eigenvector), the chances that the 
Newton iteration converges to the lowest positive eigenpair (which is the one we are usually 
interested in) are very slim. A better strategy would be to start from a point which has a better 
chance to lie in the attraction sphere of the minimum positive eigenpair solution. Polynomial 
expansion of the non-linear eigenproblem given by the criticality condition yields a good 
approximation for the starting point of a Newton iteration of the augmented system of non-linear 
equations, provided that the polynomial expansion is accurate enough. Practically, commercial 
finite element packages seem to rely on the first order approximation which can be inaccurate if 
the original system is highly non-linear. In such a case second or higher order approximation 
endows us, obviously, with a better starting point for iterative computation. However higher order 
expansion has its cost: first order approximation requires first order derivative of the jacobian, 
second order approximation requires second order derivative of the jacobian, and so on. For 
practical reasons only linearized and quadratic eigenproblem approximations will be considered, 
and as we will show, quadratic approximation will usually show to be sufficient when linearized 
approximation fails. 

In this overview of the theory of numeric evaluation of the critical point we shall first 
concentrate on an abstract non-linear eigenvalue problem and study polynomial approximation 
thereof. Subsequently we will show how to formulate a polynomial approximation of a criticality 
condition related to a given mechanical system. 

 
3.1 Non-linear eigenvalue problem and its polynomial approximation 
 
Consider a general non-linear eigenvalue problem 

0qA |                                     (5) 

where );( nn RRCA  is a smooth matrix valued function of some parameter and nRq  is 
the eigenvector corresponding to the given problem. The polynomial approximation to a given 
order k  is thus 
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For future use, assume the following shorthand notations for the derivatives )'(:dd    and 
')'(:dd 2 2   . Let’s try to visualize the behavior of a non-linear eigenvalue problem in the 

Euclidean matrix space nnR . The set of points in that matrix space for which the matrix is 
singular of rank 1n  can be viewed as a smooth 12 n  dimensional manifold. Formally 
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define it as follows: }1)rank( : {:1   nnn XX RM . If rank deficiency p  is higher than 1, 
then the corresponding manifold pM  is a submanifold of 1M .On the other hand the set of points 
in the matrix space nnR  that correspond to the image of the matrix valued function A is 
obviously a one dimensional smooth manifold, note it I . The possible intersection points of I  
with 1M  then gives the (real) solutions of the eigenvalue problem 0qA | . No intersection 
means the solutions are complex. 

Consider now the visualization of a polynomial expansion of our given eigenvalue problem. 
One can guess that a linear approximation (evaluated, for instance at the origin) is expressed by a 
straight tangent line to the manifold I  at that given point, whereas the quadratic approximation 
yields some kind of curve. On Fig.2 we have pictured an example of a non-linear function with 
linear approximation on the left picture and quadratic approximation on the right picture. We can 
clearly observe that if the non-linear function is highly non-linear, as it is the case in the given 
example, then the result )0(  of the linear approximation 0qAA  )|'|( 0

)0(
0   is much higher 

than the minimum positive eigenvalue of the non-linear problem, which is our target.  
 

 
If we take the result of the linear approximation as a starting point to a Newton iteration method to 
solve the augmented system consisting of the eigenvalue problem and a normalization condition 
for the eigenvector (Eq. (7)), the solution converges to the second positive eigenvalue of the non-
linear problem. This is clearly not what we want. 
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As a remedy, we recommend the use of quadratic approximation of the non-linear eigenvalue 
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0   instead of the linear one. On the right picture in 

Fig. 2, we can see that the result of the quadratic approximation are much closer to the minimum 

 
Fig. 2 Example when Newton method fails to converge to the minimum positive eigenvalue if the 

        initial guess is the result of the linearized eigenproblem. 
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positive solution of the non-linear problem, and if we take the result of the quadratic 
approximation as a starting point to solve (7) by Newton iteration, then the method converges to 
the minimum positive solution, which is exactly what we are expecting. 

The example given here above is well behaving in the sense that both the linearized and 
quadratic eigenvalue problems gave real solutions, even though they were not necessarily those we 
were expecting. However, we can easily imagine cases where especially the linearized eigenvalue 
problem fails to give real positive results or real results altogether, which can happen if the tangent 
to the matrix function evaluated at the origin does not intersect the rank deficiency manifold 1M . 
The most spectacular type of failure is when the first order coefficient matrix is zero, i.e., 

0A 0'| . Then, obviously the linearized eigenvalue problem does not make sense anymore. In 

these situations the first order coefficient matrix will be called degenerate. 
 

3.2 Application of polynomial approximation to the criticality condition 
 
Now that we have considered the problematics associated to the polynomial approximation of a 

non-linear eigenvalue problem, let's briefly formulate the polynomial approximation of criticality 
condition at equilibrium state evaluated at a given point (which we assume is not critical). Usually 
the evaluation point is the origin. The procedure is fairly simple. We solve the state vector as a 
function of the load parameter and substitute it in the criticality condition. Obviously, in a general 
case solving the equilibrium state analytically is not possible, but we use the implicit function 
theorem on the equilibrium equation to assume the existence of the state vector as a function of the 
load parameter in a neighborhood of the evaluation point. The formulation of the polynomial 

approximation shall first be applied to a general discrete defining function );( 1 nn RR CΦ  
and later those results shall be given for the discretized continuous non-linear system, too (as 
introduced in section 2). 

Consider a discrete system, which is mathematically characterized by the function Φ  defining 
the equilibrium equation. In subsequent paragraphs we will juts refer to Φ  as the defining 
function. At equilibrium and critical point the following set of equations hold 
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Assuming that )0,(| 0pΦ  is not singular, by implicit function theorem we have 
);( | 0pp 

 |0 VVC   from an open neighborhood of 0  to an open neighborhood of 0p  , 
such as 0p )0( . Then the polynomial approximation evaluated at the origin with respect to the 
parameter   up to the second order term is given as follows (recall the notation )'(:dd   ). 

0ΦΦΦ  )(''½' 32  O                         (9a) 

0qΦqΦqΦ ppp  )(')' ?)' ( 32  O                 (9b) 

The coefficient expressions of the equilibrium equation (9a) are the following: 
ΦpΦΦ p  )'('  and ΦpΦpΦppΦΦ ppp

22 )''()'(2)','(''   . The coefficient 
expressions of the criticality condition (9b) are given as follows:  )' ( qΦp  
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qΦpΦ pp ))'(( 2
  and qΦpΦpΦppΦqΦ ppppp ))''()'(2)','((')' ( 2223

  . 
Solving the equations 0Φ '  and 0Φ ''  yields the successive derivatives of the state vector 
p . Hence )(' 1 ΦΦp p   and ))'(2)','(('' 221 ΦpΦppΦΦp ppp    . 
Substituting those two expressions in equation (9b) yields the non-linear eigenvalue problem 
formulation. 

Consider now that the system is such that we have a primary state of equilibrium defined by 
movements restricted to the initial plane. Use the previously introduced notation I)(  to denote a 
vector constrained to the primary state variable subset and II)(  to denote a vector constrained to 
the secondary state variable subset. Assuming a conservative system, it can be shown that the 
definition function vector constrained to the secondary state variable subset and evaluated at the 
primary path is a constant function with respect to the primary variables and the load parameter. 
Hence 0Φp  III

lk
 for all 0k  and 0l . This implies, in particular, that definition 

function vector constrained to the secondary state itself is identically zero, and that the jacobian of 
the defining function is block diagonal. Hence if we rewrite equation (8) with these assumptions 
we get the following expressions 






























0
q

q

Φ0

0Φ

0Φ

pp

p

p

II

I

),(|II

I

),(I

I
II

I

I
|





                      (10) 

As a result, the polynomial approximation, too, shows a block diagonal structure. It can be easily 
shown that )(' I

1
II I

ΦΦp p  
 whereas 0p 'II . In a similar way we can find 

))'(2)','(('' I
2

IIIII
21

II III
ΦpΦppΦΦp ppp   

 while 0p ''II . The coefficient 
expressions of the criticality condition (9b) have therefore the following structure 















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


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Φ
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

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Φ
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with the following expressions for the submatrix blocks 

III
2

I III
)'(   )'( ΦpΦΦ ppp                         (12a) 

IIIIIII IIIIIII
)'(  )'( ΦpΦΦ pppp                      (12b) 

I
2

II
2

II
2

III
3

I IIIII
)''()'(2)','(  ')'( ΦpΦpΦppΦΦ ppppp         (12c) 

II
2

IIIIIIIIII
2

II IIIIIIIIIIIII
)''()'(2)','(')'( ΦpΦpΦppΦΦ pppppppp     (12d) 

One direct consequence of the block structure of the eigenvalue problem is that we can separate 
the examination of the eigenvalue problem in in-plane solutions and out-of-plane solutions. In the 
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first case the determinant 0det II
 Φp  and 0det IIII

 Φp , while in the other case it's exactly 

the opposite: 0det II
 Φp  and 0det IIII

 Φp . Since we are primarily interested in the out-of-

plane stability behavior of the system, it makes sense to concentrate the analysis on the 
subproblem IIII  II

qΦp . 

Then, to make the link to what we have exposed in section 2, we may redefine the defining 
function restricted to the primary state as III),(I  |:|

II
epKΦ pp   and redefine the criticality 

condition related to out-of-plane modes as IIIIII),(II IIII
|:| qKqΦ ppp   . 

 
4. Analysis of some example structures 

 
The task of setting up the specifications for the analysis is far from being obvious. Indeed, we 

are not facing just an engineering problem, which means it is enough that we find the critical point 
for a given structure. Rather, we have no precise structure at hand but only a multi-dimensional 
domain the structure geometry may vary within, and we are supposed to figure out what type of  

 

 
Fig. 3 Example truss with symmetric buckling mode 

solution of linear evp: 30.8933 kN

solution of non-linear problem starting from linear evp solution: 25.1362 kN

solution of quadratic evp: 25.1248 kN

solution of non-linear problem starting from quadratic evp solution: 25.1362 kN
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structural failure is going to happen within that domain. The investigation we are going to proceed 
with could therefore be referred to as some sort of pushover analysis, since we are looking for the 
point at which structural failure occurs. 

The geometrical domain is large. It is therefore appropriate to restrict the domain to structures 
that are plausible from the engineering point of view. So far we have started our analysis work by 
investigating inverted Warren trusses with rectangular hollow section members. The reason to this 
is that engineers seem to favor this type of structures as structural elements of large span roofs in 
buildings. It is not to say that a similar type of analysis and comparison could be carried on other 
type of trusses as well, including types of bridge trusses and arch trusses. Once we have fixed the 
basic type of truss we are going to investigate, we have several geometric parameters that can 
vary: the number of openings in the truss, the length and the height of the truss and cross-sectional 
properties of each member. Cross-sectional properties can be chosen so that they are identical for 
all members, or alternatively cross-sectional properties are identical for top and bottom chords on 
one hand and for diagonals and verticals on the other. Let’s examine two examples given in Figs. 3 
and 4. 

 
 

 
Fig. 4 Example truss with non-symmetric buckling mode 

solution of linear evp: 34.6439 kN

solution of non-linear problem starting from linear evp solution: 28.6391 kN

solution of quadratic evp: 22.9412 kN

solution of non-linear problem starting from quadratic evp solution: 22.9411 kN
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The key issue in these examples is the buckling mode. If the lateral movement of the upper 
chord of the truss is restricted at nodes, we can observe two qualitatively different buckling modes 
which may occur for the lowest positive buckling load. The first will be called 2e -symmetric 
(shortly just symmetric) due to the fact that the projection of the buckling mode on the plane 
perpendicular to the axis of the beam is a symmetric curve. It is characterized by lateral sinusoidal 
displacement of the upper chord such that nodal points are not moving in lateral direction and 
usually small lateral displacement of the lower chord. An example of symmetric buckling mode is 
given in Fig. 3. 

The second buckling mode will be called non-symmetric due to the fact that the projection on 
the perpendicular plane forms a non-symmetric curve. It is characterized by relatively large lateral 
displacement of the lower chord together with buckling of the compressed diagonals. The upper 
chord undergoes torsion, but lateral displacement does not occur altogether. It can be remarked 
that in addition to memberwise buckling of a given diagonal, there is some rigid body motion 
characterized by lateral sway of the lower end of the diagonal. An example of non-symmetric 
buckling mode is given in Figure 4. As we can notice, in the symmetric mode example (Fig. 3) the 
non-linear system solution converges to the same point, whether we start from the linear or the 
quadratic eigenvalue problem solution. On the other hand in the non-symmetric mode example 
(Fig. 4) the non-linear system solution does not converge to the same point, depending whether we 
start from the linear or the quadratic eigenvalue problem solution. 

Consider the “reference solution” to be the solution given by the Newton algorithm, where we 
used the solution of the quadratic approximation as an initial guess. The reference solution 
corresponds therefore to the true solution of the non-linear problem. On the other hand, let's call 
“candidate solution” the solution given by the Newton algorithm, where we used the solution of 
the linear approximation as an initial guess. If everything goes well, the candidate and reference 
solutions should match, as it is the case in Fig. 3. However, the example in Fig. 4 shows that 
sometimes the candidate solution does not match the reference solution. 

In the following interaction diagrams (Figs. 5-8), we shall plot, for some parameter values of 
the truss, the boolean function whether or not the candidate solution matches the reference one. 
The total truss length is on the abscissa of the diagram, the truss height on the ordinate. We have 

divided the diagram in two domains: domain linD , where the candidate and reference solution 

match, and domain quaD , where the candidate and reference solutions do not match. We can also 

state that the boundary that separates the domains linD  and quaD  from each other is nearly linear 

in the case of small cross-sections. The diagrams have been drawn so that the display area is 
meaningful from the engineering point of view, and hence what happens outside the display area 
has not been investigated. As a general statement, we can claim that non-symmetric buckling mode 
and failure of the linearized eigenvalue problem to provide a good initial guess point for non-linear 
system solver occur for rather high trusses. The average slope of boundary separation line is 
around L/h ≈ 4.0. Obviously this type of truss geometry is not quite a usual design. 

If we investigate trusses made of larger cross-sections, as in our example (Fig. 8) we have 
120×120×6 square hollow sections for all members, the pattern changes quite radically. First 
remark can be said about the buckling mode. In the case of large cross-sections the switch from 
symmetric mode to non-symmetric mode does not follow at all the boundary line between linD  

and quaD . In Fig. 8 non-symmetric mode is found high above the display area, which means that 
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linearized eigenvalue problem may fail to give a good starting point for non-linear system solver 
even if the buckling mode is symmetric. The second remark can be given on the shape of the 
boundary between the domains linD and quaD , which is definitely not linear. Once the total length 

of the truss is larger than a given number around 51.5m, no matter how high the truss, we will 
need to use the quadratic eigenvalue solution as a starting point to the non-linear solver. 

 

 

 
Fig. 5 Interaction diagram for a Warren truss with 12 diagonals, total length L, total height h,  

         all members 25×25×2 square hollow sections. 

 
Fig. 6 Interaction diagram for a Warren truss with 12 diagonals, total length L, total height h,  

         all members 50×50×4 square hollow sections. 
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5. Conclusions 
 
A number of Warren trusses have been investigated for various stability related properties. The 

main property that is of practical interest is whether a designer can rely on the linearized 
eigenvalue problem solution as an approximation to a non-linear problem. It turns out that if the 

 
Fig. 7 Interaction diagram for a Warren truss with 12 diagonals, total length L, total height h,  

         all members 80x80x5 square hollow sections 

 
Fig. 8 Interaction diagram for a Warren truss with 12 diagonals, total length L, total height h,  

         all members 120×120×6 square hollow sections 
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primary path of a given system is highly non-linear, the solution of linearized eigenvalue problem 
not only gives a bad approximation, but it also fails to be within the radius of convergence of the 
minimum positive eigenvalue of the non-linear system, assuming that we apply an iterative solver 
to correct the initial guess given by the linearized eigenvalue problem. In most cases this drawback 
can be fixed if we use the solution of a quadratic eigenvalue problem as a staring point for the 
iterative solver. Since we assumed that the lateral displacement of the upper chord is restricted at 
nodal points, the trusses that have been investigated are all highly non-linear and therefore they 
give good examples of structures that are problematic to analyze using linearized eigenvalue solver. 

All the trusses that have been investigated are composed of steel rectangular hollow cross-
sections. This type of trusses is widely used in construction, and therefore it is natural to verify the 
behavior of stability related numeric methods with this type of structures first. Fortunately, it 
seems that the geometries of most engineering applications are such that even linearized 
eigenvalue problem solution gives at least a good starting point for non-linear solver. However, the 
situation with open thin-walled steel cross-sections or wood cross-sections is far from being safe. 
This is due to the low torsional rigidity of these types of cross-sections, in contrast to closed cross-
sections. Therefore a wider range of truss geometries using a wider range of cross-sections should 
be investigated in order to complete the picture. 
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