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Abstract.    In this study a multi-objective optimization problem is solved. The objectives used here include 
simultaneous minimum construction cost in term of sections weight, minimum structural damage using a 
damage index, and minimum non-structural damage in term of inter-story drift under the applied ground 
motions. A high-speed and low-error neural network is trained and employed in the process of optimization 
to estimate the results of non-linear time history analysis. This approach can be utilized for all steel or 
concrete frame structures. In this study, the optimal design of a planar eccentric braced steel frame is 
performed with great detail, using the presented multi-objective algorithm with a discrete population and 
then a moment resisting frame is solved as a supplementary example. 
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1. Introduction 
 

Optimal design of multistory structures is usually performed with two conflicting objectives 
that are the minimum present construction cost and the maximum performance in future under the 
probable ground motions. The first objective is related to the structural weight and the second one 
is related to the minimum damage of the structure. Common single-optimization approaches 
cannot achieve these goals, and making a new model that can optimize a variety of objectives has 
been a challenging topic among researchers throughout the world proposing different kinds of 
methods. In this paper, weight, minimum damage to structure, and minimum non-structural 
damage in the term of inter-story drift are considered as three main objectives. Different 
techniques of finding multiple answers employing evolutionary algorithms (EA) have been 
previously developed. Although the importance of finding multiple answers are quite obvious, 
however, the recent usages of these methods in multi-objective optimization problems are often 
based on preference. The first real application of EA in finding multiple answers was presented by 
David Scaffer in his doctoral thesis (1984). David Goldberg (1989b) presented a 10 line 
multi-objective evolutionary algorithm (MOEA) by the use of domination concept. Following his  
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work, other researchers developed different applications of multi-objective evolutionary 
algorithms. Among these, one can refer to the multi-objective genetic algorithm of Fonseca and 
Feliming (1995), non-dominated sorting genetic algorithm (NSGA) of Srinivas and Deb (1994), 
modified form of NSGA called NSGA-II (Deb et al. 2002), and pareto genetic algorithm of Horn, 
Nafploitis and Goldberg (Horn et al. 1994). These were employed in real problems in order to 
show that the multi-objective evolutionary algorithms (MOEA) based on domination can be used 
for finding multiple answers. Nowadays EAs are vastly applied to engineering problems. In 2007 a 
procedure was proposed for optimization of wind-excited structures utilizing the simulated 
annealing algorithm. This method was combined with dynamic analysis of response in both 
frequency and time domain (Venanzi and Materazzi 2007). Multi-objective design optimization of 
laminated composite components with objectives of minimizing weight and total cost of composite 
component was another example of using multiple objectives (Omkar et al. 2009). Ohsaki et al. 
(2007) formulated seismic design problem of a steel moment-resisting frame as a multi-objective 
programming problem with objectives of total structural volume and plastic dissipated energy. 
Afshar et al. (2009) developed a new multi-colony ant algorithm to solve a time-cost multi-
objective optimization problem. Kaveh and Talatahari (2010) presented a novel optimization 
method called imperialist competitive algorithm (ICA) to optimize skeletal structures. Assessment 
of seismic design codes has been the subject matter of some researches to disclose weak points 
that have come from some limitations in predicting with satisfactory accuracy of the structures 
response under ground motions. Lagaros and Papadrakakis (2007) evaluated the European seismic 
design code used for the design of reinforced concrete buildings by utilizing a performance-based 
design procedure in a framework of a multi-objective optimization concept. The initial 
construction cost and maximum inter-storey drift for the 10/50 hazard level were considered as 
two objectives in formulating the multi-objective optimization problem. Beck et al. (1999) 
presented a framework for multi-criteria optimal design for performance-based design of structural 
systems by use of a decision theoretic approach based on aggregation of preference functions for 
the multiple design criteria. Li et al. (1999) presented a new application of multi-objective and 
multi-level optimization procedures for optimizing steel frames in which total structural strain 
energy and total structural weight were considered as objectives at system level and member 
weight was considered as an objective at element level. Liu (2003) developed multi-objective 
optimization procedures for seismic design of SMRF structures. In 2004 Alimoradi et al. (2004) 
studied the problem of optimizing construction cost with constraints of confidence levels in 
different hazard levels. Liu formulated the performance-based design of SMRF structures as a 
multi-objective optimization problem in which initial construction cost and seismic risk were 
considered as conflicting objectives. Construction cost and seismic risk were considered in steel 
material weight and maximum inter-story drift demands terms, respectively (Liu et al. 2005). A 
variety of other researches have been presented using evolutionary algorithms in multi-objective 
problems. Also other hybrid meta-heuristic algorithms are employed in multi-objective 
optimization of structures (Kaveh and Laknejadi 2011a, b, 2012). 

In this study, a multi-objective optimization technique is utilized for optimal design of EBF 
structures and then a moment resisting frame is solved as a supplementary example. Construction 
cost, in terms of standard sections weight, structural damage index and inter-story drift as the non-
structural damage index, are considered as the three objectives. A neural network is trained and 
employed for estimating the relation between the input and output variables. Input variables 
include the standard sections and outputs include drift, dissipated energy and plastic deformation 
under ground motions. Output variables are used to calculate the structural and non-structural 
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damages. A multi-objective genetic algorithm is used as an explorer engine for finding the 
multiple optimal answers. 
 
 
2. Modeling and analysis of structures 

 
In this study, 120 planar EBF bare-frame structures are modeled in PERFORM3D software. 

These models are utilized to train a neural network. Design base acceleration and ground type are 
taken as 0.35 and 2.00, respectively. Structural system type is EBF. Non-linear modeling is 
performed based on FEMA356 pre-standard by applying concentrated plastic hinge rules. Strain 
hardening is considered as 3 percent for all the hinges. P-Delta effect due to the interior gravity 
loads is considered in modeling. Tabas, Parkfield, Kobe, Imperial Valley and Northridge are five 
strong motions that their records are chosen from the peer website and are scaled. These records 
with their acceleration response spectrums are provided in Figs. 1 and 2. Near-field earthquakes 
are the ones for which their distance from the earthquake surface center is less than a specific 
amount. Some researches have shown that the near-field records can be divided into 2 parts, 
having pulse and without pulse. Sometimes pulse presence in acceleration, velocity and 
displacement histories is one of the features that separate near-field earthquakes from far-field 
ones (Malhotra 1999). In this study earthquakes distances from the surface center are chosen to be 
less than 10 km, also the first 25 seconds of each earthquake time is considered as the effective 
time in modeling. Non-linear time history analyses are applied to the designed structures by 
PERFORM3D software. Average inter-story drifts, dissipated energy and plastic deformations are 
calculated under each record for each structure and then the amounts are averaged for all the 
mentioned records. The non-linear dynamic method is utilized because of the possibility of 
calculating dissipated energy and plastic deformations as terms of the damage index under 
different records, while in linear and non-linear statics methods this is not possible. Since the 
calculation of inter-story drifts and damage index are based on averaging different records, the 
earthquakes are chosen in a way to include a great frequency domain all together to make sure all 
structures with various periods (0.47-0.65) are excited. Designed structures involve 4 spans and 5 
stories. First story height is 280 cm and other stories heights are 320 cm. Side spans involve 
eccentric braces. The first 3 stories have the same types (similar sections and link beams lengths) 
and stories 4 and 5 are similar in type as shown in Fig. 3. Design variables in 120 mentioned 
structures involve braced spans beams, columns and braces dimensions and link beams lengths in 
each type. Beams in 2 central spans are similar in all stories in all the structures, and they are not 
considered as design variables. Used sections are presented in Table 1. 

In order to avoid uneconomical sections, the optimal sections are chosen based on their stresses, 
and four sections are utilized for each member. All models used in the neural network are designed 
based on the utilized code. All the results obtained from multi-objective optimization are checked 
for satisfying the code limitations, since it is possible that minor errors of the neural network cause 
optimal answers to fall out of  the feasible domain. 

The material properties of the frame are as follows: 

3.0 and  ),/(82.76 , )/(82 32   mkNmkNeE  

 The constraints utilized in different generations of the genetic algorithm, consists of the 
following: 
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Fig. 1 Records of Tabas, Parkfield, Kobe, Imperial Valley and Northridge earthquakes 
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Fig. 2 Acceleration response spectrums of Tabas, Parkfield, Kobe, Imperial Valley and Northridge 
                 earthquakes 
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 Table 1 Sections used in the structure 

Member type Section Member type Section 

Type 1 column 
(stories 1, 2 and 3) 

IPB16 
IPB18  
IPB20  
IPB22 

Type  2 beam 
(stories 4 and 5) 

IPE16  
IPE20 
IPE18 
IPE22 

Type  2 column 
(stories 4 and 5) 

IPB10 
IPB12  
IPB14 
IPB16 

Type 1 bracing 
(stories 1, 2 and 3) 

2L10 
2L12 

2UNP10 
2UNP12 

Type 1 beam 
(Stories 1, 2 and 3) 

IPE18  
IPE20 
IPE22 
IPE24 

Type  2 bracing 
(stories 4 and 5) 

2L8 
2L10 

2UNP8 
2UNP10 

 
 
 

 
Fig. 3 Geometry and variables of the frame 
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1. Controlling the constraints corresponding to the beams, columns and excentric beams 

0.2 1
2

r r r

c n c n b n

P P M
if

P P M
   

  
 (1)

8
0.2 1

9
r r r

c n c n b n

P P M
if

P P M

 
       

 (2)

Where Pr is the required compression strength of the beam, column or excentric beam. Pn is the 
nominal compression strength of the beam, column or excentric beam, Φc is the strength 
coefficient in compression which is equal to 0.9, Mr is the required bending strength of the beam, 
column or excentric beam and Mn is the nominal bending strength of the beam, column or 
excentric beam. 
 

2. Controlling the constraints for bracing members 

4.23
y

E

F
   (3)

.cr c cnP P   (4)

.tr t tnP P 
 

(5)

Where λ is the slenderness ratio, E is the modulus of elasticity, Fy is the yield stress of the steel, 
Pcr is the required compression strength, Φc is the strength coefficient in compression which is 0.9, 
Pcn is the nominal value of the compression strength, Ptr is the required tensile strength, Φt is the 
strength coefficient in tension which is 0.9 and Ptn is the nominal tensile strength of the section. 
 

3. Controlling the drift of the stories and the roof 

0.7sec 0.025M sif T h     (6)

0.7sec 0.020M sif T h     (7)

Where T is the period of the structure, M  is the relative lateral displacement of the story 
considering the P-Δ  effect and hs is the height of the story. 
 

4. Controlling the constraint for link beams: 0.08p rad   

In this paper the maximum length of the link beams is constrained in a manner that the shear 
behavior governs the design as recommended by the codes of practice. 

1.6 p

p

M
e

V


 
and 0.08p rad   (8)
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.u v nV V   (9)

Where e is the length of the link beam, Mp is the plastic moment of the link beam, Vp is the 
plastic shear of the link beam, γp is the maximum amount of the rotation of the link beam, Vu is the 
factored shear applied to the beam, Vn is the nominal amount of the shear strength in the beam and 
Φv is the strength reduction factor which is equal to 0.9. 

 If we do not want the shear govern the design, then instead of Eq. (8) we can use the following 
general equations. In this case Eq. (10) represents the shear behavior and Eq. (11) is the 
corresponding bending behavior. For bending-shear behavior, with condition presented in Eq. (12), 
γp can be found by interpolation. 

1.6 0.08p
p

p

M
if e rad

V
    (10)

2.6 0.02p
p

p

M
if e rad

V
    (11)

1.6 2.6p p

p p

M M
e

V V
 

 
(12)

In this way a collection of varied answers with different weights and damage levels will be 
obtained that are acceptable from the viewpoint of the code, and the neural network can then be 
trained using these answers.  
 
 
3. Damage index 
 

Converting structural damage potential into numerical values has been one of the most 
conflicting problems in earthquake engineering. Evaluating this potential in a reliable way will 
have lots of usage in designing and rehabilitation of structures. One of the indexes used in this 
field is the damage index. Structural performance and linear states can be described by this index. 
This index can be normalized between zero and 1 in an ideal way. For the zero index there is no 
expectation of damage while for index 1 there is a potential for collapse. Other performance levels 
like immediate occupancy (IO), life safety (LF) and collapse prevention (CP) are arranged 
between zero and 1. An index is normally based on parameters such as force, deformation and the 
amount of dissipated. In the technical literature different damage indexes are used and that of the 
Park and Ang (1985) has been one of the most popular ones, described in terms of deformation 
and energy 

(13)                                                             max H
pa

mon y mon

U E
DI

U F U
  

Where, 
Umax: the maximum deformation of the member under loading, 
Umon: the maximum deformation capacity under one-way loading, 
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EH: the dissipated energy during loading, 
β: a constant parameter. 
 
 
4. Selection of the objective function 
 

In a practical optimization problem usually more than one objective is needed to be achieved. 
These objectives are necessary for optimal design procedure to obtain improved designs that can 
be utilized in real engineering world. In a seismic design optimization procedure, suitable 
objective functions can be considered as economical concern and seismic risk in future probable 
earthquakes. In the single-objective optimization problems, structural weight is normally 
considered as the objective function. In multi-objective optimization problems, weight is again 
considered as the first objective while there is not a unique agreement on the other objectives. 
Maximum strain energy, maximum natural frequency of free vibration, minimum displacement in 
some specific structure points, maximum stiffness (Li et al. 1999)   and maximum dissipated 
energy in structure due to material hysteretic behavior (Ohsaki et al. 2007)  are some examples of 
other objectives considered in researches. In this study other surveys were done for choosing some 
more acceptable objectives. Each objective eventually should either describe weight index (cost) 
or damage in probable earthquakes, For example; the structural stiffness is increased in order to 
decrease the displacements which are a part of damage, or as an example about maximizing energy, 
consider two structures with same weights. Under a ground motion one of them remains in linear 
state while the other one passes it and thus dissipate some energy so in this manner the first 
structure is more satisfactory if it doesn’t have more displacements. On the other hand the damage 
sustained by a member, depends on dissipated energy-member capacity ratio and not just only on 
dissipated energy. All these terms can simultaneously be seen in damage index formula. Both 
energy and displacement terms are presented in this formula. Energy is demonstrated in the 
numerator of the fraction, divided by area of structure behavior curve. Consequently, there are just 
two main objectives so that the rest like stiffness, frequency and energy are considered as some 
parts of the two main objectives. It means other objectives should be related to weight or damage 
when they are assessed so it seems more reasonable to throw them away and directly use weight 
and damage indexes instead. In seismic design based on standards, damage and performance 
concepts are not clearly mentioned and designing approach finish just based on minimizing initial 
cost. In this study structure weight is considered as an index for initial cost. Structure weight 
variations are achieved by choosing a variety of standard steel sections, also link beam variations 
cause braces length to vary, then in this way structure weight can again change. The considerable 
point about other objectives, i.e., structural and non-structural damages, is that designing structures 
with high yield strengths can’t ensure decreasing damages; especially non-structural’s, since in this 
way structure will experience high accelerations even during mild excitations that worry 
inhabitants and also cause great non-structural damages; especially in strong ground motions. In 
addition, high yield strength causes great base shear and then huge forces in base level columns 
that makes it difficult to design foundation. All these concerns should be considered in designing 
structures (Liu et al. 2005). 
 
 
5. Relating input and output variables by neural network 
 

A neural network is trained and utilized to find the relationship between the input and output 
variables. Decreasing the amount of calculations and increasing the speed of data processing are 
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some advantages of using a neural network in a multi-objective genetic algorithm in comparison to 
other methods (Liu et al. 2005). In the present multi-objective genetic algorithm, by choosing 100 
as the first generation population and 10 as the generations number, optimization procedure takes 
about 10 minutes of computational time by utilizing a Dell Vostro 1510 Laptop. Also by using 
neural network, convergence can easily be achieved. In the other words, an optimization process 
may need thousands of structural analysis that is both expensive and time-consuming, especially in 
non-linear time history analyses. By the use of neural network, the problem with analyses can be 
eliminated and a simple formulation is substituted using much less number of analyses, i.e. 
initially 120 analyses and then decreasing to 19 analyses after applying further modifications. The 
neural network includes 12 input variables i.e. inertia moment (I), beam, column and brace section 
areas in each type (A) and link beam length in each type (L) in which link beam length is a 
continues one and the rest are discrete. The neural network includes 3 output variables i.e. average 
inter-story drift in each structure, dissipated energy in each story, and average plastic hinges 
rotations of link beams in each story. The neural network used in this study is a GRNN one. As it 
was mentioned 120 structures are modeled and analyzed, in which 100 and 20 models used for 
training the network and checking the answers, respectively. Maximum error of average inter-story 
drift is about 2.5 percent and average error is about 1percent, also maximum error of dissipated 
energy in each story is about 5.2 percent while its average is about 2 percent and for link beams 
plastic hinges rotations, maximum and average errors are respectively about 4.5 and 1.8 percent. 
The 20 examples that are modeled for checking the answers are presented in Figs. 4 and 5 in which 
neural network and PERFORM3D energy and rotation outputs are compared.  

 
5.1. Further modification to the neural network 

 
Structural period is an index of both demand and stiffness. This feature makes it possible to 

train the neural network in an easy but much effective manner. Structural period can fairly 
estimate general responses such as average inter-story drift or total dissipated energy in a structure 
since period generally presents entire demand and stiffness, also it can be composed with some 
other features such as story stiffness in a specific story for calculating some local responses like 
inter-story drift or dissipated energy in that story. In structures design base on energy, input energy 
demand is estimated by structural period so it is possible to consider any structure, with any kind 
of shape or structural system type, just by period index. By using period, a variety of variables are 
omitted and replaced by just one variable. On the other hand, just in this manner an especial 
problem (structure) can be converted to a total problem (structure) with further elements and more 
complicated geometry but the only problem is calculating structures dynamic period. An algorithm, 
based on modal analysis, are utilized in order to calculate structures exact period so for estimating 
inter-story drift by neural network, 12 input variables are replaced by one variable (period). By 
using the mentioned algorithm the periods of modeled structures are gained between 0.47s and 
0.65s. Consequently, 19 structures (from 0.47s to 0.65s) are used in the neural network rather than 
the initial 120 structures. In Table 2 the results of neural network are compared in two different 
training schemes. Maximum neural network error by using period is about 2.5 percent and its 
average is about 1 percent. Another approach for decreasing the calculations amount and omitting 
the inter-story drift neural network is calculating the drift by using link beams plastic hinges 
rotation and structure geometry 

(14)                                                          
.

p p

e h

L
                 
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Where, 
e: length of the link beam 
h: story height 
L: span length 
γp: maximum link beam rotation 
δp: maximum real inter-story displacement 

 
 

Fig. 4 Comparison of the results of the neural network and the actual results of the plastic hinges rotations  
           in the structure 
 
 

Fig. 5 Comparison of the results of the neural network and the actual results for dissipated energy 
                  in the structure 
 
 
  Table 2 Comparison of the neural network results for two different training schemes 

 Mean value of the story drift 
Number of variables and number of structures used  
as input data of the networks Mean Error (%) Maximum Error (%) 

One variable (T) and 19 structures 1 2.5 

12 variables (all sections) and 100 structures 1.4 3.5 
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In Fig. 6 the results of the inter-story drift are presented for two different types of training. 
 
 

Fig. 6 Comparison of the results of neural network for two different training schemes; (a) Training of the 
network using a single variable (period), (b) Training of the network using a twelve variable 

 
 
6. Multi-objective optimization by genetic algorithm 
 

A multi-objective genetic algorithm is utilized as an explorer engine for optimizing the 
structural design. This algorithm is able to locate a group of optimal seismic designs based on the 
selected multiple objectives. In comparison to most conventional methods based on single-
objective optimization and used to discrete or custom populations, genetic algorithms (GA) are 
problem-independent methods and do not need Sensitive Information for guiding the search 
procedure. These features make them very effective tools for solving structures optimization 
problems in which discrete variables of beam and column sections are selected from standard steel 
sections catalogs (Huang and Arora 1997), and nowadays GAs are widely utilized in structural 
optimization problems because of the above mentioned merits (Adeli and Cheng 1993). NSGA-II 
as a modified version of NSGA, is a popular non-dominated sorting genetic algorithm in which 
GA uses simulated binary crossover operator (Park and Ang 1985, Deb and Agarwal 1995) for 
crossover and poly-nominal mutation (Deb and Agarwal 1995, Raghuwanshi and Kakde 2004). 
Solution fitness is defined by using non-dominated sorting technique (Goldberg 1989a) and 
another parameter called crowding distance (Deb 2001). 

 
6.1. Description of the multi-objective algorithm 

 
In this study the existing algorithm is modified to be compatible with a structural problem. 

Initial population is chosen as usual by considering the problem range. Each generation is sorted 
based on non-domination. Individuals are assigned fitness values based on the objective functions 
values. The first front in each generation is assigned 1 and the second one as 2 and so on. In order 
to avoid the near answers, crowding distance is utilized. The crowding distance makes it sure to 
have a variety of answers. In the next step parents are chosen based on a binary tournament in 
which the fitness values and crowding distance are compared. The population used in NSGA-II is 
suitable only for continuous ones and can not be used for other kinds of populations. Some 
changes are performed in this algorithm to make it applicable for other types of populations such 
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as continuous, discrete and custom. A genetic algorithm that works for discrete populations as well 
as continuous or custom ones is applied to the algorithm to make it compatible with the problem. 
In this study there are both discrete and continuous variables, link beam length as a continuous 
variable and beam and column sections as discrete ones that are selected from standard steel 
sections catalogs. 

The multi-objective optimization algorithm used here is mostly similar to NSGA-II. The main 
difference between the two algorithms is related to their genetic operators. The algorithm includes 
below parts. 

Population Initialization. The population is initialized based on the problem range and 
constraints.  

Non-Dominated Sorting. The initialized population is sorted based on non-domination.  
Crowding Distance. Once the non-dominated sort is completed the crowding distance is 

assigned. Since the individuals are selected based on rank and crowding distance, all the 
individuals in the population are assigned a crowding distance value. Crowding distance is 
assigned front wise and comparing the crowding distance between two individuals in different 
front is not necessary.  

All structures used for the neural network are designed models based on code to prevent 
undesirable situations such as soft story. Normalizing the constraints of the problem adding three 
weight (f1), damage (f2) and drift (f3) functions, the final general objective function together with a 
constant penalty coefficient is obtained as follows 

1

(1 max[0, ]) 1, 2,3
nc

i i m
m

PF f g i


                                          (15) 

Where nc is the number constraints and gm shows the violations of the constraints. Here we 
have used the adaptive coefficient for the penalty function introduced by (Barbosa and Lemonge 
2003) and employed in (Kaveh et al. 2008). The capability of this coefficient is investigated in 
(Goldberg 1989a). Eq. (15) together with using this coefficient, results in the following 
relationships 

1

 1, 2,3
nc

i i m m
m

F f v i


    (16)

2

0

| |
[ ]

m
m nc

l
l

v
W

v




 
  

 
 

(17)

  
Where 

max[0, ] 1:v g m nc
m m
   (18)

In these relationships, the sign   means the average value in all strings of each generation. 
 
6.2. Pareto optimal areas and discussion of the results 

 
Running the algorithm with determined objective functions and constraints results in a variety  
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of answers with different weights and damage levels that are acceptable based on the used code of 
practice, providing a multiple decisions possible for the design engineer. These merits are only 
related to multi-objective algorithms. Three common components are considered in the algorithm 
used in this study: 

1. The constraints related to the code;  
2. Comprehensive objective functions;  
3. A suitable numerical algorithm that results in optimal solution.  

 
In Table 3, the results of the first 10 optimal structures are presented, and in Fig. 7 the pareto 

optimal areas are shown in both 2 and 3 dimensions for the first 100 optimal structures. The results 
in the Table 3 show the importance of considering both non-structural and structural damages. For 
instance, in the second optimal structure it can be seen that the structure has the maximum damage 
index as the structural or cumulative damage, and the minimum inter-story drift as the non-
structural or non-cumulative damage. In design codes it is usual to check the maximum drifts or 
plastic deformations. Considering the fact that structures experience cumulative damages by 
dissipating energy in their cyclic behavior under ground motions and poor relationship between 
cumulative damage and final deformation in some cases, it seems to be necessary to estimate the 
cyclic damage of the structures. 
Table 4 is related to the neural network error that is obtained from a comparison of the first 10 
optimal structures obtained by neural network with those obtained by PERFORM3D. Finally, in 
Fig. 8 the results of the first 10 optimal structures obtained by the neural network and those 
obtained by PERFORM3D are compared. This comparison is made to become sure that the 
constraints in the last generation are controlled and they are lower than the allowable values. 

When the pareto optimal areas are obtained, it is possible to compare the characteristics of 
optimal and non-optimal structures. Some of these characteristics include distribution pattern of 
inter-story drift, distribution pattern of dissipated energy and distribution pattern of damage index 
in structure's height. Another importance of this comparison is from the viewpoint of designs 
codes. For instance, unique distribution of inter-story drift is one of the codes suggestions. In Fig. 
9 this quality is shown for 8 structures that 4 structures belong to the optimal areas and 4 structures 
are non-optimal. It can be seen the optimal structures have not only lower average inter-story drift 
but also a better distribution in the height. 
 

  

Fig. 7 Pareto optimal areas for the first 100 structures (2 and 3 dimensions) 
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Fig. 7 Continued 
 

 
Table 3 Details of the first 10 optimal structures  

  
  

1st  
struct. 

2nd  
struct. 

3rd  
struct. 

4th 
struct.

5th 
struct. 

6th  
struct. 

7th  
struct. 

8th  
struct. 

9th  
struct.  

10th 
struct. 

Type 1 beams 
(IPE) 

22 22  20  20  22  22  20  22  22  22  

Type 2 beams 
(IPE) 

18 18  20  20  20  20  20  20  20  20  

Type 1 columns 
(IPB) 

18  20  20  20  18  18  20  18  18  18  

Type 2 columns 
(IPB)  

12  12  12  12  12  14  14  12  12  12  

Sections of type 1 
bracings 

2UNP10 2L12 2UNP10 2UNP10 2L12 2UNP10 2UNP10 2L12 2L12 2L12 

Sections of type 2 
bracings  

2UNP8 2L10 2L10  2L10  2UNP8 2L10  2UNP8 2L10 2UNP8 2UNP8 

Length of type 1 
link beam (cm)  

59  30 60  30  57.7  59.5  31.1  55.3 30  35  

Length of type 2 
link beam (cm)  

59.8  35  56.2  34.9  42.7  59  35.3  59  34  42  

Volume10-4 
(cm3) 

18.5  36.2 23.4  23.8  30.7  23.3  18.9  35.5 31.3  31.2  

Drift104  53.4  42.3 50.1  45.8  49.6  52.1  46.4  49.6 42.4  43.9  

Damage Index 0.446 0.668 0.403 0.597 0.414 0.405 0.583 0.424 0.600 0.546 
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Table 4 The network errors obtained by comparison of the output of the network and those of PERFORM3D 

 Max (%) Mean (%) 

Mean value of story drift 2.5 1.5 
Plastic rotation of the link beam – 1st story 6 2.5 
Plastic rotation of the link beam – 2nd story 3 1.3 
Plastic rotation of the link beam – 3rd story 4.5 1.5 
Plastic rotation of the link beam – 4th story 4 2 
Plastic rotation of the link beam – 5th story 4.5 1.8 
Plastic hinge rotation of the entire stories 4.5 2 
Dissipated energy in the 1st story 6 2.5 
Dissipated energy in the 2nd story 6 3 
Dissipated energy in the 3rd story 5.5 2.8 
Dissipated energy in the 4th story 5 2 
Dissipated energy in the 5th story 4.5 1.5 
Dissipated energy in all the stories 6 2.5 
 
 

  

  

  
Fig. 8 Comparison of the outputs for the first 100 structures using neural networks and the PERFORM3D
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Fig. 8 Continued 
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Fig. 9 Maximum inter-story distribution of 8 structures. (a) 4 structures of pareto optimal areas 
                   (b) 4 structures of non-optimal areas 

 
 
6.3. A supplementary example 

 
In this section a 7-story bending frame is considered, each story having the height of 3m and 

span length of 5m, as shown in Fig. 10. According to what was explained in Section 5-1, the 
period index which is a function of the demand and stiffness of the structure (suitable for general 
responses), together with the stiffness of the stories (suitable for local response), form the input of 
the neural network. Considering the sections for the beams and columns of this frame, the period 
of the structure falls between 1.32 and 1.59. Therefore, instead of using a large number of 
structures and many inputs for the neural network, only 27 structures with period in the range of 
1.32 and 1.59 are utilized. Also 8 structures are employed for controlling the validity of the results 
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of the neural network. Thus a sum of 35 structures are modeled using the PERFORM3D program 
for controlling the learning of the neural network. The base acceleration for design and the type of 
ground are considered as 0.25 and 1.00, respectively. Nonlinear modeling is performed by using 
FEMA356 pre-standard and the rules form concentric plastic hinges. The P-Delta effect of the 
interior gravity loads is considered and strain hardening for all the hinges is taken as 3 per cent. 
The seismic loads applied to the structures are those of Tabas, Parkfield, Kobe, Imperial Valley 
and Northridge. The record and response of these earthquakes are shown in Figs. 1 and 2. A non-
linear time history analysis are performed for these models and the dissipated energy, the average 
inter-story drifts, dissipated energy, plastic deformation and then the damage index are calculated. 
The first three stories have the same type and the other two stories have identical type, and the two 
upper stories have the same type. The design variables in all the 35 structures are the sections of 
the beams and columns and for each member 4 sections are used as indicated in Table 5. 
 
 

3m
3m

3m
3m

3m
3m

3m

5m 5m 5m 5m 5m5m

DL = 2500 kg.f/m , LL = 750 kg.f/m

DL = 2500 kg.f/m , LL = 750 kg.f/m

DL = 2500 kg.f/m , LL = 750 kg.f/m

DL = 2500 kg.f/m , LL = 750 kg.f/m

DL = 2500 kg.f/m , LL = 750 kg.f/m

DL = 2500 kg.f/m , LL = 750 kg.f/m

DL = 2500 kg.f/m , LL = 750 kg.f/m

 

Fig. 10 Geometry of the frame 
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 Table 5 Sections used in the structure 

Member type Section Member type Section 

Type 1 column 
(stories 1, 2 and 3) 

IPB24 
IPB26  
IPB28  
IPB30 

Type 1 beam 
(stories 1, 2 and 3) 

IPE33  
IPE36 
IPE40 
IPE45 

Type  2 column 
(stories 4 and 5) 

IPB18 
IPB20  
IPB22 
IPB24 

Type  2 beam 
(stories 4 and 5) 

IPE30  
IPE33 
IPE36 
IPE40 

Type  3 column 
(stories 6 and 7) 

IPB12  
IPB14 
IPB16 
IPB18 

Type  3 beam 
(stories 6 and 7) 

IPE27  
IPE30 
IPE33 
IPE36 

 
 
Each of the 35 structures used for the neural network is designed according to the design code 

and all the results obtained from the multi-objective optimization are controlled for satisfying the 
limitations of the code. 

Mechanical properties of the frame are as follows: 

3.0 and  ),/(82.76 , )/(82 32   mkNmkNeE  

The constraints employed in different generations of the GA are as follows: 
1. The control of the limitation corresponding to beams and columns using Eqs. (1) and (2). 
2. Control of the stories and roof drifts utilizing Eqs. (6) and (7). 
After training the neural network and comparison of the mean values for 8 controlled structures 

with the results of the PERFORM3D program, the errors involved are according to Table 6, which 
are negligible for engineering problems. 

In this way the relation between the structural period and the disapated energy, plasic 
deformations and mean value of the inter-story drifts is obtained and according to Eq. (13) the 
relationship between the structural period and damage index is specified. This relationship together 
with the relation of period-drift are itilized in the multi-objective Genetic optimization. The results 
obtained for 10 first optimal structures of the pareto front are depicted in Table 7. 
 
 
Table 6 The network errors obtained by comparison of the output of the network and those of PERFORM3D 

 Max (%) Mean (%) 

Mean value of story drift 4.5 2 

Plastic rotation of the beam - 1st story 5.5 1.5 

Plastic rotation of the beam – 2nd story 4.5 2.5 

Plastic rotation of the beam – 3rd story 4 3 

Plastic rotation of the beam – 4th story 4 2.5 

Plastic rotation of the beam – 5th story 6 2.2 

Plastic rotation of the beam – 6th story 5.5 2 

Plastic rotation of the beam – 7th story 6 2.5 
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Table 6 Continued 

Plastic hinge rotation of the entire stories 5 1.5 

Dissipated energy in the 1st story 4 2.5 

Dissipated energy in the 2nd story 4.5 2 

Dissipated energy in the 3rd story 5 3 

Dissipated energy in the 4th story 6 1.5 

Dissipated energy in the 5th story 4 2 

Dissipated energy in the 6th story 4 2.8 

Dissipated energy in the 7th story 4.5 2 

Dissipated energy in all the stories 5.5 2.5 

 
 
  Table 7 Details of the first 10 optimal structures  

  
  

1st 
struct. 

2nd 
struct. 

3rd 
struct. 

4th 
struct.

5th 
struct. 

6th 
struct. 

7th 
struct. 

8th 
struct. 

9th 
struct.  

10th 
struct. 

Type 1 beams 
(IPE) 

33 40  40  36  33  33  36  40  33  36  

Type 2 beams 
(IPE) 

36 30  33  36  30  36  30  36  36  40  

Type 3 beams 
(IPE) 

27  27  33  27  36  33  27  33  36  27  

Type 1 columns 
(IPB)  

30  28  28  30  26  30  28  30  30  28  

Type 2 columns 
(IPB) 

22  24  24  22  24  24  20  22  22  24  

Type 3 columns 
(IPB) 

16  18  18  16  14  16  18  18  14  16  

Volume10-4 
(cm3) 

51.8  65.7  72.4  70.3  63.4  70.6  64.8  75.1  70.3  71.6  

Drift104  60.1  51.2  58.4  50.2  58.4  59.1  55.3  53.2  52.4  51.9  
Damage Index 0.416 0.572 0.37  0.512 0.44  0.39  0.45  0.39  0.491 0.482 

 
 
7. Conclusions 
 

In this study a multi-objective optimization technique is developed and applied to optimal 
design of frame structures. The objective functions are comprised of the construction cost in terms 
of section weights, damage index, and drift as non-structural damage. It is shown why these 
functions can fairly result in optimal design under a dynamic loading. Though the presented 
approach is applied to 2D problems, its application can easily be extended to 3D structures with no 
substantial changes in the formulation. Relating structural features to a specific index like 
structural period removes the 3D and geometric complications and makes it possible to use the 
present method in real engineering problems. Using neural networks to formulate the input and 
output variables, decreases the amount of calculations and computational time considerably while 
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the errors involved are acceptable for such engineering problems. Utilizing a minimum number of 
structures for training neural network becomes possible by relating the structural features to their 
periods since in this way it only sufficient to model structures with the periods in a small range 
instead of modeling a vast number of structures. Using this approach, the number of models is 
decreased, also the calculations related to the neural network become both easier and more 
accurate. The only acceptable objectives considered are minimizing weight and damage under 
ground motions and other objectives should somehow be related to these two. In this study non-
linear dynamic analyses are used since only this kind of analysis can simulate the real behavior of 
the structure under ground motions and calculate damage function and dissipated energy terms. 
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