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Abstract.  In this paper, identification of isotropic and orthotropic linear elastic material constitutive 
parameters has been demonstrated by a FEA-free energy-based inverse analysis method.  An important 
feature of the proposed method is that it requires no finite element (FE) simulation of the tested material.  
Full-field displacements calculated using digital image correlation (DIC) are used to compute DIC stress 
fields enforcing the equilibrium condition and DIC strain fields using interpolation functions.  Boundary 
tractions and displacements are implicitly recast into an objective function that measures the energy residual 
of external work and internal elastic strain energy.  The energy conservation principle states that the 
residual should be zero, and so minimizing this objective function inversely identifies the constitutive 
parameters.  Synthetic data from simulated testing of isotropic materials and orthotropic composite 
materials under 2D plane stress conditions are used for verification of the proposed method.  When 
identifying the constitutive parameters, it is beneficial to apply loadings in multiple directions, and in ways 
that create non-uniform stress distributions.  The sensitivity of the parameter identification method to noise 
in both the measured full-field DIC displacements and loadings has been investigated. 
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1. Introduction 
 

In the past decade, significant progress has been made in the identification of material 
constitutive parameters, owing to advances in full-field displacement measurement techniques.  
Enriched information from the digital image correlation (DIC) technique in particular has 
significantly facilitated our understanding of material behavior (Regez et al. 2008). A recent 
special issue (Vol. 48 Issue 4 2008 of Experimental Mechanics) compiles state-of-the-art DIC 
techniques in various applications in experimental mechanics. 

In the literature, there are five distinct categories of inverse identification methods: 1) finite 
element model updating (FEMU) methods (Mahnken 2000, Pagnacco et al. 2005, Hild and Roux 

                                                       
Corresponding author, Assistant Professor, E-mail: gy3@uakron.edu 
aGraduate Student, E-mail: ssl164@zips.uakron.edu 
bGraduate Student, E-mail: sk92@zips.uakron.edu 
cAssociate Professor, E-mail: carlett@uakron.edu 

DOI: http://dx.doi.org/10.12989/sem.2013.45.4.471



 

 

 

 

 

 

Shen Shang, Gun Jin Yun, Shilpa Kunchum and Joan Carletta 

2006); 2) constitutive equation gap methods (CEGM) (Constantinescu and Tardieu 2001, 

Geymonat and Pagano 2003, Latourte et al. 2008); 3) virtual field methods (VFM) (Avril et al. 

2004, Grediac et al. 2006, Pierron et al. 2007, Avril et al. 2008); 4) equilibrium gap methods 

(EGM) (Claire et al. 2004, Crouzeix et al. 2009); and 5) the reciprocity gap method (RGM) 
(Calderon 1980). The existing identification methods all have in common that they enforce 

equilibrium conditions, that is, either in weak or strong form, the constitutive relationships that 

relate full-field displacements to the stresses, and either in an analytical or numerical way, the 

boundary conditions that are essential to all boundary value problems.  However, they differ in the 

objective functions they use, and in whether they require measured full-field displacement or not. 

As updating-based methods, the FEMU methods iteratively update constitutive parameters so 

as to minimize an objective function that represents the error, or gap, between a measured quantity 

and the same quantity computed using finite element analysis. In 2007, Avril and Pierron 

compared the VFM with FEMU methods based on minimization of a variety of gaps, such as 

displacement gap, constitutive equation gap and equilibrium gap. They concluded that FEMU 

based on “displacement gap” minimization yields equations that are similar to those used by the 

VFM (Avril and Pierron 2007). In 2008, Avril et al. summarized the existing parameter 

identification methods and compared them for the identification of linear elastic material 

parameters (i.e., Young’s modulus E and Poisson ratio ν) from tensile, Brazilian, shear-flexural, 

and biaxial tests (Avril et al. 2008). The FEMU approach has been applied to a variety of 

problems, including parameter identification for materials with linear elastic (Lecompte et al. 

2007), viscoelastic (Moreau et al. 2006), elasto-plastic (Kajberg and Lindkvist 2004) and 

viscoplastic (Kajberg and Wikman 2007) behavior. Like the CEGM and RGM, FEMU methods do 

not require full-field measurements; partial measurements can be sufficient to determine the 

constitutive parameters. However, the FEMU methods require iterative finite element analyses, 

which take a great deal of computational time. 

In VFM, a chosen set of kinematically admissible virtual displacement fields is assumed and 

substituted into the virtual work equation along with full-field displacements.  This leads to a 

system of linear equations that is solved for constitutive parameters (Grediac and Vautrin 1990).  

Both VFM and EGM have the advantage of faster computation times than the previously 

mentioned approaches, but require full-field measurements in order to reasonably determine the 

constitutive parameters. Further, the VFM does not need to explicitly compute statically 

admissible stress fields.  The equilibrium condition is implicitly enforced through using the virtual 

work equation. 

For the past two decades, extensive studies have been conducted using the VFM approach for 

identification of orthotropic elastic (Chalal et al. 2006) and elasto-plastic (Grediac and Pierron 

2006, Avril et al. 2008) material parameters.  One of the limitations in the VFM approach is that 

the choice of virtual displacement fields that are kinematically admissible depends heavily on 

complexities of the sample geometry and stress fields within the solids, leading to the need for 

optimized choice of the fields (Avril et al. 2008). Furukawa et al. used incremental energy 

equivalence between external work and internal strain energy to identify elastic moduli of laminate 

composite materials under multi-axial loadings (Furukawa et al. 2008). From the view of 

optimized experimental design, they also suggested a method to find loading paths to better 

identify anisotropic material parameters (Furukawa and Michopoulos 2008b, a).  

The proposed method is a novel inverse identification method for extracting constitutive 

parameters of isotropic and orthotropic materials. In the proposed method, strains are calculated 

from experimentally measured full-field displacements obtained by the DIC technique. Unlike the 
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VFM, the proposed method ensures that the stress fields computed are statically admissible. In 

order to identify constitutive parameters, an optimization technique is used to minimize an 

objective function that represents differences between the internal energy and external work. 

Additionally, the stress is calculated by an element-by-element FEA-free method that 

approximates the stress fields satisfying local equilibrium conditions. The element-by-element 

approach uses much less memory than finite element analysis approaches that assemble large 

system matrices. Using the element-by-element approach, it is possible to choose the polynomial 

order used for stress field approximations depending on the element size and stress gradients. The 

approach explicitly enforces equilibrium conditions based on the true DIC displacements.  

Minimization of the objective function based on the energy principle also implicitly enforces 

traction and displacement boundary conditions. Furthermore, the proposed method is free from 

additional considerations on the choice of the kinetimatically admissible virtual displacement field. 
 

 

2. Full field displacement obtained by two-dimensional digital image correlation 
technique 

 

A digital image correlation (DIC) technique is used to provide the two-dimensional full-field 

surface displacement needed for the proposed method.  A full-field optic sensor captures images of 

the surface of the target.  A pair of images (reference or undeformed, and deformed) are compared.  

Given a point on the target surface, specified by its pixel coordinates on the undeformed image, 

the DIC technique finds the pixel coordinates of the corresponding point in the deformed image.  

The displacement of the surface point is then calculated in terms of pixels, and converted to 

physical displacement.  Full-field DIC displacement is obtained by repeating the procedure for all 

surface points of interest. It is worth noting that for the proposed method, DIC displacement is 

computed for surface points corresponding directly to the nodes in the mesh used for strain and 

stress calculation in Section 3. 

The deformed image pixel coordinates (x', y') that match a particular point (x, y) in the 

undeformed image are found by comparing a region or facet surrounding the point with regions or 

windows of the same number of pixels in the deformed image. It is not expected that the deformed 

image will have a window that exactly matches a given facet, because the specimen may be 

stretched, compressed, or twisted. Thus, the method looks only for the window in the deformed 

image that best matches the facet. Displacement is measured from the middle of the facet (as 

indexed in the undeformed image) to the middle of the best matching window (as indexed in the 

deformed image). The best match is defined as the one that maximizes the correlation between the 

facet and the window. The correlation metric used is 
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where both the facet and the window are of size M pixels × N pixels, reindexed as they are cut out 

of their original images so that i = 1, 2, …, M and j = 1, 2, … N. In the formula, fi,j and wi,j denote 

the luminance values of pixel (i, j) from the facet and the window, respectively, and µ facet and 
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µwindow denote the mean of the luminances of all the pixels in the facet and the window, 

respectively. 
An important consideration in implementation of the DIC method is how large a zone of 

interest (ZOI) should be considered in computing the correlation metric. Having found an 
appropriate facet size, the displacement of a particular point in the undeformed image can be found 
by first cutting a facet out around that point in the undeformed image, and then sliding the facet 
over the deformed image, calculating correlation at each point, to find the point of maximum 
correlation.  The computational complexity of the search for the point of maximum correlation is 
reduced by doing a local search around a probable location, rather than sliding the facet over the 
entire deformed image. 
 

 

3. FEA-free energy-based inverse characterization method 
 
The proposed method is applied to identification of linear elastic constitutive parameters of 

materials showing either isotropic or orthotropic characteristics. In addition to full-field 
displacement, force and displacement boundary data should be known a priori.  The boundary 
displacements can be readily measured by LVDTs or extensometers, depending on the test setup 
and specimen geometry. Alternatively, the full-field image sensor can provide boundary 
displacements in addition to the full-field displacement. Load cells or force transducers can 
measure the resultant, which can then be distributed onto the boundary nodes. The load cell 
sensors should be triggered to capture data synchronously with the full-field optic sensor used for 
the DIC. In the course of laboratory (uniaxial, biaxial, or shear) testing of target materials, 
boundary forces and displacements can be obtained at multiple equilibrium points along the force-
displacement curve directly from load cell sensors. 

Fig. 1 gives a flowchart of the proposed FEA-free energy-based inverse characterization 

method for constitutive parameter identification. The DIC displacement is used to calculate DIC 

strains.  Based on the DIC displacement and strain, along with boundary displacement and force 

data, the proposed method iteratively tunes the material parameters so as to minimize the 

accumulated difference between the internal and external energy. Material parameters are encoded 

and optimized using a steady state genetic algorithm (SSGA).  The full-field displacement UDIC is 

used in computation of stress fields using updated constitutive parameters. Keys to the proposed 

method are the computational procedures used to obtain DIC strains and stresses. In the following, 

the DIC strain and stress computation procedures are introduced in detail; these procedures follow 

the basic governing equations of the underlying boundary value problems. 
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Fig. 1 Flowchart of the proposed method for constitutive parameter identification 
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3.1 Governing equations of boundary value problems 
 

The governing equations of a three-dimensional solid body B with arbitrary shape under 
prescribed boundary tractions (τb) on traction boundary Ωt and displacements (ub) on displacement 
boundary Ωu are described as 

 
b t

b u

div 0 in 
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In Eq. (2), σ indicates the Cauchy stress tensor and b indicates the body force vector acting in 
the volume. The second equation indicates the linear elastic stress (σ) and strain (ε) constitutive 
relationship in terms of Lame constants (λ and µ). F indicates the deformation gradient, and n is 
the outward unit normal vector on the surface where the traction vector is prescribed. Considering 
the free surface as boundaries where the traction is zero, ∂B = Ωt Ωu. Note that Ωt∩Ωu=0. Eq. (2) 
has 15 unknowns: three displacement components (u), six stress components (σ), and six strain 
components (ε). Expressing the stresses in terms of three-dimensional displacements using the 
constitutive relation and substituting into the equilibrium equations, a set of partial differential 
equations (known as Navier’s equations) are expressed in Cartesian tensors using Einstein 
summation notation as 
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In constitutive parameter identification, the measured full-field displacements are considered to 
be true. Thus, the constitutive parameters found automatically correspond to kinematically 
admissible fields. However, it is more challenging to obtain constitutive parameters that 
correspond to statically admissible stress fields, since the stress response is determined by the 
displacements and constitutive parameters, but must also simultaneously satisfy local equilibrium 
and traction boundary conditions, as given in Eq. (3b). In the proposed DIC stress computation 
method, parameterization of the stress fields is accomplished in a way that ensures that the stress 
fields satisfy both the measured displacements and the local equilibrium conditions at every 
iteration used to update the constitutive parameters. 

 
3.2 DIC strain computations 

 

In what follows, positions are expressed in a two-dimensional Cartesian coordinate system 

using basis { 1 2,e e }. Consider a material point z = {x, y} on the surface of the undeformed 
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specimen, i.e., at time t0. After the specimen is deformed, the material point moves to a new 

position x, expressed as 

0( , ),     t t t  x z u z
 (3) 

where u = {u, v} is the displacement vector of the material point z. The deformation gradient F, 

defined as the rate of change of deformation with respect to material point z, is expressed as 
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where δij is the Kronecker delta and I is the identity tensor. The deformation gradient carries 

information on both stretch and rotation, and can be decomposed into stretch (U) and rotation (R) 

tensors by the polar decomposition (F = RU).   

The DIC technique provides displacement at all nodal points of the finite element (FE) mesh; 

the displacement fields between FE nodal points are interpolated from the DIC displacements 

using the eight-node isoparametric shape functions. The gradient of the in-plane full-field DIC 

displacement is 
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where Ni is the standard shape function of the eight-node finite element in isoparametric 

coordinates, given by
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where ξ and η indicate the isoparametric coordinates. Hence, using the determined {uDIC}i, the 

Green strain tensor {εDIC}ij is computed as 

]),(),([
2

1
}{ IzFzFε  ttT

DIC  
(7) 

Strains at the Gauss points are directly calculated from the deformation gradients [F] as shown 

in Eq. (7). 

Any artificial rigid body motion (translational, rotational or a combination of the two) 

introduced when the web camera or test equipment is disturbed during a test is eliminated by the 

method, so that only pure deformations are considered. This is true because the eigenvalues of the 

Green deformation tensor C = F
T
F = U

T
U correspond to the squares of stretch. To verify the 

immunity to rigid body motions, rigid body motions were added to a full-field displacement 

computed from a simulated uniaxial tension test of the specimen that is same as the one used in 

Section 5.1. The applied displacement boundary condition is 0.05 mm on the right boundary of the 

specimen in the 1-1 direction. The proposed DIC strain computation procedures were followed to 

compute the Green strains. Fig. 2 compares the contour plots of the longitudinal strain as given by 

the DIC strain computations with a reference strain calculated from a pure deformation using 

ABAQUS.  The DIC strain matches the reference strain. 

 

3.3 DIC stress computations 

 

Use of an element-by-element method for computing stress given the DIC displacements is 

suggested. Although Latourte et al. (2008) also used a set of statically admissible functions to 

project the stress field (enforcing equilibrium) (Latourte et al. 2008), their stress computation 

procedure is very different from that of the proposed method. In Latourte et al. (2008), a naturally 

equilibrated Airy function was chosen for enforcing equilibrium. In contrast, the proposed method 

enforces the equilibrium by selecting polynomial terms that satisfy both the strong form of the 

equilibrium equations and the nodal force equilibrium conditions. The DIC stress computation 

technique was originally developed as an alternative method for stress extrapolations in post-

processing of finite element simulation results (Wilson and Ibrahimbegovic 1990). As previously 

mentioned, the DIC stress calculation is a surrogate for finite element model updating techniques; 

in other words, with the proposed method there is no need to perform FE simulation repeatedly 

using the iteratively updated constitutive parameters.  Thus, the method is an FEA-free method. To 

ensure that the stress fields satisfy the strong form equilibrium conditions (e.g., σij,j = 0 with no 

body forces), the polynomials for the stress field are determined from the Navier’s equation. 

Interpolation functions and numerical integration methods commonly used in finite element 

methods are utilized. 

On the condition that the FE mesh is sufficiently fine, linear polynomials are used to 

approximate the stress field, so that the stress field is assumed to take the form 

 }]{[}{ βPσ DIC  (8) 

where {β}={β1  β2  β3  β4  β5  β6  β7}
T
 is the polynomial coefficient vector to be solved for each 

element.  [P] is the polynomial approximation of the stress field and derived based on the general 

displacement field as 
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This 2D displacement field contains a quadratic term x1x2, but x1
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 are absent. [P] is a 

function of the coordinates whose form satisfies the partial differential equilibrium equations. The 

2D in-plane equilibrium equation in the absence of body force is 
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(b) 

Fig. 2 Comparison of contour plots of longitudinal strain in a simulated test: (a) DIC strain, computed 

           in MATLAB with rigid body motions added to the full-field displacement; (b) reference strain, from 

           ABAQUS 
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For an infinitesimal deformation, the displacement-strain relationship of the plane stress case is 
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Stress can be expressed in terms of strain by applying Hooke’s law 

tr( ) 2  σ ε I ε
 (12) 

After substituting Eqs. (11) and (12) into Eq. (10), and rearranging the coefficients, one can 

obtain 
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Substituting Eq. (13) back to Eq. (10), one can easily obtain 

6829 ;  
 (14) 

Therefore, we can find the following final form of Eq. (8) 
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(15) 

[P] is evaluated at each Gauss point within the element. To determine {β}, the nodal equilibrium 

condition {r}+{re} = 0 should be used, where {r} = [k]e{uDIC}. Using standard finite element 

techniques, the nodal force vector {r} is computed for each finite element using the updated 

constitutive parameters in the [D] matrix. The [k]e is calculated using the full Gauss numerical 

integration scheme in the isoparametric coordinates 

}{]][[][}{][}{ DIC

Ve

T
DICe dV uBDBukr 

 (16) 

where [B] is the strain-displacement matrix and [D] is the material stiffness matrix, which is 

assumed initially and updated in an optimization process to be explained in Section 4. From the 

statically admissible stress fields derived in Eq. (15), the approximated nodal resisting force vector 

is computed as follows. 

}]{[ }{][][}{][}{ βQPBσBr   

ee V

e
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eDIC
T
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Substituting Eqs. (16) and (17) into the local equilibrium equation, the local nodal force 

equilibrium condition is expressed as 
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}]{[}]{[
DICe

ukβQ   (19) 

Premultiplying Eq. (19) by [Q]
T
, the coefficient vector {β}can be solved for each element. The 

polynomial coefficient vector {β} is computed in Eq. (20) and can be substituted back into Eq. 

(15) to obtain the final DIC stress fields {σDIC}. 

}]{[][])[]([}{ 1

DICe

TT
ukQQQβ

  (20) 

Based on the formulation, {σDIC} becomes a function of the material parameters in the [D] 

matrix. The advantage of this formulation is that the calculated stress possesses more accuracy 

because the equilibrium equation is applied to each element. It is also worth noting that this FEA-

free method is relatively computationally efficient because it does not require calculating and 

taking the inverse of a large global stiffness matrix. Fig. 3 depicts the computational procedure for 

obtaining the DIC stress field from the DIC full-field displacements.      

 

 
Fig. 3 Computational procedure for DIC stress computation 

 

(a) 

(b) 

Fig. 4 Comparison of contour plots of 1-1 component of stress σ11 (GPa) in a simulated test: 

                   (a) DIC stress, computed in MATLAB; (b) reference stress, from ABAQUS 
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To verify the DIC stress computation, a simulated uniaxial tension test of the specimen that is 

the same as the one used in Section 5.1 is used, and results from the DIC stress computation are 

compared to a reference stress calculated using ABAQUS. The applied displacement boundary 

condition is 0.05 mm at the right boundary of the specimen in the 1-1 direction. As shown in Fig. 

4, the stress field calculated using the proposed DIC stress computation method is reasonably 

consistent with the reference stress field; there is a slight difference in the region where the stress 

is concentrated. 
 

 

4. Optimization method 

 

As described in Section 3.3, the DIC stress computation procedure ensures that the equilibrium 

equation and constitutive law in the boundary value problems described in Eq. (2) are satisfied. 

However, the other two natural and essential boundary conditions in Eq. (2) remain as conditions 

that must be satisfied. In this paper, these boundary conditions are recast using the principle of 

energy conservation. The energy conservation principle allows formulation of an optimization 

problem that minimizes the accumulated difference between internal and external energy. Within 

the optimization routine, the traction and displacement boundary conditions can be implicitly 

enforced by including them in the objective function as follows 
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where σDIC and εDIC are the computed DIC stresses and strains, respectively; T
k
 and U

k
 are the 

traction and boundary displacement vectors on the boundary surface ΩS at the kth
 load step, and LS 

indicates the total number of load steps. 

A steady state genetic algorithm (SSGA) is employed to search for the best set of constitutive 

parameters. There is a unique advantage of the SSGA:  it shows searching capability comparable 

in terms of accuracy to other genetic algorithms, but at much faster computing speeds. The faster 

speed is due to the fact that the objective function needs to be evaluated for only two best solution 

candidates in each generation, whereas other genetic algorithms need to evaluate the objective 

function for all solution candidates (Yun et al. 2009). Depending on the directional property of the 

material, the number of material stiffness values to be identified varies. For example, if the 

material is assumed to be fully 2D anisotropic, a total of six constitutive parameters (Dij: i, j = 1, 2, 

6 and Dij = Dji) are encoded as binary strings in the SSGA optimization. However, if the material is 

assumed to be orthotropic, a total of four engineering material properties (E1, E2, G12 and ν12) are 

encoded. 
 

 

5. Numerical verification using synthetic full-field displacements 

 

Two simulation-based experiments were done to verify the proposed method. As previously 

described, application of the proposed method requires that three different types of experimental 
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data be acquired: 1) global force on the boundary of the specimen, 2) global displacement on the 

boundary of the specimen, and 3) full-field displacement. The loading data can be acquired 

directly from the load cells, and both the boundary and full-field displacements can be derived 

from the images captured by the full-field optics sensor. This paper shows verification tests based 

on simulation, rather than experiment; thus, synthetic data from finite element simulations that use 

reference (true) constitutive parameters take the place of experimental data. 

It is notable that the proposed method is suitable for use with anisotropic materials due to its 

robustness in the identification of constitutive parameters. The method developed herein is capable 

of determining general constitutive parameters from multiple loading stages. In the first simulation 

experiment, isotropic material under non-uniform stress is tested under uniaxial tension loading.  

Although the material is isotropic, no a priori knowledge about the material is assumed in the 

experiment; that is, for the purposes of identification the material is assumed to be anisotropic. In 

the second example, orthotropic composite material specimens with different geometries are 

subjected to different loadings to investigate effects of non-uniform stresses and loading direction 

on the performance of the identification method. Experimental noise and error in DIC 

displacements and boundary tractions are also considered, to investigate their effects on the 

performance of the proposed method. 
 
5.1 Isotropic material under uniaxial loading and non-uniform stress states 

 
The first experiment to verify the proposed method uses a non-conventional test specimen with 

two asymmetric semi-circular notches, as shown in Fig. 5; the experiment is designed specifically 
to generate local non-uniform strain and stress fields. Force-driven FE simulation was used to 
produce synthetic full-field displacement data. The FE model was fixed at the left boundary, and a 
uniaxial quasi-static tension test under a uniformly distributed loading of 70 kips/in

2
 applied at the 

right boundary of the specimen was simulated. For this loading, the specimen is in the linear 
elastic region. The full-field displacement was obtained numerically by using a priori parameter 
set [Dt] that consists of true values. The FE model is constructed as a two-dimensional plane stress 
problem. Thus, the terms in the [Dt] matrix that are related to the z direction were set to zero for 
the FE simulation. 

For application of the proposed method, no assumption was made about symmetry of the 

constitutive material matrix [D]; thus, the method is fully general in that it treats the material as a 

2D anisotropic linear elastic material, and five constitutive stiffness values (D11, D12, D21, D22, and 

D66) are parameterized in the inverse identification, assuming the decoupling between normal and 

shear components that is attributable to existence of one plane of symmetry as in monoclinic 

material. In this example, only one load step is used to test the proposed method, since in linear 

elasticity all deformation stages are proportional. However, in actual experimental testing, in order 

to reduce the noise effect we anticipate using multiple loading steps along the equilibrium path to 

gather data for use in parameter identification. 

The SSGA optimization algorithm starts with an initial population of 50 solution candidates, 

generated by randomly choosing values in binary form for the elements of the [D] matrix in such a 

way that the values fall between the preset upper and lower bounds shown in Table 1. In each 

generation of the algorithm, a 90% crossover rate and a 30% mutation rate are used to breed a new 

generation of solution candidates; in each generation, the best two new solutions are chosen for 

crossover, and the offspring replaces the two worst solutions of the previous generation. The 

algorithm is terminated when the 3000th generation is reached. The absolute error of the final 

solution is summarized in Table 1. 
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(a) 

 
(b) 

Fig. 5(a) Test specimen with semi-circular notch (thickness t=4.76 mm) and 

                                 (b) finite element mesh for an identification model 

 

 

In this verification experiment, the proposed method successfully identifies all constitutive 

parameters. The differences between the reconstructed values and the true values are observed to 

decrease as the number of generations increases, and the values of the reconstructed parameters all 

converge to within an acceptable error with respect to the true values.  In particular, the two terms 

D11 and D66 were identified with error less than 2% (1.32% and 0.8%, respectively). It is natural 

that these two parameters are particularly well-identified, since the specimen is under dominant 

stress and strain distributions in the longitudinal direction, and the semi-circular notch generates 

high shear stress distributions around the circular notch. In comparison, the terms D12, D21 and D22 

showed relatively large errors, of 7.64%, 10.36% and 14.54%, respectively. Fig. 6 compares 

stresses simulated using the identified and true parameters; there is good agreement in all three 

stress component fields (S11, S22 and S12). The results of the verification experiment are promising, 

in that they show that the proposed method can reproduce the material behavior even from a 

uniaxial tension test with a single incremental load step. 

 

 
Table 1 Identified parameter set and error assessment 

Parameters D11(GPa) D12(GPa) D21(GPa) D22(GPa) D66(GPa) 

True value 159.110 47.733 47.733 159.110 55.688 

Initial upper bound 206.843 62.053 62.053 206.843 82.737 

Initial lower bound 68.948 20.684 20.684 68.948 27.579 

Optimized value 157.000 44.084 52.681 182.244 56.136 

Error (%) 1.32 7.64 10.36 14.54 0.80 

 

 
5.2 Orthotropic composite material under different loading scenarios 
 
5.2.1 Open-hole test with single load step 

A second set of verification simulations is carried out using a composite material with assumed 
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parameters E1 = 30 (GPa), E2 = 5.4 (GPa), μ12 = 0.07, μ21 = 0.39, and G1 2= 2.62 (GPa). Two 

specimens with different geometries, both with a thickness of 4.76 mm, are used to verify the 

proposed method. The specimen geometry and loading direction influences the non-uniformity of 

the stress and strain fields. Determining optimal loading paths and geometries is an open problem 

that all inverse identification methods face (Furukawa and Michopoulos 2008a, Furukawa and 

Michopoulos 2008b); this problem lies out of the scope of this paper, and is not fully addressed 

here. Our motivation in investigating specimens with different geometries, boundary conditions 

and loadings, is two-fold: 1) to find a way to reduce the number of loading scenarios needed to 

identify a material’s properties, and 2) to test the stability of the proposed method. 

For this verification experiment, synthetic data was produced using displacement-controlled FE 

analysis; synthetic full-field displacements and boundary force data was derived. For the 

displacements used, the specimens were within the linear elastic region. In each test, the SSGA 

optimization started with solutions that were randomly generated with constitutive parameter 

values within preset upper and lower bounds; the bounds for a parameter were placed 50% above 

and below the true value. In each generation of the SSGA, a 90% crossover rate and a 30% 

mutation rate are used. The optimization was terminated when the 6,000th generation is reached.  

The objective function used is the one shown in Eq. (21), with the symmetry condition (D12 = D21) 

and with assumed orthotropic behavior (D16 = D61 = 0.0, D26 = D62 = 0.0). As a result, four 

parameters (D11, D22, D12 and D66) are to be identified. 

In case one, a 76.2 mm by 50.8 mm open-hole coupon test specimen with a 15.24 mm diameter 

hole is loaded under two loading scenarios: a) shear loading on the right edge and b) transverse 

tension loading on the top edge. For each loading scenario, a single load step is used to provide the 

 

 

 

Fig. 6 Comparison of stress (GPa) components for identified material properties and 

                          reference material properties 
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Table 2 Identification results of case one: open-hole coupon case 

Boundary Material Matrix (GPa) Error (%) 
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           Table 3 Engineering material properties as calculated using identified parameters 

 E1 (GPa) E2 (GPa) G12 (GPa) μ12 μ21 

True Value 30.001 5.400 2.620 0.070 0.390 

Identified 30.847 5.510 2.570 0.054 0.300 

Error (%) 2.82 2.034 1.92 22.86 23.08 

 

 

reference data. The boundary conditions, loading directions, geometry of the specimen, true 

material matrix DT, identified material matrix DI and absolute final error e in the identified 

material matrix are summarized in Table 2. Parameters marked by the green box are identified 

successfully. The first loading scenario allows for successful identification of parameters D11 and 

D66; the second loading scenario allows for successful identification of parameter D22. Therefore, 

by composing results from the two loading scenarios, taking D11, D12 and D66 as identified using the 

first loading scenario, and D22 as identified using the second, it is possible to identify all 

(a) 

(b) 

1-1 

2-2 
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parameters except D12 with acceptable error. The engineering material properties E1, E2, μ21 and 

G12 are also back-calculated based on the identified material matrix. The property μ12 is calculated 

using the symmetric condition, μ21/E1 =  μ12/E2. The absolute error between the identified value 

and the true value for each engineering material property is listed in Table 3. E1, E2 and G12 were 

identified with high accuracy. 

Since the proposed method is formulated in such as way that the error between the external and 

internal energies is minimized, insight into the effectiveness of a particular loading scenario can be 

gained by considering the energy distribution associated with directional deformations.  These are 

given as 
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(23) 

Eq. (23) shows that the internal energy has four components corresponding to the four 
constitutive parameters D11, D22, D66, and D12. It is clear that the relative size of an energy 
component plays a role in how well the corresponding constitutive parameter can be identified. 
The percentages of each energy component are plotted in Fig. 7 for the two loading scenarios. In 
the case of pure shear loading, stress components, σ11 and σ33 are dominant due to bending and 
shearing actions as seen in Fig. 7(a). It is expected, then, as seen in Table 2, that D11 and D66 could 
be identified. In the case of uniaxial tension loading in 2-2 direction, only D22 could be identified 
successfully; this is expected, since, as shown in Fig. 7(b), the energy component in the 2-2 
direction is dominant. 

From this analysis of the performance of the identification, it can be seen that each loading 
scenario can identify some of the parameters in the material constitutive matrix.  The complete set 
of parameter values can be successfully identified by changing the loading direction and 
combining all the results from the different loading scenarios.  Both D12and μ21 have large error 
because neither of the two in loading scenarios used has a significant W12 energy component.  In 
order to increase W12, both ε11 and ε22 have to be increased.  Further experiments show that 
balanced distribution of the energy components can significantly increase the performance of the 
proposed method.  To demonstrate this, we next investigate a quarter of the open-hole specimen 
under multi-axial and non-proportional loadings. 
 

5.2.2 Open-hole test specimen under non-proportional biaxial tension-compression 
loading condition 

In this next verification case, a non-proportional biaxial loading is applied to a 50.8 mm by 
50.8 mm specimen with an arch notch at the corner. Fig. 8(a) shows the geometry of the specimen, 
the symmetric boundary conditions, and the loading directions. The non-proportional loading path 
is depicted in Fig. 8(b). The reference engineering material properties are E1 = 30.000 (GPa), E2 = 
24.000 (GPa), μ12 = 0.16, μ21 = 0.2, G1 2= 5.000 (GPa). A displacement-controlled FE analysis was 
conducted to produce synthetic data in the same way as used in the previous case, except that a 
total of nine loading steps are included in this case. In the SSGA optimization process, the initial 
upper and lower bound errors, the total number of generations, the crossover rate, and the mutation 
rate are set to be the same as in the previous case. Fig. 9 shows the converged objective function 
value after 6000 iterations. 
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(a) 

 
(b)

 
Fig. 7 Energy component percentages: (a) pure shear loading case, (b) uniaxial tension 

                       loading in 2-2 direction 

 

 

      
(a) 

  
(b) 

Fig. 8 (a) FE model of the specimen with symmetric boundary conditions and 

                                   (b) applied non-proportional loading path 

 
Table 4 Identification results of case two: biaxial loading case 

Boundary Tractions Material Matrix (GPa) Error (%) 
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Fig. 9 Objective function values vs. No. of iterations 

 
 

Table 5 Identification results of engineering material properties 

 E1 (GPa) E2 (GPa) G12 (GPa) µ12 µ21 

True Value 30.000 24.000 5.000 0.160 0.200 

Identified 29.981 23.980 4.611 0.168 0.210 

Error (%) 0.07 0.08 7.78 4.98 5.17 

 

 

 
Fig. 10 Energy component percentage of the biaxial load case 

 

 

As before, the internal energy computed by using DIC stresses and DIC strains during the nine 

loading steps are used in the objective function to identify the material parameters. For this case, 

all parameters are identified successfully; each parameter has an acceptable error with respect to 

the corresponding true value (See Table 4). The non-proportional biaxial tension-compression test 

used generates multi-stress states at every material point within the specimen. Moreover, due to 
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the geometry of the specimen, considerable shear stresses are developed even though only tension-

compression loading is applied. As shown in Fig. 10, the internal energy components are relatively 

better balanced than in the previous case; in particular, the relative size of energy component W12 

is significantly larger, resulting in improved identification of D12. When the identified material 

parameters are used to backcalculate the engineering material properties, elastic moduli E1 and E2 

are identified with errors less than 0.1%. The Poisson ratio μ21 and shear modulus G12 were also 

identified with acceptable errors, 5.17% and 7.78%, respectively (See Table 5). According to the 

results from this example, the non-proportional loading with measurements at multiple loading 

steps and non-uniform stress states are clearly beneficial in identifying material stiffness values. 

Fig. 11 compares S11, S22, and S12 stress (GPa) contours at the second load step for three sets 

of material parameters: initial parameters at the lower bound of the parameter sets used at the start 

of the SSGA optimization, the identified material parameters, and the true parameters. The 

reconstructed stress field using the identified material stiffness parameters is clearly consistent 

with the reference stress field. 

Comparing with traditional material characterization methods using strain gages, the proposed 

method has advantages in the fact that it can utilize full-field displacements from the noncontact 

DIC sensing technique.  It is notable that strain gages can provide only localized strain values at a 

limited number of locations.  Moreover, accuracy of the measured strains could vary depending on 

the quality of installation.  In contrast, the proposed method allows for better estimation of the 

tested material’s constitutive parameters, owing to the additional information provided by the full-

field displacement, stress, and strain data obtained via digital image correlation (DIC). 

 

 

 

Fig. 11 Comparison of the stress contours at second loading step for simulations using initial,  

                    identified and true material parameters 
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5.3 Investigation of effects of noise on identification performance 
 
The performance of the proposed method depends on the quality of the measured boundary 

force data, and full-field and boundary displacements obtained from digital image correlation.  

Since measurement error and noise will naturally be present in any experimental data, a simulation 

experiment was conducted to assess the effects of noise in both the loading data and the DIC 

displacement data. The simulation injects noise of practical levels in the synthetic data previously 

produced by FE simulation, and re-runs the proposed method with the noisy synthetic data. For 

this test, the verification case that used the open-hole test specimen under biaxial non-proportional 

loading is selected.  

Image noise is usually in the form of undesirable random fluctuations of the brightness or color 

information in the color image produced by the CCD (Charge-Coupled Device) camera when it 

captures the images in a harsh environment. In the case of grayscale images, the noise presents in a 

form of variation of the gray level of a pixel from its true value; the gray level is a single number 

and carries the light intensity information at that pixel. Such image noises will degrade the quality 

of the image and could potentially impose difficulties to any DIC-based inverse identification 

algorithm. To assess the robustness of the proposed method in the presence of image noise, it is 

assumed that the images used to provide displacement information are corrupted by Gaussian 

noise, with different gray levels of noise at every pixel. The function used to introduce the noise 

(Besnard 2006) is  

lf

Pg

u 2/1
2

7

212






  
(24) 

where σu is the standard deviation of the full-field displacements, due to the introduction of 

Gaussian noise in the pixel gray levels, σg is the standard deviation of the gray level, P is the 

physical pixel size, <| f |2> is a spatially averaged gradient of the gray level within the zone of 

interest (ZOI), and l is the smallest dimension of the ZOI, measured in pixels. From Eq. (24), it 

follows that the larger the size of a single pixel size, and the smaller the size of the ZOI, the larger 

the noise that will be introduced. The averaged gradient <| f |2> represents the averaged level of 

contrast of the image and in general, a small contrast level leads to a high noise level in an image. 

In this case, the minimum dimension of the ZOI is assumed to be 144 pixels and the physical pixel 

size is set to be 0.013889in/pixel. σu is shown in Fig. 12 as a function of the standard deviation of 

the gray level for  different <| f |2>  values. In practice, for most CCD cameras the noise level is 

characterized with a maximum range less than 3 gray levels. Therefore, σg = 3 is assumed for the 

image noise. The displacement fluctuations caused by the image noise has zero mean and standard 

deviation σu calculated by Eq. (24). These fluctuations are superimposed onto the synthetic full-

field displacements to produce noisy displacement data. 

In order to simulate the noise in the measured boundary force data, the synthetic loading data 

were also perturbed. It is notable that the measurement errors of most transducers depend on the 

full-rated output (FRO). Even though many manufacturers specify the linearity of their load cells 

as a percentage of the FRO, effects of the noise floor could be amplified if only a small fraction of 

the full loading capacity is utilized; for example, a load cell rated at 0.05% FRO produces a 

reading error of 5% at 1:100
th
 of full scale. Thus, a load cell with proper capacity has to be chosen 

when setting up an experimental tested to reduce the propagation of uncertainty in the identification 
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Fig. 12 Standard deviation (σu) of displacement field introduced by Gaussian noise verses gray level  

               for different spatially averaged gradient values (<| f |
2
>  = 20, 40, 60, 80, and 100) 

 

 

 
(a)

 

 
(b)

 
Fig. 13 Identified results represented by: (a) material constitutive parameters; (b) engineering material 

              properties under image noises (σu=0, 0.1%, and 0.25%) and the force measurement error  (σr =  

              0.25%) in all three cases 

 

 

method. In normal practice, the uncertainty (defined as 2.4 times the standard deviation) of the 

measurement error by the Class A load cell is less than 0.25% (ASTM 2006). Thus, for our 

experiment the synthetic load data at each load step were randomly perturbed with Gaussian noise 

with zero mean and standard deviation of σr = 0.25% as a severe noisy case. 

The errors in the parameters identified by the proposed method using noisy data are shown in 

Fig. 13. Three different image noise levels (σu = 0, 0.1% and 0.25%) and load cell noise level (σr = 

0.25%) are considered. The load cell noise is applied in all three tested cases. It is observed that 

the errors in the identified D11 and D22 are small. This implies that the proposed method can 
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identify material parameters in a way that is insensitive to the perturbation of the reference data, 

provided that the corresponding energy components are of reasonable size. The reason that the 

identification of D66 and D12 is relatively more sensitive to noise is that the fractions of the 

corresponding energy components W66 and W12 are marginal compared to the other energy 

components. Not surprisingly, relatively large error in D66 and D12 results from relatively large 

error in the Poisson ratio μ21 and shear modulus G12 which are backcalculated from the identified 

material stiffness values. 

 

 

6. Conclusions 
 

In this paper, we present a novel inverse identification method for material characterization 

based on two-dimensional digital image correlation. In contrast with conventional material 

characterization methods using strain gages, which can characterize material properties only at 

specific points, the proposed method can obtain the averaged material properties for an entire 

region of the specimen. A primary difference from existing identification methods is that the 

proposed method does not need to solve boundary value problems of the target specimens using 

recursively updated parameters; in this sense, the method is free of finite element analysis (FEA). 

Unlike the VFM, the proposed method ensures that the computed stress fields are statically 

admissible by basing them on the true DIC displacement fields. For this purpose, the equilibrium 

is enforced by selecting polynomial terms that satisfy the strong form of the equilibrium equations 

and nodal force equilibrium conditions. The element-by-element approach has the advantage that it 

is less memory-intensive than approaches that need to assemble large system matrices for the 

entire finite element model. The method also allows flexibility in the choice of the polynomial 

order of the stress field approximations, depending on the element size and stress gradients. The 

approach explicitly enforces the equilibrium conditions based on the true DIC displacements, and 

minimization of the objective function in terms of the energy principle also implicitly enforces 

traction and displacement boundary conditions.   

The presented method has been validated in simulation using a set of synthetic data based on 

finite element simulation of specimens made of materials having isotropic and orthotropic 

properties. The effect of loading conditions (i.e., proportional and non-proportional loadings) on 

the performance of the identification method has been investigated, as has the role that the 

specimen geometry plays in generating the different non-uniform stress fields needed for 

identification. The method is shown to successfully find the parameters of the material constitutive 

matrix. Energy component analysis is used to give insight into why some parameters are identified 

with less error than others, and further, to provide guidance for the design of the experiments. 

Experimental noise inherent in capturing images and measuring loadings are considered in order to 

verify the robustness of the proposed method in the presence of noise. Three material properties 

(E1, E2 and μ12) could be accurately identified in the presence of reasonable and practical levels of 

noise. Although G12 shows relatively higher sensitivity to the noise than the other parameters, its 

sensitivity could be potentially improved by design of optimal experiments. The loading direction 

and the specimen geometry are seen to have significant influence on the performance of the 

method for identification of composite material; the design of optimal experiments, i.e., the 

consideration of optimal specimen geometry and loading paths, will be addressed in the further 

research.  
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