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Abstract.   Given the yield shear of a single-story inelastic structure with simple eccentricity, the problem of 
strength distribution among the resisting elements is investigated, with respect to minimize its torsional 
response during a ground motion. Making the hypothesis that the peak accelerations, of both modes of 
vibration, are determined from the inelastic acceleration spectrum, and assuming further that a peak response 
quantity is obtained by an appropriate combination rule (square root of sum of squares-SRSS or complete 
quadratic combination-CQC), the first aim of this study is to present an interaction relationship between the 
yield shear and the maximum torque that may be developed in such systems. It is shown that this torque may 
be developed, with equal probability, in both directions (clockwise and anticlockwise), but as it is not 
concurrent with the yield shear, a rational design should be based on a combination of the yield shear with a 
fraction of the peak torque. The second aim is to examine the response of such model structures under 
characteristic ground motions.  These models provide a rather small peak rotation and code provisions that 
are based on such principles (NBCC-1995, UBC-1994, EAK-2000, NZS-1992) are superiors to EC8 (1993) 
and to systems with a stiffness proportional strength distribution. 
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1. Introduction 
 

One of the major tasks of the practicing engineer during a structural design, after the design 
base shear has been determined, is to distribute this force among the resisting elements that 
provide the lateral resistance of the given structure. In general terms, seismic codes require that the 
design base shear should be determined from the acceleration design spectrum in relation to the 
fundamental period, T, of the structure, reduced by a suitable modification (behavior) factor. The 
accurate evaluation of T is not however required, but only an estimate of its value, which is usually 
taken as the fundamental period of the symmetrical counterpart structure. A common formula to 
determine the design (yield) shear, in respect to the mass, M, of the structure, is as follows 
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in which A is the effective acceleration given by the elastic design (acceleration) spectrum  
and q  the behavior factor. A typical elastic acceleration spectrum is shown in Fig. 1. In 
the acceleration sensitive region and particularly in the period interval between T1 and T2 
the spectrum is flat and amplified by the factor αΑ. For periods shorter than T1 it is linear 
and it has a hyperbolic shape for periods higher than T2. The characteristic periods T1 and 
T2, together with the acceleration amplification factor αΑ are country specified parameters, 
and an inelastic spectrum may be obtained from Eq. (1). Such a spectrum, in a simplified 
form consisting of two branches (flat-hyperbolic spectrum) is also shown in the 
aforementioned figure. Ay may be defined now as the effective acceleration given from the 
inelastic spectrum. 

Structures designed with 1q  are expected to remain essentially elastic in the event of 
a strong earthquake, but structures designed with a reduced strength, corresponding to q=3 
or 4, are expected to sustain significant inelastic deformations when subjected to such 
ground excitations. Note here that the concept of introducing the q factor is based on 
studies concerning the behavior of single degree of freedom (SDOF) inelastic structures 
(Newmark and Riddell 1979, Chopra 2007). 

 
 

Fig. 1 Typical elastic and inelastic spectra 

 
 
Once the base shear Fy has been established, the general trend to specify the design 

strength of the various resisting elements (frames) is to apply the principles of a static 
(elastic) design. That is, the guidelines for strength assignment are stiffness dependant. 
Considering that the stiffnesses of all resisting elements are known in advance from the 
overall dimensions of the members that constitute a particular frame (element), its strength 
is determined from the static equilibrium of the system under the action of a horizontal 
force equal to Fy. This force, as an inertia force may be considered to be applied through 
the center of mass (CM), but in asymmetric structures its location should be modified to 
account for magnified torsional moments which may be developed during a ground 
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motion. This is because of the translational-torsional coupling in unbalanced systems that 
may lead to an excessive torsional response. Modern seismic codes require that the design 
shear force be applied eccentrically to CM, at a distance, measured from the center of 
stiffness (CS), given by the following pair of equations 

bee sd  1                                                          (2a) 

                                     bee sd  2                                                         (2b) 

where es is the eccentricity of CM from CS, b is the dimension of the building 
perpendicular to the direction of the ground motion, and α, β and δ are specified 
coefficients. 

Neglecting the last part of the right hand side of the design eccentricities above, which 
represents an accidental eccentricity (due to stiffness uncertainties, possible torsional 
ground motion and an unfavorable distribution of live load mass), it may be seen that a 
coefficient 1 , accounts for amplified torsional moments and determines the strength in 
elements on the flexible side of the structure, while a coefficient 1 is critical for 
assessing the strength in elements on the stiff side of the structure (Zhu and Tso 1992, Tso 
and Zhu 1992). However, there are controversies about these coefficients and different 
country codes provide different values for them. For example, the National Building Code 
of Canada (NBCC 1995) and the Greek Aseismic Code (EAK 2000) specify α = 1.5, δ = 
0.5. Other codes, such as the Uniform Building Code (UBC 1994) and the New Zealand 
Standard (NZS 1992) require α = δ = 1.0, while Eurocode 8 (EC8 1993) amplifies the first 
of Eq. (1), i.e.: edi = es + eo, ed2 = es, , where the additional eccentricity eo is determined as 
the least value of two specified expressions, as shown in the Appendix. It is evident that 
although the combined use of the design eccentricities may lead to a total strength higher 
than the design lateral force Fy, as the strength demand of each element is decided by the 
most unfavorable loading eccentricity, is not clear which design procedure guarantees a 
sound performance in inelastic systems which are expected to be deformed well into the 
post-elastic range during a strong ground excitation. The problem has been the subject of 
many research papers, which include systems with conventional elements having strength 
independent stiffness (e.g., Goel and Chopra 1990, 1991, Tso and Ying 1990, Tso and Zhu 
1992, Chandler and Duan 1997, Stathopoulos and Anagnostopoulos 2003, 2005) and, also, 
when the stiffness of the lateral force resisting elements is strength dependent (Myslimaj 
and Tso 2002, 2005a, Tso and Myslimaj 2003). 

There are two parameters that are of particular interest in the response of inelastic 
structures (Paulay 2005, Myslimaj and Tso 2005b). The first is to minimize the deck 
rotation and hence the peak displacements at the edges of the system parallel to the 
direction of the ground motion. Although a peak edge displacement is not necessarily 
related with the maximum rotation sustained by the system, the deck rotation is the 
fundamental parameter that denotes the severity of torsional response. As stated by 
Myslimaj and Tso (2004, 2005b) zero peak rotation implies translational response, while a 
structure which undergoes a small rotation would be less susceptible to torsional damage. 
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All other commonly used parameters to measure torsional effects (edge displacements, 
element ductility factors) are derived parameters caused by rotations.  

The second parameter is the ductility demand in the resisting elements that provide the 
lateral resistance of a given structure. When elements with different yield displacements 
are used, it is not the maximum edge displacement that determines the maximum element 
ductility factor. Peak displacements and the corresponding ductility factors should be 
determined for all resisting elements and is important for the practicing engineer to have a 
clear view about the displacement ductility demands of the most stressed elements. The 
objective of having similar (and of acceptable magnitude) ductility factors at the edge 
elements, together with minimum torsional response, as outlined above, is not however 
feasible (Myslimaj and Tso 2004, 2005b). The practicing engineer must choose which 
parameter is the most important in a design situation.  

The first aim of this study is to provide a methodology for assessing the peak torsional 
moment in eccentric inelastic systems subjected to strong ground motions. The basic 
assumptions at this stage are two: (i) the peak of the effective accelerations (yield 
accelerations) of all modes of vibration of an eccentric system are evaluated from the 
inelastic acceleration spectrum. This allows a direct evaluation of the peak modal values 
of shear and torque, in a similar manner as the maximum shear is obtained in single degree 
of freedom (SDOF) inelastic systems. (ii) The modal peaks of shear and torque are 
combined by an appropriate combination rule (SRSS or CQC), as in elastic systems, to 
provide the probable peak values of shear and torsional moment.  This assumption is 
based on the suggestions of recent studies (Chopra and Goel 2002, 2004, Chopra 2007, 
Kunnath 2004) that modal peaks of inelastic systems can be combined in such a way with 
reasonable accuracy. It is shown that the probable peak torque may develop, with equal 
probability, in both directions (clockwise and anticlockwise) and that this torque and the 
peak shear force are not concurrent since they are evaluated by a combination rule. 
Consequently, in systems in which all elements are expected to be deformed beyond their 
yield limits and therefore the peak shear force is equal to the yield shear, it is appropriate 
to combine the latter shear with a fraction of the expected peak torque (or the 
corresponding peak plastic eccentricity, defined as the ratio of the expected peak torque to 
the yield shear). The second aim of this study is to provide numerical results which 
demonstrate that simple structural models detailed according to the proposed methodology 
produce relatively small peak rotations and code provisions that are based on such 
principles (NBCC-1995, UBC-1994, EAK-2000, NZS-1992) are superiors to EC8 (1993) 
and to systems with a stiffness proportional strength distribution. 

The systems analyzed by the computer program SAP2000-V11 are one-story 
monosymmetric systems, composed by three inelastic resisting elements, subjected to the 
El-Centro 1940 and Kobe 1995 types of motion, at different ground intensities. These 
model systems have been extensively used in past (Bozorgnia and Tso 1986, Tso and 
Bozorgnia 1986, Tso and Ying 1990, Georgoussis 2008, Chandler and Duan 1991) for 
similar analyses. The elements that provide the lateral resistance of the analyzed systems 
are assumed elastoplastic and as they are representative of multi-member assemblies 
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(multi-bay frames, wall-frame assemblies) their initial (elastic) stiffness is considered 
independent of the assigned strength. Undoubtedly, in reinforced concrete structures the 
element stiffness is strength dependant (Priestley 1993, Paulay 1998), but such an issue is 
beyond the scope of the present work. Therefore, it is assumed that the initial stiffness of 
each resisting element is determined form the cross sections of the members that constitute 
the particular bent, as is recommended by most of the building codes.    
 
 
2. Symmetrical system comsiderations 
 

Consider a simple symmetric single-story building structure, like that one shown in Fig. 
2(a), which is subjected to a ground motion (purely translatory) perpendicular to the x-axis 
of symmetry. The structural model consists of a rigid slab (deck) with a uniform mass 
intensity, supported by three resisting elements in the y-direction, in a symmetrical 
configuration in respect to CM, but with uneven stiffnesses. To simplify the analysis 
described below, elements ‘m’ (on the left edge) and ‘r’ (on the right edge) are assumed 
identical, while element ‘l’ (located at CM) is considered with higher stiffness. The 
stiffness in the x-direction is provided by resisting elements (not shown in this figure), 
aligned along the x-axis. An asymmetric counterpart of this structure may be obtained 
simply by interchanging the location of elements ‘l’ and ‘m’, as shown in Fig. 3(a). 
Assuming an elastic response of the former system when it is subject to a ground motion, 
the lateral displacements of all points of the deck which lie along the x-axis of symmetry, 
at any time instant, will be a pure translation of this axis along the direction of the ground 
motion. This is because of the in-plane rigidity of the floor slab, which makes the assumed 
single story symmetrical structure to respond as a SDOF system. Therefore, a design 
procedure which defines the yield displacement of all elements to be equal to each other 
(Fig. 2(b)), simply transforms the elastic SDOF system to an elastoplastic one and the 
benefits of this strength detailing are that all aspects of the structural response 
(displacements, ductility factors, internal element forces) may be determined from the 
dynamic behavior of a simple elastoplastic SDOF system. The response of this system is 
quite predictable and the main reason for this is that the element yield displacement profile 
is properly selected. It satisfies engineering judgment that symmetry must be maintained 
in element yield displacements, since, any other yield pattern with unequal element yield 
displacements will make the structure of Fig. 2(a) a torsionally unbalanced system with 
unpredictable behavior, when it enters the inelastic phase. Alternatively, the aforesaid 
uniform yield displacement profile may be assumed that is derived from the following 
condition: to ensure the translational response of the system (which means that no 
torsional moments should be allowed to develop in the event of a ground motion), the 
element resisting forces must be in static equilibrium with a lateral inertia force generated 
at CM. If the maximum value of this force is taken equal to Fy (computed on the grounds 
of the inelastic response spectrum of Fig. 1), the static equilibrium of the deck provides 
the element strengths and the corresponding yield profile. 
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Fig. 2 (a) Symmetrical system; (b) Force-displacement diagrams 

     of the complete structure and the individual elements 
 
 
3. Dynamic torsion in eccentric systems 
 

Similar considerations can not be easily made for eccentric inelastic structures, as the 
structural model of Fig. 3(a), where the element of higher stiffness is located at the left 
edge. To select, just by engineering judgment, a yield displacement profile which ensures 
minimum rotation is a difficult task, since the oscillatory response of the system is 
inevitable, at least at the initial stages of the ground motion, when all elements are stressed 
below their limits. However, some ideas may be taken by consideration of the response of 
the symmetrical system shown in Fig. 2. The element yield displacement profile was 
assessed from the static equilibrium of the deck when only an inertia force is developed at 
CM. In the case of an asymmetric system, where dynamic oscillation is inevitable, some 
sort of torsion should be taken into account and some further ideas can be taken from the 
elastic behavior of these systems. If the response of such a system was unlimited elastic, 
an appropriate element strength assignment would require an assessment of the probable 
peak values of shear and torque that may develop at CM during a ground motion. Modal 
analysis is a useful tool to make such an assessment and although the aforementioned peak 
resultant forces are not concurrent and therefore a direct combination of them is 
unrealistic, it worth’s mentioning that there is a unique interaction relationship between 
these forces, as it was first demonstrated by Kan and Chopra (1977), which is helpful to 
make a more reasonable combination of them. The reason for mentioning these features of 
dynamic coupling of linear eccentric systems is that a similar interaction relationship may 
be derived for inelastic structures on the grounds of two hypotheses: 

(i) The peaks of the effective accelerations (yield accelerations) of all modes of 
vibration of an eccentric system may be determined from the inelastic acceleration 
spectrum of Fig. 1. This allows a direct evaluation of the peak modal values of shear 
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and torque, in a similar manner as the maximum shear is obtained in SDOF inelastic 
systems. It is reminded here that the concept of the inelastic acceleration spectrum for 
SDOF inelastic systems is well established, but its use in multi-degree-of-freedom 
(MDOF) systems with inelastic elements represents an approximation with no firm 
theoretical background. There is however, an increased tendency to estimate the 
seismic demands of MDOF inelastic structures from the modal contributions, as 
described below.    
(ii) The modal peaks of shear and torque are combined by an appropriate combination 
rule (SRSS or CQC), as in elastic systems, to provide the probable peak values of shear 
and torsional moment.  This assumption is based on the suggestions of recent studies 
(Chopra and Goel 2002, 2004, Chopra 2007, Kunnath 2004) that modal peaks of 
MDOF inelastic systems can be combined in such a way with reasonable accuracy. 
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Fig. 3 (a) Three element eccentric system; (b) first mode elastic displacement 

profile; (c) second mode elastic displacement profile 
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A brief description, of how the interaction relationship between the probable peak shear 
and torque can be derived, is as follows.  

Consider for example the first mode displacement profile (Fig. 3(b)) of the asymmetric 
system shown above it. As demonstrated by Dempsey and Irvine (1979), Tso and 
Dempsey (1980), Dempsey and Tso (1982) and Georgoussis (2008) this profile, of the 
initially elastic system, is a rotation about pole N1, caused by the modal force  

                              111 AMF                                                             (3a) 

acting through pole N2. 

1M  is the first mode effective mass of the system and A1 the 

corresponding effective acceleration, which  is related to the displacement, D1, of pole N2, 
by the equation 

                                     2
111 AD                                                            (3b) 

where ω1 is the first mode frequency of the initially elastic system.  
Poles N1 and N2 are the natural mode centers of vibration of the elastic system and are 

located outside the interval defined by the centers of mass and stiffness. Pole N1 is located 
on the stiff side and N2 on the flexible side of the deck and their eccentricities (e1, e2) from 
CM are given from the following equations (Anastassiadis et al. 1998, Georgoussis 2008) 

                                     φcot1  ρee                                                        (4a) 

                                     φtan2  ρee                                                       (4b) 

where e is the eccentricity of CS from CM ( see  ) and 

2
vθvθ ρKKωω   ,  22 re  ,  )1(2φ2tan 2  e ,  e*=-e/ρ 

(Ω is the ratio of the uncoupled torsional frequency to the uncoupled lateral frequency, Kv 
is the lateral stiffness along the y-direction, Kθ is the torsional stiffness in the CS reference 
system, r is the radius of gyration of the floor about CM, while the coupled frequencies of 
the system (ω1, ω2) may by found from a Mohr’s circle as demonstrated Tso and Dempsey 
(1980)). Note, that the eccentricities e1, e2 are related by the equation (Georgoussis 2008) 

                                     2
21 ree                                                                (5) 

According to the first of the hypotheses stated above, for structural applications on 
inelastic systems, the peak modal value of A1 (denoted as A1y) is obtained from the 
inelastic design acceleration spectrum of Fig. 1. Therefore, the first mode inertia force of 
Eq. (3a), in an inelastic system, can reach a peak value equal to  

                                    yy AMF 111
                                                          (6a) 

And the corresponding peak modal torque of this system is equal to  

                                    yd AMeT 1121
                                                        (6b) 
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Similarly, the second mode displacement profile is a rotation about N2, caused by the 
following modal force, acting through N1 (Fig. 3(c)) 

                                     222 AMF                                                             (7a) 

where 
2M  is the second mode effective mass of the system and A2 the corresponding 

effective acceleration. This acceleration produces a displacement, D2, of pole N1, which 
can be determined by a relationship similar to Eq. (3b), i.e. 

                                     2
222 AD                                                            (7b) 

As for the first mode, the second mode peak inertia forces (shear and torque) for an 
inelastic system will be equal to   

yy AMF 222
                                                           (8a) 

yd AMeT 2212
                                                         (8b) 

 According to the second hypothesis stated above, a reasonable estimate of the probable 
maximum shear may be obtained by an appropriate combination of the peak modal forces 
of Eqs. (6a) and (8a) and the same procedure can be applied to the modal torques of Eqs. 
(6b) and (8b). Applying the CQC rule, the expected maximum values of the 
aforementioned resultant forces are 

)1(2 2
1221

2
2

2
1  yyyyoy FFFFF ,  )1(2 2

1221
2
2

2
1  ddddd TTTTT               (9) 

Note that ε12 is the correlation coefficient (Kan and Chopra 1977, Chopra 2007) and the 
product Td1Td2 in the second of the equations above is negative, since the modal torques 
Td1 and Td2 are opposing each other (the distance e1 in the reference system shown in Fig. 
3 is a negative quantity). Assuming further, that the modal yield accelerations correspond 
to either the flat region (A1y = A2y = Ay) or the hyperbolic part (A1y/ω1 = A2y/ω2 = Ay/ωv) of 
the assumed inelastic acceleration spectrum of Fig. 1, and recalling that the modal 
masses 

1M and 
2M  (Georgoussis 2008) may be expressed as  

MdeMM )(cos)( 1
22

1v1   ,  MdeΜM )(sin)( 2
22

2v2        (10) 

where d (  cossin12  ee ) is the distance between the nodes N2 and N1,  and M 
is the mass of the system, a simple combination of Eqs. (5), (6a), (6b), (8a), (8b) and (10) 
results to the following interaction relationship  

                                     122  dy TF                                                           (11) 

where: vydyddyoyyoyy ,rMA/TrF/TT,MA/FF/FF   is the frequency of the 

symmetrical counterpart system and Ay is the corresponding spectral acceleration, which 
appears in Eq. (1). 
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It is interesting to note that the modal static response of Td1 (represented by the quantity 

12Me ) is equal and opposite to that of Td2 (represented by the quantity 

21Me ) and this 
permits a physical interpretation about the directional nature of the total dynamic torque 
given by the second of Eq. (9). It is evident that in systems with closely spaced coupled 
frequencies, the expected maximum torsional moment may act, with equal probability, in 
both directions (clockwise and anticlockwise). Therefore, when an element strength 
assignment is attempted towards a minimal torsional response in the event of a ground 
motion, the dynamic torsional moment Td should be taken into account in either direction 
(clockwise and anticlockwise).  
 
 
4. Yield profiles of eccentric inelastic systems 
 

The interaction relationship expressed by Eq. (11) may be seen as a yield surface (De la 
Llera and Chopra 1995) which correlates the expected peak normalized values of base 
shear and torque, but as these resultant forces are not concurrent, a direct combination of 
them is unrealistic. 

Therefore, in inelastic systems, where plasticity is expected to spread to all resisting 
elements during a strong ground motion (which means that at some time instant the shear 
force resisted by these elements will be equal to the design shear Fy), it is reasonable to 
assume that an appropriate combination of the peaks of the resultant forces is in fact a 
combination of Fy with a fraction of Td. The ratio ep = Td/Fy represents the peak plastic 
eccentricity of the system (that is, the eccentricity when all elements in the direction of the 
ground motion are assumed to be displaced into the inelastic region) and for the 
requirements of an element strength assignment, a fraction of it may be assumed that 
represents the dynamic eccentricity of the system. That is, the eccentricity 

ydpd FTee    (with λ<1 and   algebraic signs) in respect to CM, may be considered 

as the dynamic eccentricity which accounts for the magnified torsional effects that may be 
developed in the event of a ground motion. In elastic systems, it is customary to express 
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Fig. 4 Normalized dynamic eccentricities (λ = 0.25) for (a) flat spectrum; (b) hyperbolic spectrum 
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this eccentricity in terms of the static eccentricity, and this trend is followed in this paper, 
although the CS is not an invariant point in inelastic systems. The variation of the 
normalized dynamic eccentricity 

                                     )( sydsdd eFTeee                                                  (12) 

in relation to the normalized static eccentricities ree ss  and the ratio Ω is shown in Fig. 

4, for λ = 0.25. The curves of this figure have been drawn by assuming that the yield 
modal accelerations correspond, first, to the flat region of the acceleration spectrum and, 
also, to the hyperbolic part of this spectrum and that the damping ratio equals 5% for both 
modes of vibration. As can be seen, there is not much difference between the two sets of 
curves, and for normalized static eccentricities ree ss  higher than 0.3, the 

corresponding dynamic eccentricity de  is almost a constant value, not affected by the ratio 

of the uncoupled frequencies Ω. Only in cases where the static eccentricity se  receives 

values smaller than 0.2 and the ratio Ω is close to unity there is a remarkable amplification 
of de . At this point, the problem is what values of λ produce the displacement profile of 

minimum torsional response, but prior to that lets examine the shape of this profile for a 
given value of λ (or de ).  

The yield displacement profile of a system which is subjected to a horizontal force Fy, 
at an eccentricity from CM equal to sdd eee  , is determined from the element strengths, 

which are as follows 

yfjd
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 ~1 2

θ
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                         (13) 

where the subscripts fj and sj denote the ‘j’ elements on the flexural and stiff side 
respectively and fjx~ , sjx~  are their x-coordinates in the CS reference system. As stated 

above, the concept of CS is meaningless in inelastic systems, but its use provides the 
element strengths with the same simplicity as in linear systems. The eccentricities ed1 and 
ed2, shown in Eq. (13), are equal to  

)1(1 dsd eee     )1(2 dsd eee                                             (14) 

and it is evident that when the normalized dynamic eccentricity is taken equal to 5.0de , 

this is equivalent of applying the provisions of the National Building Code of Canada 
(NBCC 1995) or the Greek Aseismic Code (EAK 2000). If 0de , that is when the 

dynamic coupling is ignored, then the structural design follows the provisions of the 
Uniform Building Code (UBC 1994) or the New Zealand Standards (NZS 1992). 

The use of Eq. (13) implies that the assumed structure is over-strengthened, since   

y
o

sj
o
fj

o
y FffF  )(                                                   (15) 
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Therefore the assumed strength assignment provides an over-strength factor: 

y
o

y
o

y FFF  , which is increasing with increasing values of de . In the parametric analysis 

that follows in the next section, where the response of inelastic structures with different 
element strengths is examined under strong ground motions, the proposed strength 
assignment of Eq. (13) is modified as 

o
y

o
fjfj Fff / ,   o

y
o

sjsj Fff /                                               (16) 

in order to keep the sum of the element strengths equal to Fy (= )( sjfj ff  ) and therefore 

to have a common basis for comparison reasons. The corresponding element yield 
displacements, in terms of the yield displacement Uy of the symmetrical counterpart 
system (Fig. 2) which is equal to  

vKFU yy                                                           (17) 

are as follows 
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As can be seen the shape of the element yield displacement profile, given by Eq. (18), 
has a concave form which depends on coefficient λ of Eq. (12). The normalized 
eccentricity de  is linearly dependant on λ and when 0de  (i.e.: λ = 0) this profile has a 

linear form, but it becomes increasingly concave with increasing values of de  (such 

profiles, in a graphical form, are shown further below for the case of one of the analyzed 
systems). There is no criterion of how to select the optimum value of de  which provides 

minimum torsional response. For this reason, in the study that follows, four distinct values 
of the normalized eccentricity de  will be examined: 0.0, 0.5, 2.0, and 4.0. 
 
 
5. Systems analyzed 
 

In order to evaluate how the torsional response is affected by the aforesaid element 
yield displacement profiles, a number of analyses is carried out on three element stiffness 
eccentric structural models which represent from torsional stiff to torsionally flexible 
systems. The first model (Model 1 in Fig. 5) is a torsionally stiff system, which has a ratio 
of the uncoupled torsional frequency to the uncoupled lateral frequency equal to Ω = 
1.273. It consists of a rigid rectangular deck (b = 10 m, c = 5 m) with a uniformly 
distributed mass, supported by three elements in the y-direction of the ground excitation. 
The x-direction elements are assumed to be located along the axis of symmetry and as they 
do not contribute to the torsional resistance are not shown in this figure. Element ‘m’ is 
located at CM and the other two at a distance b/2 on either side of CM. Elements ‘m’ and 
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‘r’ are identical, but the stiffness of element ‘l’ is higher by 30% providing a normalized 
stiffness eccentricity equal to e/r = -0.14. This eccentricity corresponds to a ratio e/b equal 
to -0.045 and provides coupled frequencies (Georgoussis 2008) equal to: ω1 = 0.986 ωv 
and ω2 = 1.303 ωv, where ωv is the lateral frequency, in the y-direction, of the uncoupled 
system (the symmetrical counterpart structure). This type of three element stiffness 
eccentric structure is the most commonly used model in inelastic analyses (Chandler et al. 
1996).  The second model (Model 2 in Fig. 5) is similar to the first, but the outer resisting 
elements are closer to CM at a distance equal to 0.4b. The ratio of uncoupled frequencies 
is equal to Ω = 1.021, the normalized stiffness eccentricity e/r = -0.112 (e/b = -0.036), and 
the coupled frequencies are equal to ω1 = 0.957 ωv and ω2 = 1.073 ωv. This model is very 
susceptible to torsional oscillations since not only the normalized eccentricity is rather 
small, but also the ratio Ω is approximately equal to unity (Tso and Dempsey 1980) and 
for this reason it has been extensively used in the past (Bozorgnia and Tso 1986, Tso and 
Bozorgnia 1986, Tso and Ying 1990, Georgoussis 2008). Similar is the third model 
(Model 3 in Fig. 5), in which the outer elements are even closer to CM at a distance 0.35b. 

 
 

CM
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b=10m

y

'l' 'm' 'r'
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0.8b
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Fig. 5 Plan configurations of analyzed model structures 
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The ratio of uncoupled frequencies is equal to Ω = 0.895 now, representing a 
torsionally flexible system. The normalized stiffness eccentricity is equal to e/r = -0.098 
(e/b = -0.032) and the coupled frequencies are equal to ω1 = 0.88 ωv and ω2 = 1.021 ωv. 

Two different types of each model structure are examined. In the first type (Models 1a, 
2a and 3a) elements ‘m’ and ‘r’ are moment resisting frames composed by two 50 × 50 cm 
columns of a height equal to 7.5 m, located in a distance of 5 m and connected by 
completely rigid beams (shear-beam elements). Similar is the ‘l’ element, but its columns 
are wider 65 × 50 cm to provide the increased stiffness. In the second type (Models 1b, 2b 
and 3b) the columns of elements ‘m’ and ‘r’ are of a section 35 × 35 cm, while those of 
element ‘l’ are 45.5 × 35 cm. In all cases, the total gravity load of the slab is equal to W = 
600kN and the modulus of elasticity was assumed equal to E = 20 × 106 kN/m2. The 
lateral period of the corresponding uncoupled structure of the first type of models (Models 
1a, 2a and 3a) is equal to 0.351s, representing a structural system which corresponds to the 
acceleration sensitive region of the design spectrum. Models 1a, 2a and 3a will also be 
referred as short period systems. Similarly, for the second type of structures (Models 1b, 
2b and 3b) the lateral period of the uncoupled system is equal to 0.717s, which denotes a 
system in the velocity-displacement sensitive region of the response spectrum. These 
models will be referred as long period systems. All model structures are designed to 
withstand elastically a total shear force equal to Fy = 0.2W, chosen as a typical design load 
for structures in seismic active regions.  

The torsional response of each of the aforementioned models (Models 1a, 2a, 3a and 
1b, 2b, 3b) is examined for six different yield displacement profiles. All the element yield 
displacements have been computed from Eq. (18), on the grounds of the eccentricities of 
Eq (2), but neglecting the accidental part ( b ) of these equations. In the first four 
profiles (SEq, Code, Opt2 and Opt4) the design eccentricities ed1 and ed2 are based on Eq. 
(14), where the normalized eccentricity de is taking the distinct values: 0.0, 0.5, 2.0, and 

4.0 respectively. The next two profiles are, first, the stiffness proportional (StP) profile, 
which simply assumes that the design force Fy is applied through the CS ( 021  dd ee ) 

and, second, the profile (EC8) defined by the provisions of Eurocode 8 (1993). That is, by 
assuming that osd eee 1  and sd ee 2 , where the additional eccentricity eo is determined 

as the least value of two specified expressions, as shown in the Appendix. The above 
element yield displacement profiles, normalized in respect to the yield displacement of the 
corresponding symmetrical system are shown in Fig. 6 for the case of Model1a. Similar 
are the profiles for the other model structures.  

To evaluate the response of the assumed models under different ground motion, two 
different types of earthquake shocks are used. The first record is the 1940 El Centro NS 
component, which represents a moderately long irregular motion and is associated with 
moderate distances from the focus. The second record is the 1995 Kobe KJM000 
component, which is considered representative of near-field earthquake ground motions. 
The time histories of these records are shown in Fig. 7, together with the associated 5% 
damped acceleration spectra. Since the presence of transverse elements that may contribute 
to the torsional resistance of the assumed systems has been excluded in this study 

246



 
 
 
 
 
 

Yield displacement profiles of asymmetric structures for optimum torsional response 

 

0.7

1

1.3

0 5 10

StP

SEq

EC8

Opt4

Opt2

Code

yry UUymy UUyly UU

frame l'' frame m'' frame r''
 

Fig. 6 Element yield displacement profiles for Model 1a 

 
 

Fig. 7 (a) 1940 El Centro NS component and its 5% damped acceleration spectrum; 
                  (b) 1995 Kobe KJM000 component and its 5% damped acceleration spectrum 
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all the analyses have been performed by assuming unidirectional ground motion 
excitations. In fact, there is experimental evidence that the use of building models with 
only lateral resisting elements, subjected to unidirectional ground motions, provide 
acceptably conservative but accurate results (Correnza et al. 1994). By excluding traverse 
elements is easier to specify and qualify the parameters that play a key role in the torsional 
response of eccentric systems. On the other hand, the inclusion of transverse elements 
requires additional modeling assumptions to be made in the structural definition, such as 
the specification of total transverse stiffness and strength and their distributions, the 
location of the transverse elements, and the strength of the transverse earthquake 
component, if it is applied (Chandler et al. 1996).  

The effect of the behavior factor q (Eq. (1)), is examined via an indirect method. Since 
all the analyzed model structures are designed to withstand a design force equal to Fy = 
0.2W, two levels of excitation are considered in the present study.  In the first level the 
motion input, of both records, was scaled to peak ground acceleration (PGA) equal to 
0.3g, which is considered as a fairly moderate intensity. As the extent of the element 
inelastic behavior is increasing at higher intensities of ground motions, a higher intensity 
of PGA, but not unrealistic, equal to 0.7g was also considered in the present study.    

All dynamic analyses are carried out by assuming that the element shear force-
displacement relationships are bilinear with a post-yielding stiffness ratio equal to 0.1% 
(essentially elasto-plastic elements). The three lateral load resisting elements are 
considered mass-less with in-plane stiffness and the frame deflections are caused by 
shearing action. The out-of-plane stiffness of the elements is considered negligible, and as 
infinitely rigid beams are assumed to connect their columns at the level of the slab, the 
inelastic behavior of each load resisting element was modeled by means of plastic hinges 
forming at the ends of each column. The analyses were performed by means of the 
program SAP2000-V11, using inelastic link elements at the ends of the column members.  

As the slab rotation is considered the major response parameter to represent the severity 
of the torsional response of eccentric systems, the peak rotations of all the model 
structures are shown in Fig. 8. Curves denoted as ‘Elc.3’ (thin solid lines) and ‘Ko.3’(thin 
dotted lines) provide the results of the analyses when the input motions of the aforesaid El 
Centro and Kobe earthquake records are scaled to a PGA equal to 0.3g. Similar is the 
meaning of curves denoted as ‘Elc.7’ (thick solid lines) and ‘Ko.7’ (thick dotted lines). 
They represent results of analyses with these records scaled to a PGA equal to 0.7g. The 
curves of Fig. 8 reveal two particular features. The first is that the StP and EC8 element 
yield displacement profiles provide, in general, higher rotations compared with the other 
profiles, which are based on the interaction relationship of Eq. (11). The StP profile is 
obtained simply by assuming that the resultant force Fy is applied through CS. This means 
that it is a uniform profile (Fig. 6) resulting in a centre of strength (usually called center of 
plasticity (CP)) which coincides with CS (on the left of CM). It is reminded here that the 
eccentricity of CS from CM (normalized in respect to the dimension of the building 
perpendicular to the direction of the ground motion, b) is equal to e/b = -0.045, -0.036 and 
-0.032 for the model structures 1, 2 and 3 respectively. Therefore these values represent 
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Fig. 8 Peak rotations of the analyzed model structures 
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the normalized eccentricities, ev/b, of CP (measured from CM) for the case of the StP 
profile. On the other hand the EC8 profile, although it has a concave form (Fig. 6) as the 
element strength assignment is based on the most unfavorable loading eccentricity 
( osd eee 1  and sd ee 2 , where eo is equal to 0.101b, 0.90b and 0.084b for Models 1, 2 

and 3 respectively), provides a center of strength located on the right of CM, at a 
normalized eccentricity, ev/b, equal to 0.044, 0.038 and 0.036 for Models 1, 2 and 3 
respectively. It can be seen that the latter eccentricities, are almost symmetrical to those of 
CS in respect to CM. It is interesting to compare the eccentricities of CP of the 
aforementioned profiles with those given by the rest of the profiles examined in this study. 
These profiles (SEq, Code, Opt2 and Opt4) are shown in Fig. 6 for the case of Model 1, 
and their strength eccentricity is very close to CM. In particular, for Model 1, the 
normalized eccentricity, ev/b, is equal to 0.0, -0.001, -0.003 and -0.005 for the profiles 
SEq, Code, Opt2 and Opt4, respectively. For Model 2, the above eccentricities are equal to 
0.0, -0.0007, -.0024 and -0.0042, while for Model 3 the corresponding eccentricities ev/b 
are 0.0, -0.0006, -0.0021 and -0.0037. Profile SEq is based on a zero dynamic eccentricity 

de  (Eq. (14)) and is a linear profile, which always provides a value of ev/b equal to zero. 

On the other hand the Code, Opt2 and Opt4 profiles are based on increasing values of de  

(specifically 0.5, 2.0 and 4.0) and have a concave form with increasing concavity when de  

obtains higher values. The reason that the location of CP is on the left of CM (ev/b is a 
negative number in the case of Code, Opt2 and Opt4 profiles) is because there are two 
resisting elements on the right of CS and just one element on its left side. In a similar 
structural configuration, but with two elements on the left of CS and one element on its 
right side, the location of CP would be on the right of CM, but again in a very close 
distance. The second feature of the curves of Fig. 8 is that the rotational response of all the 
structural Models detailed according to the SEq, Code, Opt2 and Opt4 profiles is 
presenting an almost constant peak rotation, for each type of excitation. Besides, this 
rotation is also, in most of the cases, the smaller value presented by the analyzed systems. 
In other words, if the dynamic eccentricity is taken into account symmetrically to CM in a 
stiffness eccentric system, its peak rotation is not only relatively small, but also is not 
much affected by the magnitude of the dynamic eccentricity. This finding has a useful 
consequence: the dynamic eccentricity can be easily incorporated into the accidental 
eccentricity, since the latter is always taken into account symmetrically to CM, i.e.: b . 
From this point of view is not surprising that when the element strength assignment is 
based on the elastic response of an eccentric system, the inclusion of the accidental 
eccentricity improves its performance (Wong and Tso 1994).  

The normalized peak edge displacements (mean values from the four input motions) 

oUUU max  are shown in Fig. 9 (Uo is the maximum displacement of the symmetrical 

counterpart system). For most of the profiles of the short period structures (Models 1a, 2a 
and 3a), the flexible-edge element (right frame) sustains larger displacements than the 
stiff-edge element (left frame), and the StP profile provides the larger deviation between 
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Fig. 9 Normalized peak edge displacements 
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Fig. 10 Normalized peak ductility factors for edge elements (frames) 
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the two edge elements. This behavior is not always the case for short period systems with 
the EC8 profile (Fig. 9, Model 1a).  For long period systems, the deviation between the 
normalized peak edge displacements seems to be unaffected by the yield displacement 
profile (Fig. 9, Models 1b, 2b and 3b), and a special feature of the models which are 
susceptible to translational-torsional coupling (Models 2b and 3b) is the closeness between 
the displacements of the edge elements. In the latter models, all the displacement profiles 
assumed in this study produced almost equal maximum edge displacements. Envisaging 
the complete set of the diagrams of Fig. 9, a rough conclusion that can be drawn is that the 
deviation between the peak edge displacement ratios is almost invariant in the systems 
detailed according to SEq, Code, Opt2 and Opt4 profiles.  

The normalized peak ductility factors,  , for the edge elements are shown in Fig. 10 
(mean values from the four input motions). For the particular ‘j’ edge element, the 
aforementioned factor is defined as  

)//()/(/ max, yojyjjj UUUU                                        (19) 

where Uj,max is the peak displacement and Ujy its yield displacement. It can be seen that 
minimum rotation response does not imply minimum ductility ratio (Myslimaj and Tso 
2004, 2005b), neither an equity of this ratio between the edge elements (frames). 
However, it interesting to note that systems detailed according to SEq, Code, Opt2 and 
Opt4 profiles present a relatively steady response, without the fluctuations of the other two 
profiles. The deviation of the ductility ratios between the edge elements in the 
aforementioned profiles appears to be constant, as in the case of the normalized edge 
displacements (Fig. 9), with the stiff-edge element (left frame) to require, in most cases, a 
higher ductility factor.  
 
 
6. Conclusions 
 

In one-story inelastic systems with simple eccentricity, the strength distribution among 
the resisting elements is examined in relation to the post-elastic rotation of these systems, 
when they are subjected to strong ground motions. Given the yield (design) shear of the 
system, it is shown that the probable peak torque may be developed about the center of 
mass, with equal probability, in both directions (clockwise and anticlockwise), and a 
rational design should be based on a combination of the yield shear with a fraction of the 
peak plastic eccentricity (defined as the ratio of the expected torque to the yield shear) 
assumed to occur on both sides of the center of mass. The resulting element strength 
assignment produces a plasticity center very close to the center of mass and the 
corresponding yield displacement profile obtains a concave form, depending on the 
magnitude of the assumed eccentricity. Simple three-element, stiffness eccentric, systems 
analyzed under two types of characteristic ground motions (1940 El Centro NS component 
and 1995 Kobe KJM000 component) of different intensities, presented the following 
features:  
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(i) The maximum rotations sustained by the assumed systems, are smaller than those 
detailed with other element displacement profiles, such as the stiffness proportional 
profile and that derived according to the recommendations of Eurocode 8.  
(ii) The sound performance of structures, which have been detailed in accordance to the 
suggested methodology, is not much affected by the magnitude of the peak dynamic 
eccentricity, when they are well deformed into the inelastic region during an earthquake 
shock. This means that code recommendations that describe a dynamic eccentricity in 
symmetric locations about the center of mass (regardless of the magnitude of this 
eccentricity) provide a reasonable structural design in relation to the rotational 
performance of the structure. Therefore, code provisions that are based on such 
principles (NBCC 1995, EAK 2000, UBC 1994 and NZS 1992) are superiors to 
Eurocode 8 (1993). 
(iii) The good performance of the assumed systems is also demonstrated by the fact that 
the edge displacements and the ductility demands of the edge elements are parameters 
that are practically unaffected when the yield shear is combined with different 
magnitudes of the dynamic eccentricity.  
Finally, as the results presented herewith indicate that the dynamic eccentricity should 

be taken into account on both sides of CM, this may easily be incorporated in the 
accidental eccentricity, which, by nature, must also be considered symmetrically to the 
CM. 
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Appendix 
 

Eurocode 8 (1993) specifies the design eccentricities as 

aosd eeee 1  

asd eee 2  

Where: ea is the accidental eccentricity, and eo is the additional eccentricity which 
accounts for the dynamic effect of simultaneous translational and torsional vibrations and 
is equal to the lower of the following two values 

)(1.0/10)(1.0 cbbecbe so   

 222222222 4)(
2

1  sss
s

o eerer
e

e   

in which, ρ is the resilience radius, equal to v/ KK . 
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