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Abstract.  Complex structures are usually assembled from several substructures with joints connecting 
them together. These joints have significant effects on the dynamic behavior of the assembled structure and 
must be accurately modeled. In structural analysis, these joints are often simplified by assuming ideal 
boundary conditions. However, the dynamic behavior predicted on the basis of the simplified model may 
have significant errors. This has prompted the researchers to include the effect of joint stiffness in the 
structural model and to estimate the stiffness parameters using inverse dynamics. In the present work, 
structural joints have been modeled as a pair of translational and rotational springs and frequency equation 
of the overall system has been developed using sub-structure synthesis. It is shown that using first few 
natural frequencies of the system, one can obtain a set of over-determined system of equations involving the 
unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate 
of the unknown stiffness parameters. The estimation procedure has been developed for a two parameter joint 
stiffness matrix. 
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1. Introduction 
 

Modeling and dynamic response analysis of a complex structure has become a challenging task 
due to uncertainty in system parameters, particularly those associated with structural joints. 
Complex structures are usually composed of several substructures with joints to connect them 
together. These joints have significant effects on the behavior of the assembled structure and must 
be accurately modeled. In earlier analysis, joints were simplified by assuming ideal boundary 
conditions such as a fixed joint or a simply supported joint etc. 

However, the analytical or FEM models with the simplified boundary conditions fail to predict 
the modal parameters accurately and often the deviation is significant enough asking for the need 
of proper joint modeling in the analysis. This has prompted the researchers to model the structural 
joint as an elastic support and to suggest suitable procedures for the joint parameter estimation. 
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Among the early research works, authors (Wang and Liou 1991) have discussed a method for 
identification of joint properties using measured Frequency Response Functions (FRFs). The FRF 
sub-matrices connected with the joint co-ordinates were synthesized from two sets of measurement 
data for the structural system; one with the joint and another without the joint. Joint stiffness and 
damping parameters were then estimated from the differences of the FRF matrices. An iterative 
method have been suggested by some authors (Wang and Sas 1990) where in  the multi degree of 
freedom model of a structure was converted in to several single degree of freedom systems by 
imposing selected eigenvector which was sensitive to a joint parameter. Joint parameters were 
solved by computing modal parameters of each single degree of freedom system and comparing 
them with measured modal parameters.  

Use of model updating techniques (Friswell et al. 1995) in identification of unknown joint 
parameters initiated a series of research activities since past two decades. These research works 
can be broadly divided in to two areas. One is to investigate the sensitivity of modal parameters 
due to the joint parameters. The frequency equation of the structural systems with joint 
characteristics is formulated either analytically or through FEM. Second approach is to measure 
FRFs of the structure with the joint and comparing with the computed FRFs of the system without 
the joint. (Pabst and Hagedorn 1995) derived an analytical frequency equation of a cantilever beam 
with fixed end boundary conditions modeled through a translational and a rotational spring. The 
resulting nonlinear frequency equation was used to identify the stiffness values of the translational 
and the rotational springs from a pair of natural frequencies. They suggested measurement of more 
than two frequencies and then computing the joint parameters for each pair of frequencies and 
finally taking the average of all such computed values as the estimate of the stiffness parameters. 
(Mottershed et al. 1996) discussed a method for model updating of mechanical joints by using 
eigen value sensitivities to geometric parameters. The method was demonstrated for a beam with 
welded flange and a cantilever plate. The authors concluded that while measurements may 
sometime tend to be insensitive to stiffness parameters, geometric parameters have considerable 
potential in updating of the joint model. (Nobari et al. 1993) discussed the problem of stiff joints 
in updating process and presented a method for updating the joint model, based on accurate 
substructure models. (Ahmadian et al. 2001) simulated the effect of an elastic support using a set 
of nodal reaction forces on the boundary of a free structure. The nodal forces were related to 
support stiffness through a force-displacement relationship. The sub-system equations were 
combined to obtain a nonlinear frequency equation and it was demonstrated that by substituting 
measured natural frequency values in the equation, one can identify the joint parameters. The main 
advantage of the method is that no ill-conditioning occurs during the identification procedure. 
However, it requires the complexity of solving a nonlinear equation. (Li 2002) presented a model 
updating method on joint stiffness identification based on reduced order characteristics polynomial 
(ROCP) using natural frequency measurement only. It was observed that the accuracy in 
identification of rotational stiffness was less than that of the translational stiffness. 

The second approach of joint identification is based on measurement of FRFs of the whole 
system and comparing it with joint excluded structural analytical model. (Yang and Park 1993) 
proposed a method based on subset frequency response function measurement. Experimentally an 
incomplete set of FRFs were measured and it was shown that if the number of measured FRFs are 
greater than or equal to number of joint related degree of freedom, then the unmeasured FRFs can 
be estimated from the measured FRFs and the analytical model of the structure. (Ren and Beard 
1995) discussed on how to reduce the effect of measurement errors in the FRF measurement. 
Joints between substructures were modeled through stiffness, damping as well as mass matrices. 
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The matrices were identified from the FRF data by using a best solution criterion. Another 
identification method based on free-interface component mode synthesis method was reported by 
(Nobari et al. 1995). Further developments using sub-structure synthesis of joint matrix with 
structural matrices can be found in the research works (Yang et al. 2003, Ahmadian et al. 2007, 
Celic et al. 2008). Although these methods based on FRF measurements look attractive, one of the 
major practical constraints is the large number of FRF measurement and particularly the difficulty 
in measurement at the joint interface degree of freedoms.  

Present work suggests a simple identification procedure based on only first few natural 
frequencies of the structure. The method employs the concept of Sub-Structure Synthesis (SSS) 
(Bishop 1960) to obtain the frequency equation of a structure connected with a joint. The 
frequency equation is formulated in terms of the unknown joint parameters. Only natural 
frequencies are measured and a set of over determined system of linear equations are constructed 
in terms of the unknown stiffness parameters, which are then estimated through regression 
analysis. The method is demonstrated for a cantilever beam with two parameter joint model, in 
which only the translational and the rotational spring stiffness are considered. The numerical 
simulation has been carried out with non-dimensional stiffness parameters so that the results are 
applicable for any size or dimension of the actual test specimen. The accuracy of parameter 
estimation has also been investigated for different range of joint parameters and a stiff region has 
been identified through natural frequency sensitivity study. The procedure has been also tested 
with frequency values perturbed with measurement error associated with typical frequency 
measurement instruments.   
 
 
2. Sub-structure synthesis of systems joined by two interface co-ordinates 
 

The concept of sub structure synthesis (Allen et al. 2010) provides a formulation for the 
derivation of Frequency Response Functions (FRFs) of a composite system from the knowledge of 
sub-system FRFs. Test data of the composite system can be used for identification of its 
subsystems (Sjovall Per et al. 2008). Figs. 1(a), (b) shows a composite system A consisting of two 
sub systems B and C connected by two joint co-ordinates X and θ at the interface. The forcing 
functions corresponding to these two co-ordinates are F and M respectively. Fig. 1(b) shows the 
sub-systems separated with corresponding displacements and forcing functions at the interface. 
 
 

Fig. 1(a) A composite system with sub-systems B and C 

 

Fig. 1(b) Force and displacements acting on the sub-systems 

B C
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Considering the dynamic equilibrium of the sub-systems B and C separately, one can obtain 

  MFX 1211  ;     MFX 1211                     (1a) 

  MF 2221  ;     MF 2221                     (1b) 

where, β11, β22, γ11 and γ22 are the direct receptance functions and β12, γ12, β21, γ21 are the cross 
receptance functions of sub-systems B & C, defined as 
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Eqs. (1a), (b) can be written in a matrix form as 
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When the sub-systems are joined at the interface, the compatibility requirement of forces and 
displacements at the joint co-ordinate gives 

 XXX    and                            (5a) 

also 

 FFF     and    MMM                      (5b) 

Defining the direct and cross FRFs of composite system A as 
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One obtains 
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Now, from Eqs. (3), (4) and (5) 
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which means 

       111  
                                (9) 

Simplifying Eq. (9) with Eqs. (3) and (4), receptance matrix    is obtained as 
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Where 

2
121222221111 )())(.(                       (10) 

The frequency equation for the composite system is obtained by setting the denominator of the 
receptance functions as zero, which gives 

0)())(.( 2
121222221111                      (11) 

Thus if the FRFs at the interface co-ordinates are known for the individual sub-systems, then 
the natural frequencies of the composite system can be obtained by solving the frequency equation, 
Eq. (11). If sub-system C is a structural component and sub-system B is a joint characterized by 
the joint parameters βi,j, then Eq. (11) provides a basis to study the effect of joint parameters on the 
system natural frequencies. However, in the present work, Eq. (11) will be exploited for an inverse 
analysis, where one can estimate the joint parameters from the over determined set of measured 
frequency data, using multi-linear regression technique. In the following sections, a method is 
developed for a cantilever beam for characterization of its fixed end joint stiffness parameters. The 
joint stiffness matrix [β]is considered to be diagonal with two unknown joint parameters. 
 
 
3. Joint parameter estimation of a cantilever beam 
 

Many engineering applications such as a turbine blade, a tall chimney or a robot arm are often 
modeled as cantilever beams for the study of dynamic response characteristics. Their dynamic 
response under external excitation depends on the system natural frequencies and mode shapes, 
which are obtained through a computational method such as FEM, where the fixed end boundary 
conditions are generally taken as ideal joint. Although with this idealization of boundary condition, 
the computation becomes simple, measured modal parameters are often found to differ 
considerably from the computed one based on ideal model. A method is presented here, where the 
fixed end is modeled as an elastic support consisting of translational and a rotational spring. The 
concept of substructure synthesis, discussed in the previous section, is used to derive the frequency 
equation of the composite system consisting of a free-free beam interfaced with a joint at one end. 
An over determined system of linear equations involving the unknown joint parameters are 
formulated from the frequency equation using a set of measured natural frequency data. The 
equations are solved for best estimation of the support parameters using multi-linear regression 
procedure. In the model, joint sub-system is represented by the diagonal FRF matrix, in which the 
diagonal elements are the reciprocal of translational and rotational spring stiffness.  

 
3.1 Estimation of two parameter joint model 

 
In a two parameter joint system, the cantilever beam is modeled with elastic constraint at the 
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fixed end represented by a translational spring (stiffness K1) and a rotational spring (stiffness K2) 
as shown in Fig. 2(a). The beam is considered as a composite system consisting of a free-free 
beam as sub-system C and the elastic springs as sub-system B, as shown in Fig. 2(b). 

The FRF matrix for B is then represented by a diagonal matrix   





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
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matrix [γ] for C can be obtained as (Bishop 1960) 
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where, (EI) is bending stiffness of the beam, L is length of the beam and 
4/142
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which (ρA) is the linear mass density function and ω is the natural frequency of flexural vibration 
of the cantilever beam. The functions F1, F3, F5, F6 are defined as (Bishop 1960) 
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Now, simplifying frequency equation by substituting direct and cross receptances of 
substructure B and C in Eq. (11), gives 
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(a) 

 
(b) 

Fig. 2(a) Cantilever beam modeled with elastic support at fixed end, (b) cantilever beam,  
              separated with sub system B and C 
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where )cosh()cos(F 14  
The joint stiffness parameters can be represented as non-dimensional parameters 
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Equation (13) then becomes 
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If we measure the first ‘n’ natural frequencies ωi (i = 1, 2…..n), and λj, λk be the values 
corresponding to ωj and ωk, then 
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Subtracting Eq. (16) from Eq. (15), one obtains 
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iyixi CKBKA  **                         (18) 

Where Ai, Bi and Ci are the coefficients in Eq. (17) which can be computed from the pair λj, λk. 
For each pair of j and k, we get one equation from Eq. (18). Thus if we measure n natural 
frequencies, we get 2Cn  number of equations in two unknowns Kx and Ky. For n = 3, the number 
will be 3 and for n = 4, it will be 6. Since number of equations will be generally more than the 
number of unknowns, which are two here, one can employ the method of multi linear regression 
(Draper 1998) to get a least square error estimate of the unknown joint stiffness parameters. Taking 
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   or       QKP                      (19) 

The least square error criterion gives the best estimate of the joint parameter vector as 

  QPpinvK *)(ˆ                               (20) 

Where pinv is the generalized inverse of a matrix 
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3.2 Numerical simulation 
 

For numerical simulation, Eq. (14) is considered here again, in terms of non-dimensional 
stiffness parameters Kx and Ky and non-dimensional natural frequency λ given as 
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F
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When Kx and Ky values are very high, the equation reduces to F4 = 1 + cos(λ)cosh(λ) = 0, which 
is the frequency equation of an ideal cantilever beam, for which λ values are 1.875, 4.692, 7.855 
and so on. However, in practical cases, Kx and Ky will have some finite values depending on type 
of the joint and λ values will be less than those of an ideal cantilever beam. For a given set of 
support stiffness, non-dimensional natural frequencies λ can be solved from Eq. (14). Figs. 3(a-e) 
show the variation of first five natural frequencies for a wide range of translational stiffness, Kx 
and rotational stiffness Ky. 

The support parameters are most important in lower modes and are less significant in higher 
modes (Ahmadian et al. 2001). From the Figs. 3(a-e) one can observe that, first three modes are 
significantly affected only for non-dimensional stiffness values Kx and Ky below 1000 and 500 
respectively. Thus a joint having both these stiffness values in the higher range can be considered 
as stiff joint. 

For identification of the support stiffness through Eqs. (19, 20); first five natural frequencies 
are computed from FE model (referred to as measured) with specified joint parameters. FE model 
is discretized into 40 finite elements. The dimensions of the beam are taken as Length = 1m, cross 
section = 2×10-4m2; density = 7800 Kg/m3 and Young modulus E = 2.07×1011N/m2. The values of 
support stiffness are considered corresponding to Kx = 1000, 500 and 100 and Ky = 500 and 100. 
The computed non-dimensional natural frequencies λ for various combinations of Kx and Ky values 
are given in Table 1a. Substitution of these λ values in Eq. (17) gives ten equations in two 
unknowns Kx and Ky, which are then estimated through multi-linear regression. Table 1b shows the 
estimated values and percentage error in estimation. It is observed that estimates are very much 
accurate, although the error is slightly more in the stiff region Kx = 1000 and Ky = 500 and above; 
the reason being lower frequencies are insensitive to joint parameters in stiff region (Lee et al. 
2007). 

These estimates are obtained with data without any measurement error. However, for practical 
measurement of natural frequencies, effect of measurement noise also needs to be considered. 
Natural frequencies are generally measured using FFT analyzers. The major source of error with 
these instruments is spectral resolution error, which depends on data block size for FFT 
processing. For a typical 2048 data block size, 800 spectral lines are displayed in the given 
frequency range f, which means two adjacent frequency data will be separated by f /800. This is 
known as resolution error as any frequency falling within two adjacent frequency lines cannot be 
displayed at actual position but at one of these two frequency positions only. The error in the 
measurement then becomes f/2*800 = 0.0625%. With a data block size of 4096, there will be 1600 
spectral lines in the frequency range and measurement error will be f/2*1600 = 0.03125%. Over 
and above this resolution error, there may be random noise also. Hence the frequency values 
considered in earlier simulation are perturbed by %05.0  and %1.0  to test the effect of 
measurement error on the estimation procedure. Tables 2 and 3 present the estimates of joint 
stiffness parameters for various combinations of Kx = 500, 100 and Ky = 100, 50, 20, 10 under 

%05.0  and %1.0 measurement error. 
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Fig. 3(a-e) Sensitivity of natural frequencies on support stiffness parameters for the cantilever beam 
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Table 1a Computed non-dimensional frequencies λi of a cantilever beam for different joint parameters  
using FEM 

Joint Parameters λ1 λ2 λ3 λ4 λ5 
Kx = 100  Ky = 100 1.8228 3.7746 5.8178 8.687 11.7608 
Kx = 500  Ky = 100 1.8500 4.4368 6.8022 9.0929 11.9156 

Kx = 1000  Ky = 100 1.8534 4.5442 7.2550 9.5648 12.1335 
Kx = 1000  Ky = 500 1.8679 4.5755 7.2837 9.5658 12.1464 

 Kx = 2000  Ky = 1000 1.8715 4.6352 7.5772 10.1576 12.5728 
  
Table 1b Estimates of joint stiffness parameters in absence of measurement error using  
Sub-Structure Synthesis (SSS) model 

Joint parameters specified 
in FE model 

Estimate of Kx with
SSS model 

% Error in 
estimation of Kx

Estimate of Ky with 
SSS model 

% Error in  
estimation of Ky 

Kx = 100; Ky = 100 99.8639 -0.136% 100.199 0.19% 
Kx = 500; Ky = 100 500.165 0.031% 100.278 0.27% 
Kx = 1000; Ky =100 1000.15 0.015 % 100.167 0.16% 
Kx = 1000; Ky = 500 1015.87 1.587 % 515.831 3.16% 
Kx = 2000; Ky = 1000 2132.19 6.61 % 1087.98 8.79% 

 
Table 2a Estimates and estimation errors for Kx = 100 with 0.05% frequency perturbation 

Exact values 
Estimation of Kx Estimation of Ky 

+0.05% Freq. 
perturbation 

-0.05% Freq.
Perturbation

Average % 
error 

+0.05% Freq.
perturbation

-0.05% Freq. 
Perturbation 

Average % 
error 

Kx = 100 
Ky = 10 

100.5948 99.3243 0.64% 10.2923 9.7270 2.83% 

Kx = 100 
Ky = 20 

101.5015 98.546 1.48% 20.7382 19.3149 3.56% 

Kx = 100 
Ky = 50 

103.127 97.0636 3.03% 52.667 47.3155 5.35% 

 

Table 2b Estimates and estimation errors for Kx = 100 with 0.1% frequency perturbation 

Exact 
values 

Estimation of Kx Estimation of Ky 
+0.1% Freq. 
perturbation 

-0.1% Freq.
Perturbation

Average % 
error 

+0.1% Freq.
perturbation

-0.1% Freq. 
Perturbation 

Average % 
error 

Kx = 100 
Ky = 10 

101.3257 98.807 1.26% 10.5864 9.4551 5.65% 

Kx = 100 
Ky = 20 

103.1432 97.2183 2.96% 21.5059 18.6537 7.13% 

Kx = 100 
Ky = 50 

106.745 94.37 6.18% 55.3564 44.6693 10.68% 

 
 
Following observations can be made from the estimation results presented in Tables 2, 3. 
1) Estimation error is more under %1.0 measurement error compared to that under %05.0  
measurement error for any combination of Kx and Ky.  
2) When the stiffness parameters are low, say Kx = 100 and Ky =10, error is very small, i.e., only 
0.64% in Kx and 2.83% in Ky for %05.0  measurement error. However for higher stiffness values 
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such as for Kx = 500 and Ky = 100, error is rather much higher, i.e., 5.80% and 10.95% respectively 
under %05.0  measurement error. From Fig. 3(a), it is observed that first frequency becomes 
insensitive to Kx above 400 and so estimated error is more. Since lower modes are important in 
estimation of support stiffness parameters, accuracy in measurement of first natural frequency 
improves the result as shown in Table 3b. 
3) At higher stiffness values, frequency sensitivity reduces and joint becomes stiff.  
 
 
Table 3a Estimates and estimation errors for Kx = 500 with 0.05% frequency perturbation 

Exact values 
Estimation of Kx Estimation of Ky 

+0.05% Freq. 
perturbation 

-0.05% Freq.
Perturbation 

Average % 
error 

+0.05% Freq.
perturbation 

-0.05% Freq. 
Perturbation 

Average % 
error 

Kx = 500 
Ky = 10 

506.73 493.47 1.33% 10.243 9.765 2.39% 

Kx = 500 
Ky = 20 

509.348 491.054 1.83% 20.628 19.4 3.07% 

Kx = 500 
Ky = 50 

517.174 484.349 3.28% 53.204 47.328 5.88% 

Kx = 500 
Ky = 100 

531.97 473.99 5.80% 112.34 90.44 10.95% 

 
 
Table 3b Estimates and estimation errors for Kx = 500 and Ky =100 with 0.05% frequency perturbation 
in frequencies 2 to 5 only 

Exact 
values 

Estimation of Kx Estimation of Ky 
+0.05% Freq. 
perturbation 

-0.05% Freq.
Perturbation

Average% 
error 

+0.05% Freq.
perturbation 

-0.05% Freq. 
Perturbation 

Average 
% error 

Kx = 500 
Ky = 100 

502.799 494.68 0.81% 99.08 100.34 0.74% 

 
 
Thus although the estimates of joint stiffness parameters are very good in the frequency 

sensitive region in presence of measurement error, these estimates do get affected by measurement 
error in the stiff region. Although, the stiff region can be characterized by values of Kx and Ky 
above 1000 and 500 respectively, one gets to know this only after the parameters are estimated. 
From Table 1a, it can be seen that for stiffness parameters Kx and Ky equal to or above 1000 and 
500, first three natural frequencies are very close to those of the ideal cantilever beam. Thus a 
preliminary idea of joint stiffness can be obtained from the percentage deviation of lower natural 
frequencies from those of the theoretical values of an ideal cantilever beam.  
  
 
4. Experimental case study 
 

Fig. 4(a) and Fig. 4(b) shows the test set up for measuring the vibration response of a cantilever 
beam embedded in concrete. The beam was excited through impulse and free vibration response 
was measured using B&K 4370 (sensitivity 100 mV/g) accelerometer and FFT analyzer (DI-22, 
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Diagnostic Instruments, UK). 
A data block size of 2048 samples with 800 spectral lines was used to measure the natural 

frequencies of beam. The geometrical and material properties of beam are listed in Table 4. The 
material properties in terms of ratio (E/ρ) used in FE model is updated through the testing of a 
beam in free-free condition. 

The vibration response of cantilever beam embedded in concrete is measured using FFT 
analyzer and is shown in Fig. 5.  

The measured natural frequencies at the resonance peaks of frequency spectrum is given in  
Table 5; to improve the accuracy in measurement, different frequency bands were selected in FFT 
analyzer e.g. for first natural frequency a band of 0-100 Hz and for second 0-200 Hz was selected. 
However a frequency spectrum with 0-500 Hz frequency band is shown here. 
It is observed that the measured natural frequencies are less by more than 5% compared to natural 
frequencies of ideal cantilever beam; so one can predict that the joint stiffness will be in sensitive 
region (non stiff region). The linear parameters of the joint, i.e. translational stiffness K1 and 
rotational stiffness K2 are identified using first four natural frequencies given in Table 5. Linear 
equation in two unknowns Kx and Ky were obtained from Eq. (14) using first four measured natural 
frequencies; Eq. (20) was then used for best estimate of non dimensional stiffness parameters 
using non dimensional frequencies. The estimated non dimensional stiffness parameters and 
corresponding linear joint parameters are given in Table 6. 
 
 

 
(a) 

 
(b) 

Fig. 4 (a) Experimental test set up (b) schematic diagram of beam embedded in concrete 
 
 
 Table 4 Dimensions and material properties of beam 

Dimensions Material Properties 
Cross sectional area: (0.025 x 0.025) m2 Elastic modulus, E : 2.075x1011 N/m2 

Length of beam, L : 0.797 m Density, ρ : 7800 Kg/m3 
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Fig. 5 Vibration response of cantilever beam using real time FFT analyzer (1 mV = 10-2 g) 

 
 
        Table 5 Measured natural frequencies of cantilever beam embedded in concrete 

Mode Natural Frequency (Hz) 
Non-dimensional Natural 

Frequency 
1 27.5 1.7183 
2 176.5 4.3532 
3 490.625 7.2579 
4 928.5 9.9846 
5 1512.5 12.7434 

 
 
      Table 6 The identified joint parameters 

Non-dimensional joint stiffness parameters Joint stiffness parameters 
Kx = 1902.813 K1 = 2.538x107 (N/m) 
Ky = 9.58023 K2 = 8.11x104 (N-m/rad) 

 
 
 Table 7 Comparison of natural frequencies measured experimentally and computed with updated FE model 

Mode fr1 fr2 fr3 fr4 fr5 
Measured natural 

frequencies 
27.5 Hz 176.5 Hz 490.625 Hz 928.5 Hz 1512.5 Hz 

Natural frequencies with 
updated FE model 

27.436 Hz 176.39 Hz 490.56 Hz 928.4 Hz 1473.6 Hz 

 
 
The identified stiffness parameter Kx lies outside the sensitive zone of first two modes and it is 

in sensitive zone of next two modes. Since lower modes are important in boundary parameter 
estimation, accuracy in the measurement of first two modes can improve the estimation results. 
Next, the identified joint parameters were incorporated in FE model and natural frequencies are 
computed; these frequencies are compared with experimentally measured natural frequencies, 
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Table 7 shows the comparison. The FE model has not been presented here for the sake of brevity. 
The results of FE model agrees well with the proposed model of cantilever beam. Although 

only first four measured natural frequencies are considered in regression analysis, the fifth 
measured natural frequency is also close to the one computed with FE model. This shows that the 
higher natural frequencies, not considered in regression analysis, also validate the proposed 
algorithm.  
 
 
5. Conclusions 
 

A new procedure for joint stiffness identification has been proposed in this work. The 
procedure is based on natural frequency measurement and hence is very much convenient in 
practical applications. Using method of sub-structure synthesis, a frequency equation in terms of 
the joint stiffness parameters is developed for two parameter structural joint. With the measured 
natural frequencies, one can obtain an over determined set of equations, which is then processed 
through multi-linear regression to obtain the best estimates of the joint parameters. It is shown that 
the procedure gives accurate estimates for a wide range of stiffness values. The identification 
procedure is demonstrated with an experiment on cantilever beam embedded in concrete. It is seen 
that the experimentation results agree well with the corresponding FE model. 
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