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Abstract.   Based on link-model, we conducted a static analysis and computation of a three-span suspended 
cable structure in the present paper, and obtained the static configuration and tension distribution of the cable. 
Using the link and beam model based on finite element method, we analyzed the vibration modal of 
three-span suspended cable structure, and compared with the results obtained from ANSYS using link and 
beam element. The vibration modals of shallow sagging inclined cables calculated from proposed method 
agrees well with ANSYS results, which validates the proposed method. As a result, the influence of bend 
stiffness on in-plane natural frequencies is much greater than that on out-of-plane natural frequencies of 
inclined cables. 
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1. Introduction 
 

Taking the advantage of low density, high strength and large flexibility, cables are widely used 
as the main bearing components in structures such as cable-stayed bridges. However, the 
large-amplitude vibration caused by the wind and rain, which mainly involves in-plane and 
out-of-plane modes, might cause problems in practice. The vibration of cables has been studied by 
many researchers (Kunihiro 2008, Vassilopoulou 2010, Canelas 2010). Hagedorn et al. (1980) 
derived the non-linear vibration of cables considering large-amplitude vibration. Perkins et al. 
(1977) and Hassan et al. (1987) studied the linear vibration theory of inclined cables, and 
discussed the influence of related parameters such as stiffness-to-weight ratio on the cables’ 
natural frequencies. Nayfeh et al. (1989) reviewed the theoretical and experimental studies on the 
influence of the modal interactions on the nonlinear response of harmonically excited structures, 
and discussed the quadratic nonlinearities, which may lead to two-to-one and combination 
autoparametric resonances. Perkins (1992) derived the three-dimensional motion of travelling 
cables with arbitrary initial sag and arbitrary support eyelet elevations, and predicted the natural 
frequencies, mode shapes and the stability of equilibrium of cable. Lacarbonara et al. (2007, 2008) 
and EI-Attar et al. (2000) formulated the coupled non-linear vibration equations of cables due to 
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the transverse and vertical multiple support excitations, and investigated the importance of phase 
differences between the support excitations at the cable ends. Wang et al. (2009) investigated the 
nonlinear response of a shallow suspended cable subjecting to the primary resonance excitation, 
and analyzed the effects of the excitation amplitude on the frequency–response curves of the cable. 
Srinil et al. (2004) presented a model analyzing three dimensional large-amplitude free vibrations 
of a suspended cable, and analyzed both the non-linear coupling between three- and 
two-dimensional motions, and the tension responses of non-linear cable. Yu et al. (1999) studied 
the vibration and control of cables considering damping effect. Desai et al. (1995, 1996) presented 
a finite element method with three-node, isoparametric cable element to successfully simulate field 
galloping records. 

Previous researchers analyzed galloping of cables neglecting the influence of bending stiffness 
on free vibration and galloping. This paper will discuss the difference between the beam model 
with bending stiffness and link model without bending stiffness. 
 
 
2. Link model of cables without bending stiffness 
 

The cables are one dimensional elastic structure with bending and torsional stiffness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 The model of inclined cable: (a) The static configuration of inclined cable; (b) The displacement 

and tension of cable element; (c) The torsion angle and torque of cable element 
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The vibration model of inclined cables is shown in Fig. 1. Here, x1x2x3 are Cartesian coordinate 
system; P0 is the natural unstretched position; P̂ (U1,U2,U3) is the initial deformation position 
under gravity; P(x1, x2, x3) is the dynamic deformation position under dynamic loads. (u1, u2, u3) 
are the displacement of position P in coordinate system x1x2x3, φ is the torsion angle of cross 
section of cable in position P. 

The displacement of cable in position P0 can be written as follows 

3,2,1     ,  iuUx iii                             (1) 

Hamilton’s principle is written as 
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                        (2) 

where δK is the variation of total kinetic energy, δΠ is the variation of strain potential energy, δWnc 
is the work done by external forces as a result of the variation. 

Motion equations of inclined cables based on link-model can be written as follows 
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where S /())( . 

And boundary conditions can be written as follows, 
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where 

m — the mass per unit length of inclined cables; 
J —  the rotational inertia of inclined cables about longitudinal axis; 
fi —  the distribution forces on cables; 
ci —  structural damping coefficient in xi; 
I —  the cross sectional polar inertia moment; 
N —  tension of the cables; 
G —  Shear modulus. 

In order to get the static configuration of cables, we assume that ui = 0, φ = 0, f4 = 0, ii ff ˆ  
and then Eq. (3) can be simplified as below 
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where N̂  is the static tension of cables, ê , the static strain of cables, if̂ , the static distribution 
force of cables. 

Supposing that the static distribution force acting on cable is gravity only, and boundary 
conditions U1 = U2 = U3 = 0 are applied at s = 0. Then the solution of Eq. (5) can be found as 
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With boundary conditions U1 = l1, U2 = 0, U3 = l3 at s = L, we can obtain 
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where W = m0gL is the total weight of the cables. 
 
 
3. Beam model of cables 
 

The Link model neglects the bending stiffness of cables. For more accurate approximation, the 
cable can be regarded as Euler-Bernoulli beam. Furthermore, the material of the cable can be 
regarded as isotropic and linear elastic if large deflections but small strains are considered in 
describing the motion of cables. 

The three dimensional governing equation of motion based on Euler-Bernoulli beam theory can 
be presented as 
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where [T] is the coordinate transformation matrix, ρ1, ρ2, ρ3 are the curvature radius of cables, ω = 
(ω1, ω2, ω3) is the angular velocity vector of local coordinates. ρ1, ρ2, ρ3 are much smaller 
compared with the length of inclined cables, so the terms containing ρ1 ρ2 and ρ1 ρ3 in Eq. (14) can 
be omitted. Otherwise, we can neglect the influence of rotational inertia on the transverse vibration, 
since inclined cables’ galloping frequencies is very low and their galloping wavelength is much 
larger than the diameter of the cross section of the cable, and hence terms containing J in Eq. (14) 
can be omitted. Furthermore, 1J  in Eq. (13), which is the torsional inertia moment of inclined 
cables, can also be omitted since it is a small term. However, in order to keep the dynamic form of 
Eq. (13), we reserve the   term in  sin1

  , so that Eqs. (10)-(14) can be rewritten in the 
following forms 
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Eqs. (15)-(19) can be simplified by neglecting higher order terms with small quantities, and the 
simplified linear equations are 
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and D11, D13, D22, D33, D44 can be written as: 
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where D0 is a column vector, [D] is a symmetric linear differential operator matrix, D0 and [D] are 
the functions of the arc coordinate s. 

Substituting Eq. (20) into Eqs. (15)-(19), and neglecting structural damping, we obtain 
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cables 
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Hence we can get the linear equation of motions of cables near equilibrium position 

fuD
s

uM
~

)]([][ 




                 

                 (24) 

 
 
4. Comparison between beam model and link model 

 
4.1 Static analysis 
 
The integration of Eq. (23) is 
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Substitute D0 into Eq. (25) and consider the gravity only, we obtain 
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With the integration of Eqs. (26)-(27) with boundary conditions U1 = U2 = U3 = 0 at s = 0, we 
have 
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Comparing Eq. (28) with Eqs. (6)-(7), we can find that the static configuration obtained from 
beam model and Link model are the same for the shallow sagging inclined cables. So the bend 
stiffness of cables does not affect the static deformation. 

 
4.2 Free vibration 
 
The mass matrix and stiffness matrix of the arbitrary element with length l are 
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The deflection interpolation function of the element is 
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For link model, each element has four degrees of freedom (three translational and one torsional 
degree of freedom), node displacement vectors at each end are represented as 
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The linear interpolation function of the element is 
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where I is a 4 × 4 unit matrix, and the interpolation function matrix )](
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According to Canelas and Sensale (2010), differential operator matrix [D(s)] of link model is 
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where [M] = diag{m, m, m, J}. 
For beam model, element node displacement vectors at each end are 
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The differential operator matrix [D(s)] of the beam model is in Eq. (21), [M] = diag{m, m, m, 
J}. 

 
 

5. Numerical examples 
 
5.1 Problem definition 
 
The three-span suspended cable structure is shown in Fig. 2. The mass per unit length of 

inclined cables is ρ = 2.755 kg/m, the area of the cross section of the cable A = 6.336 ×10-4 m2, and 
the modulus of elasticity E = 1.03 × 1011 N/m2. The altitude differences of those three spans are hab 
= 65.2 m, hbc = 19.5 m and hcd = 76.2 m, respectively. And the length of those three spans are lab = 
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563 m, lbc = 1055 m and lcd = 581 m, respectively. Position A is 0 m, position D is 2218 m. Cables 
are hinged in position A and D and O1B and O2C are regarded as rigid straight beam. O1 and O2 are 
hinged position for rigid straight beam, B and C can whirl around the point O1 and O2. 

 
 

Fig. 2 Three-span suspended cable structure 
 
 
5.2 Results and analysis 
 
5.2.1 Static analysis 
Fig. 3 shows the static configuration and distribution of the tension stresses of cables. 

Geometric parameters obtained by static analysis are listed in Table 1. 
 
 

  Table 1 Results of static analysis 

i j 
Parameters /m Tension /N 

hij lij Lij Ni Nj 

i=A, j=B 65.2 563 567.64 61614 63372 

i=B, j=C 19.5 1055 1.63.42 63472 63998 

i=C, j=D 76.2 581 586.94 64088 62032 
 

 
(a) 

 
(b) 

Fig. 3(a) Static configuration and (b) distribution of tension 
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5.2.2 The out-of-plane modes 
The out-of-plane natural frequencies calculated by our method and ANSYS are listed in Tables 

2 and 3. Fig. 4 shows the fourth-order out-of -plane modes. 
 
 

Table 2 The out-of-plane natural frequencies calculated by proposed method /Hz 

Order 1 2 3 4 5 6 7 
8 

(4 half wave)
Linked model 0.07107 0.12871 0.13250 0.14197 0.21315 0.25807 0.26567 0.28467 

Beam model 0.07126 0.12893 0.13273 0.14227 0.21330 0.25772 0.26532 0.28440 
 

 

Table 3 The out-of-plane natural frequencies calculated by ANSYS /Hz 

Order 1 2 3 4 5 6 7 8 

Link element 0.07073 0.12807 0.13198 0.14121 0.21170 0.25599 0.26383 0.28228 

Beam element 0.07185 0.13159 0.13573 0.14343 0.21507 0.26304 0.27132 0.28672 
 

 

 
(a) 

 
(b) 

(c) (d) 

Fig. 4 The out-of-plane modes for fourth-order: (a) Link model, (b) beam model, (c) ANSYS link 
element, (d) ANSYS beam element 
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5.2.3 The in-plane modes 
The in-plane natural frequencies calculated by our method and ANSYS are listed in Tables 4 

and 5. Fig. 5 shows the fourth-order in-plane modes. 
 
 

Table 4 The in-plane natural frequencies calculated by proposed method /Hz 

Order 1 2 3 4 5 6 
7 

(4 half wave)
Linked model 0.14090 0.19868 0.25872 0.26634 0.30360 0.30906 0.28534 

Beam model 0.15556 0.21626 0.29723 0.30171 0.31135 0.31534 0.32236 

 
 
Table 5 The in-plane natural frequencies calculated by ANSYS /Hz 

Order 1 2 3 4 5 6 7 

Link element 0.13977 0.21059 0.25582 0.26387 - - 0.28249 

Beam element 0.14164 0.20158 0.26206 0.270361 - - 0.28672 

 
 

 
(a) 

 
(b) 

Fig. 5 The in-plane modes for fourth-order: (a) link model, (b) beam model 
 
 

5.2.4 Torsional modes 
Table 6 presents the natural frequencies of torsional modes calculated by proposed method. Fig. 

6 shows the distribution of rotation angle along arc length. 
 
 
Table 6 The torsional natural frequencies /Hz 

Order 1 2 3 

Link element 1.2708 1.3140 1.4028 

Beam element 1.2714 1.3146 1.4035 
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(a) 

 
(b) 

Fig. 6 The torsional mode for third-order: (a) link model; (b) beam model 
 
 
6. Conclusions 

 
The three dimensional non-linear dynamic equations of inclined cables are formulated based on 

Hamilton’s variational principle. Using the link and beam model based on finite element method, 
we analyzed the vibration modal of three-span suspended cable structure, and compared the results 
with those obtained from ANSYS based on link and beam element. We have obtained the 
following conclusions: 

 
(a) The results show the bend stiffness does not affect the linear vibration of cables near 
equilibrium position. 
(b) The influence of bend stiffness on out-of-plane natural frequencies can be neglected. The 
error of natural frequencies between the link model and beam model is less than 0.267% 
(first-order) and the error between our method and ANSYS is less than 2.21% (third-order for 
beam model), which validates our method. 
(c) The influence of bend stiffness on in-plane natural frequencies is greater than that of 
out-of-plane natural frequencies. The error of natural frequencies calculated by our method 
between the link model and beam model is 13.0% (third-order), and 4.47% for ANSYS results. 
The error of natural frequencies for link model calculated by ANSYS and proposed method is 
less than 5.66% (second-order), but the error of beam model is 13.4% (third-order). The 
influence of bend stiffness on torsional natural frequencies can be ignored since the error is less 
than 0.05% (third-order). 
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