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Abstract.    Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness is 
analyzed under shear deformation theory with different boundary conditions by applying collocation with 
spline approximation. Linear and exponential variation in thickness of layers are assumed in axial direction.  
Displacements and rotational functions are approximated by Bickley-type splines of order three and 
obtained a generalized eigenvalue problem. This problem is solved numerically for an eigenfrequency 
parameter and an associated eigenvector of spline coefficients. The vibration of three and five–layered 
conical shells, made up of two different type of materials are considered. Parametric studies are made for 
analysing the frequencies of the shell with respect to the coefficients of thickness variations, length-to-radius 
ratio, length-to-thickness ratio and ply angles with different combination of the materials. The results are 
compared with the available data and new results are presented in terms of tables and graphs. 
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1. Introduction 
 

The study of free vibration of laminated composite shell structures are attracted to many 
researchers in the field of aerospace, shipbuilding and chemical industries. Since the composite 
structures have more desirable damping and shock absorbing characteristics than the homogeneous 
ones. The use of the lamination for the structures leads to design with the maximum reliability and 
minimum weight. It is also known that the laminated composite shells exhibit large thickness 
effects than the structures made of homogeneous materials. So, it tends to analyze the free 
vibration of laminated composite conical shells including shear deformation theory (Kayran and 
Vinson 1990). Sivadas and Ganesan (1991) presented a paper on vibration of laminated conical 
shells with variable thickness using FEM. Wu and Wu (2000) studied the 3-D elasticity solutions 
for the free vibration analysis of laminated conical shells by an asymptotic approach. The 
influence of orthotropic material and the frequency characteristics for a rotating thin truncated 
circular symmetrical cross-ply laminated composite conical shell with simply-supported boundary 
condition using the generalized differential quadrature method was studied by Hua and Lam 
(2001). Shu (1996) also analyzed vibration of composite laminated conical shells by generalized  
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differential quadrature technique. Wu and Lee (2001) presented the results on laminated 
conical shells with variable stiffness. Free vibration of laminated cross-ply and angle-ply plates 
and Axisymmetric vibration of layered  cylindrical shells of variable thickness were analysed 
using spline method by Viswanathan et al. (2007, 2008, 2011). Spline strip method was used by 
Mizusawa and Kito (1995) to study the vibration of cross-ply laminated cylindrical shells.  

In the present work,  free vibration of symmetric angle-ply conical shell frusta of variable 
thickness including first order shear deformation theory (FSDT) is studied using spline function 
approximation. The thickness variations are assumed to be linear and exponential along the axial 
direction of the cone. The problem is formulated using FSDT to obtain the equilibrium equations 
of conical shell frusta. The system of coupled differential equations are obtained on a set of 
assumed displacement and rotational functions using stress-strain and strain-displacement relations 
in the equilibrium equations. These functions are assumed in the separable form to obtain the 
differential equations in terms of single variable. In preference to the many numerical methods to 
solve the problem, like those of Generalized differential quadrature (Shu 1996), Fourier series 
approach (Kabir et al. 2001) and FEM (Girgin 2006, Wang et al. 2006), spline method have been 
adopted to approximate the displacement and rotational functions. . These splines are simple and 
clear for analytical process and therefore have significant computational advantage.  

The displacement and rotational functions are approximated using cubic spline and collocation 
procedure is applied to obtain a set of field equations. The field equations along with the equations 
of boundary conditions yield a system of homogeneous simultaneous algebraic equations on the 
assumed spline coefficients which resulting to generalized eigenvalue problem. This eigenvalue 
problem is solved using eigensolution technique to get many eigenfrequencies as we required. The 
effect of frequency parameters with respect to the coefficient of thickness variations, cone angle, 
aspect ratio, circumferential node number, boundary conditions, two types of layered materials 
with three- and five- layered conical shells are presented and discussed. 
 
 
2. Theoretical formulation and method of solution 

 
2.1 Formulation of the problem 

 
Consider a laminated conical shell frusta of variable thickness along axial direction having 

arbitrary number of layers, which are perfectly bonded together is shown in Fig. 1. The orthogonal 
coordinate system (x, θ, z) is fixed at its reference surface, which is taken to be at the middle 
surface. The radius of the cone at any point along its length is r = xsinα. The radius at the small 
end of the cone is ra = αsinα and the other end is rb = bsinα. α is the semi-vertical angle  and ℓ is 
the length of the cone along its generator.  The displacement components are assumed to be in the 
form  (Toorani and Lakis 2000) 

0( , , , ) ( , , ) ( , , )xu r z t u r t z r t      

 0( , , , ) ( , , ) ( , , )v r z t v r t z r t                                                (1) 

0( , , , ) ( , , )w r z t w r t   

where u, v, and w are the displacement functions in x, θ and z directions respectively, u0, v0, and w0 

are the displacements of the middle surface of the cone and ψx, ψθ are shear rotations of any point 
on the middle surface of the cone. 
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Fig. 1 Layered conical shell of variable thickness: geometry 

 
 
The thickness variation of the kth layer of the shell is assumed in the form as 

   0( ) ( )k kh x h g x                                                            (2) 

where )/xxexp(C)/xx(C1)x(g aea   , h0k is a constant thickness of the kth layer, ℓ  
= b – a is the length of the cone and xa is the distance from the origin to x = a (small end of the 
cone). The thickness of the shell becomes uniform when g(x) = 1.  

Since the thickness is assumed to be varying along the axial direction, one can define the elastic 
coefficients Aij, Bij and Dij (extensional, bending-extensional coupling and bending stiffnesses) 
corresponding to layers of uniform thickness with superscript ‛c’ as 

 ( )c
ij ijA A g x ,   ( )c

ij ijB B g x , ( )c
ij ijD D g x                                     (3) 

( )
1( )c k

ij ij k k
k

A Q z z   , ( ) 2 2
1

1
( )

2
c k
ij ij k k

k

B Q z z    

( ) 3 3
1

1
( )

3
c k
ij ij k k

k

D Q z z   for , 1, 2,6i j                                         (4) 

 and ( )
1( )c k

ij ij k k
k

A K Q z z        for     , 4,5i j                                    (5) 

Here K is the shear correction factor, zk-1 and zk are boundaries of the k-th layer and the 
quantities 

)k(
ijQ are defined in the reference Viswanathan and Kim (2008). In the case of 

symmetric angle-ply lamination, the laminate stiffnesses A16, A26, D16, D26, A45 and all Bij are 
identically zero.  

The governing  differential equations characterising the vibration of a conical shell frusta of 
variable thickness including first order shear deformation theory is derived in terms of 
displacement functions u0(x, θ, t), v0(x, θ, t), w0(x, θ, t) and shear rotational functions ψx(x, θ, t), ψθ 
(x, θ, t) using stress-strain and strain-displacement relations of the conical shell frusta (Reddy 
1978). 

The displacement components u0, v0, w and shear rotations ψx, ψθ are assumed in separable 
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form  given as  

0 ( , , ) ( ) i tu x t U x cos n e    

0 ( , , ) ( ) i tv x t V x sin n e    

( , , ) ( ) i tw x t W x cos n e                                                      (6) 

( , , ) ( ) i t
x xx t x cos n e      

( , , ) ( ) sin i tx t x n e 
      

where  ω is the angular frequency of vibration, t is the time and n is the circumferential node 
number. 

Using the Eq. (5) into the governing differential equations, the resulting equation becomes in 
the matrix form as  

                                    

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

0

0

0

0

0
X

L L L L L U

L L L L L V

L L L L L W

L L L L L

L L L L L




     
     
             
     
     
        

                                               (7) 

where Lij are the differential operators depends on the variable x only and are given in Appendix-A. 
The non-dimensional parameters are introduced to modify the above equations as follows:  
The non-dimensional parameters are introduced   as follows: 

x a
X

l


 ,  a x b    and  [0,1]X   

'   , a frequency parameter 

0 0, '
a

h h

r a
   , ratios of thickness to radius and to a length                      (8) 

a

b
  , a length ratio 

k
k

h

h
   , relative layer thickness of the k-th layer.  

The thickness hk(X) of the k-th layer at X distance from the smaller end of the cone, already 
explained, can expressed as 

0( ) ( )k kh X h g X                                                            (9) 

where g(X) = 1 + CℓX + Ceexp(X)  
The new set of differential equations are obtained using Eqs. (8) and (9) into Eq. (7),  is given 

in  the new set of  matrix  form as  
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* * * * *
11 12 13 14 15

* * * * *
21 22 23 24 25

* * * * *
31 32 33 34 35

* * * * *
41 42 43 44 45

* * * * *
51 52 53 54 55

0

0

0

0

0
X

L L L L L U
L L L L L V

L L L L L W

L L L L L

L L L L L 

                        
         

        





                                   (10) 

The differential operators *
ijL of the matrix are given in the Appendix B. 

 
2.2 Thickness variation 

 
Case (i): 
If  Ce = 0, then the thickness variation becomes  linear.  In this case it can easily shown that   

1
1C


   , where   is the taper ratio (0) / (1)k kh h                                  (11) 

Case (ii) 
If Cℓ = 0, then the excess thickness over uniform thickness varies exponentially.  
It may be noted that the thickness of any layer at the end X = 0 is h0k for the cases (i), but is 

h0k(1 + Ce) for the case (ii). 
The following range of values of the thickness coefficients are considered 

0.5 2.1  ,    0.2 0.2eC                                                 (12) 

 Spline collocation procedure 
The displacement functions U, V, W and rotational functions Ψx, ΨΘ are approximated by cubic 

spline functions in the range of X [0, 1] as 

2 1
* 3

0 0

( ) ( ) ( )
N

i
i j j j

i j

U X a X b X X H X X


 

      

2 1
* 3

0 0

( ) ( ) ( )
N

i
i j j j

i j

V X c X d X X H X X


 

      

2 1
3

0 0

( ) ( ) ( )
N

i
i j j j

i j

W X e X f X X H X X


 

      

2 1
* 3

0 0

( ) ( ) ( )
N

i
X i j j j

i j

X g X p X X H X X


 

       

                    
2 1

* 3

0 0

( ) ( ) ( )
N

i
i j j j

i j

X l X q X X H X X



 

                                 13) 

Here, H(X – Xj) is the Heaviside step functions and defined as 
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1,
( )

0,

j

j
j

X X
H X X

X X

   
                                               (14)  

The range of X is divided in to N subintervals, at the points X = Xs, s = 1, 2, 3, …, N − 1. The 
width of each subinterval is 1/N and Xs = s/N (s = 0, 1, 2, …, N), since the knots Xs are chosen 
equally spaced.  

The assumed spline functions given in Eq. (13) are approximated at the nodes (coincide with 
the knots) and  these splines satisfy the differential equations given in Eq. (10), at all Xs and 
resulting into the homogeneous system of (5N + 5) equations in the (5N + 15) unknown spline 
coefficients, ai, ci, ei, gi, li, bj, dj, fj, kj, mj (i = 0, 1, 2; j = 0, 1, 2, …, N – 1).  To obtain 10 more 
equations, the following boundary conditions are considered in this problem. 

(i) Clamped-Clamped (C-C) (both the ends are clamped)   
(ii) Simply-supported (S-S) (both ends are simply supported) 
Combining these 10 equations with the earlier (5N + 5) equations, one can get (5N + 15) 

homogeneous equations in the same number unknowns. Thus, we get a generalized eigenvalue 
problem in the form 

2[ ]{ } [ ]{ }M q P q                                                         (15) 

Where [M] and [P] are the square matrices, {q} is the column matrix of the spline coefficients   
and λ is the eigenfrequency parameter. This eigenvalue problem is solved using FORTRAN 
programme by applying numerical technique (power method) to get the eigenvalues and 
eigenvectors as many as we required. 

 
 
3. Results and discussions 
 
Convergence study carried out for frequency parameter λ by fixing other parameters, material 

combinations, number of layers and ply angles under C-C and S-S boundary conditions with the 
number of subintervals N of the range X  [0, 1]. The value of N started from 4 and finally it is 
fixed for N = 14, since for the next value of N, the percent changes in the values of λ are very low, 
the maximum being 3%. Comparison results are made for frequency parameter  

112ipi A/hR   , (where R2 = rb) with cone angle α = 30˚ for axisymmetric vibration of two 

layered antisymmetric cross-ply truncated conical shells with coupling under S-S boundary 
conditions using FSDT and Classical shell theory (CST) shown in Table 1. The material properties 
of the individual layers are considered as: Ex / Eθ = 15, Gxθ / Eθ = 0.5, υxθ = 0.25, υxz = υθz = 0.3, Gxθ 
= Eθ / 2(1 + υxz) and Gθz = Eθ / 2(1+ υθz). It is seen, from the Table 1, that the maximum percentage 
changes between present value and available result is 5.7%. The agreement of the current result is 
quite good. 

In the present work, frequency parameter   for symmetric angle-ply layers of truncated conical 
shells is presented using two kinds of materials with respect to the circumferential mode number, 
aspect ratio, ratio of thickness to radius and ratio of thickness to length parameters. The materials  
AS4/3501-6 Graphite/epoxy (GE) and E-glass/epoxy (EGE) are considered to analyze the 
problem. The shear correction factor   is fixed as 5/6 throughout the problem (Reddy 1978, Ghosh 
and Dey 1994).  The effect of cone angle, aspect ratio, circumferential mode number and variation 

264



 
 
 
 
 
 

Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness 

   Table 1 Comparison of natural frequencies for axisymmetric cross-ply laminated conical shell frusta with  
                simply supported boundary conditions (α  = 30˚, ℓ/rb = 0.5)  

h/rb Present Tong (1994) Wu and Lee (2001) Shu (1996) (Classical Theory)

0.01 0.1753 0.1768 0.1759 0.1799 
0.02 0.2088 0.2091 0.2093 0.2153 
0.03 0.2316 0.2304 0.2320 0.2397 
0.04 0.2516 0.2495 0.2520 0.2620 
0.05 0.2706 0.2681 0.2710 0.2841 
0.06 0.2894 0.2862 0.2892 0.3061 
0.07 0.3078 0.3033 0.3061 0.3277 
0.08 0.3252 0.3193 0.3217 0.3484 
0.09 0.3418 0.3338 0.3358 0.3680 
0.10 0.3568 0.3469 0.3484 0.3863 

 

 
Fig. 2 Variation of frequency parameter with respect to cone angle under C − C boundary conditions: 

               linear and exponential thickness variations 
 
 
of thickness coefficients on the frequency parameter values are investigated using three and five 
layered conical shells. Linear and exponential variation in thickness of layers are considered. 

Fig. 2 depicts the variation of frequency parameter λm (m = 1, 2, 3) with respect to the cone 
angle α for three layered shells of the angles 30˚ / 0˚ / 30˚ and 45˚ / 0˚ / 45˚ using GE and EGE 
materials arranged in the order of EGE-GE-EGE under C-C boundary conditions. The other 
parameters β,   , n, η and Ce are fixed. Figs. 2(a) and (b) are the effect of cone angle with the 
variation of frequency parameter for linear variation in thickness in two different ply-angles. The 
value of λm (m = 1, 2, 3) decreases when α increases. The decrease of λ is up to α = 30˚ and then 
the frequency values are almost constant for all α ≥ 30˚. The nature of variations of λm (m = 1, 2, 3) 
are the same for  both the ply-angles 30˚ / 0˚ / 30˚ and 45˚ / 0˚ / 45˚, but the values are higher for  
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Fig. 3 Variation of frequency parameter with respect to cone angle under S – S boundary conditions:  

               linear and exponential thickness variations 
 
 
higher angles. Figs. 2(c) and (d) shows the frequency parameter λm (m = 1, 2, 3) with respect to 
cone angle under the exponential variation in thickness. This also shows the same trend as shown 
in Figs. 2(a) and (b). Fig. 3 shows the effect of cone angle with frequency parameter λm (m = 1, 2, 
3) under S-S boundary conditions for three layered symmetric angle-ply shells. The thickness 
variation coefficients η and Ce are held fixed. Analyzing with reference to the boundary 
conditions, the values of the frequency parameter λm (m = 1, 2, 3) of S-S boundary conditions are 
least when compared to the corresponding values of C-C boundary conditions. 

Figs. 4(a)-(d) shows the manner of variation of the frequency parameter with reference to the 
circumferential mode number n. The value of n ranges from 1 to 10. A shell of linear thickness 
variation with three layered symmetric angle-ply under C-C boundary conditions are considered in 
Figs. 4 (a) and (b). Figs. 4 (c) and (d) relates to a shell of three layered symmetric angle-ply of 
exponential variation in thickness under C-C conditions are considered. The layered materials are 
in the order of EGE-GE-EGE. All the shells have semi cone angle α = 30˚, β = 0.5 and γ = 0.05. It 
is seen for the figures that all the frequency parameter values decreases upto n = 3 or 4 and then 
increases. The curvature at turning points seem to be greater for lower modes (m). Figs. 5 (a)-(d)  
shows the manner of variation of the frequency parameter with reference to the circumferential 
mode number n under S-S boundary conditions. All other parameters are fixed. The nature of 
variation of frequency parameters for linear and exponential thickness variations with 
circumferential mode number n is the same as defined in Fig. 4. 

Fig. 6 describes the variation of angular frequencies ω (not λ) with respect to the length ratio β 
under C-C boundary conditions. Since λ is a function of the length  of the conical shell, so it is 
not meaningful to study the variation of λ with β. In this case, the thickness parameter to be fixed  
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Fig. 4 Variation of frequency parameter with respect to circumferential mode number under  

                       C – C boundary conditions: linear and exponential thickness variations 
 
 

 
Fig. 5 Variation of frequency parameter with respect to circumferential mode number under 

                     S – S boundary conditions: Linear and exponential thickness variations 
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Fig. 6 Variation of frequency with respect to aspect ratio β under C – C boundary conditions: 

                     linear and exponential thickness variations 
 
 

 
Fig. 7 Variation of frequency with respect to aspect ratio β under S – S boundary conditions: 

                      linear and exponential thickness variations 
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Fig. 8 Variation of frequency parameter with respect to taper ratio and coefficient of 

                           exponential variation of thickness of layers under C – C boundary conditions 
 
 

 
Fig. 9 Variation of frequency parameter with respect to cone angle under C – C and S – S boundary 

conditions: linear and exponential thickness variations 
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Fig. 10 Variation of frequency with respect to aspect ratio β under C – C and S – S boundary  

                       conditions: Linear and exponential thickness variations 
 
 
with some value and it is given that ( ) 1h a  cm for all cases considered. Figs. 6(a) and (b) relates 
to the linear thickness variation where as Figs. 6(c) and (d) for exponential thickness variation.  It 
is seen from the figure that the frequencies monotonically increase with increase in β i.e., with 
decreasing cone-length. The increase of ωm(m = 1, 2, 3) is gradual and steady up to some value of 
β, and rapid increase after wards. The rate of gradual change is higher, and rapid increase in ω 
starts earlier, for higher modes. As expected, for very short shells (β > 0.8), frequencies are very 
high. The variation of angular frequency with length ratio β for three layered conical shell under S-
S boundary conditions are shown in Fig. 7. Both, linear and exponential thickness variations are 
considered.  

In Fig. 8, the influence of the nature of variation of thickness of the three layered symmetric 
angle-ply conical shell with ply-angles 30˚ / 0˚ / 30˚ and 45˚ / 0˚ / 45˚ on its vibrational behaviour 
is studied. The order of the layers are arranged in the form of EGE-GE-EGE materials  under C-C 
boundary conditions and the other parameters β, γ, α and n are fixed. Figs. 8 (a) and (b) relates to 
liner variation in thickness of layers. The variation of λm(m = 1, 2, 3) with respect to η for 0.5 ≤ η ≤  
2.1 is studied. The thickness becomes constant when η = 1 and the thickness at the larger end of 
the cone is larger or smaller than the thickness at the smaller end according as η <

> 1. It is seen that 
the variation of λm is so small (almost constant) for all the values of η and the values are higher for 
higher modes. Figs. 8(c) and (d) relates to exponential variation in thickness of layers. The 
variation of λm(m = 1, 2, 3) with respect to Ce for − 0.2 ≤ Ce ≤ 0.2 is studied. The same nature is 
applicable for exponential variation as we discussed earlier in linear thickness variation.  

Five layered symmetric angle-ply conical shells with arranging the EGE and GE materials in 
the order of EGE-GE-EGE-GE-EGE and also arranging the ply angles in the form of 30˚ / 45˚ / 0˚ 
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/ 45˚ / 30˚ shown in Figs. 9-11. Fig. 9 depicts the influence of the cone angle on its frequency 
parameter under linear and exponential thickness variation under C-C and S-S boundary 
conditions. It seems from the figure that the frequency values are higher for five layered shells 
when it is compared with the corresponding values of three layered shells given in Figs. 2 and 3. 
This may be due to the order of the angles and order of the material properties. In Fig. 10, the 
influence of length ratio on its angular frequencies of variation with linear and exponential 
variation in thickness under C-C and S-S boundary conditions are shown by fixing the other 
parameters. The effect of circumferential mode number on frequency parameter is studied in Fig. 
11. Both C-C and S-S conditions are applied to analyse the five layered angle-ply shells with η = 
0.75 and Ce = 0.15 by fixing cone angle, length ratio. The effect of frequency parameter is the 
same as defined in the three layered angle-ply shells. The values may be lower or higher, 
depending on the ply-angles, order of the material properties and other parameters.  

 
 

4. Conclusions 
 

The values of natural frequencies of the layered conical shells with different material properties 
are being different with those of homogeneous shells of any one of the layered materials. The 
inclusion of shear deformation theory is more significant to analyse the vibration of layered shell 
structure since which yields lower values on the frequency parameters when we compared to the 
values predicted by classical shell theory. The results presented in this paper may be fruitful for 
designers to choose the materials, ply-angle, cone angle, length ratio and circumferential mode 
number for making the conical shell structure according to their needs in designing appropriately. 
Also, these results shows the elegance and usefulness of spline function approximations.  
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Appendix A 
The differential operators Lij of the matrix are 
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2 2 2

11 10 2 32 2 2

1 1 1 1
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d g d g
L s n ec s s

dx g x dx x g x x
 
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                                       (A1) 
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cos 1 1 1
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n ec d g
L s s s s s n ec

x dx g x x x

 
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x dx g x x
 

 
     

 
                                                     (A3) 

 21 2 10 10 10 32 2

cos 1 1 1
cos

n ec d g
L s s s s s n ec

x dx g x x x

 
 

      
 

                                   (A4) 

2
2 2

22 10 10 10 3 102 2

1 1 1
cos

d g d g
L s s s s n ec s

dx g x dx x g x


  
     

 
 

2 2
10 132 2

1 1
cots Ks

x x
                                                                                                        (A5) 

 23 3 13 24 25 132

cos cot 1
, 0, cot

n ec
L s Ks L L Ks

x x

                                                     (A6) 

 31 2 3 32 3 132 2

1 1 cos cot
cot cot ,

d n ec
L s s L s Ks

x dx x x

                                          (A7) 

2
2 2 2 2

33 14 14 13 32 2 2

1 1 1
cos cot

d g d
L Ks Ks Ks n ec s

dx g x dx x x
  

        
 

                      (A8) 

34 14 14 35 13

1 cos
,

d g n ec
L Ks Ks L Ks

dx g x x

 
    

 
                                                               (A9) 

41 42 43 140,
d

L L L Ks
dx

                                                                                                       (A10) 

2
2 2 2 3

44 7 7 8 9 14 122 2 2
1

1 1 1 1
cos

4

Id g d g
L s s s s Ks s n ec

dx g x dx g x x x I
 

              
   

    (A11)   

 45 8 12 8 9 122 2

cos 1 1 1
cos

n ec d g
L s s s s s n ec

x dx g x x x

 
 

     
 

                                     (A12) 

51 52 13 53 13

1 1
0, cot , cosL L Ks L Ks n ec

x x
                                                                     (A13) 

   54 8 12 12 9 12 2

cos cos 1
cos

n ec d g n ec
L s s s s s n ec

x dx g x x

  


                               (A14) 

2
2 2 2 3

55 12 12 9 12 12 132 2 2
1

1 1 1 1
cos

4

Id g d g
L s s s n ec s s Ks

dx g x dx x x g x I
 

              
   

  (A15) 

273



 
 
 
 
 
 

K.K.Viswanathan, Saira Javed and Zainal Abdul Aziz 

where 
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The differential operators *
ijL of the matrix are 
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