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Vibrations of an axially accelerating, multiple supported 
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Abstract. In this study, the transverse vibrations of an axially moving flexible beams resting on
multiple supports are investigated. The time-dependent velocity is assumed to vary harmonically about a
constant mean velocity. Simple-simple, fixed-fixed, simple-simple-simple and fixed-simple-fixed boundary
conditions are considered. The equation of motion becomes independent from geometry and material
properties and boundary conditions, since equation is expressed in terms of dimensionless quantities. Then
the equation is obtained by assuming small flexural rigidity. For this case, the fourth order spatial
derivative multiplies a small parameter; the mathematical model converts to a boundary layer type of
problem. Perturbation techniques (The Method of Multiple Scales and The Method of Matched
Asymptotic Expansions) are applied to the equation of motion to obtain approximate analytical solutions.
Outer expansion solution is obtained by using MMS (The Method of Multiple Scales) and it is observed
that this solution does not satisfy the boundary conditions for moment and incline. In order to eliminate
this problem, inner solutions are obtained by employing a second expansion near the both ends of the
flexible beam. Then the outer and the inner expansion solutions are combined to obtain composite
solution which approximately satisfying all the boundary conditions. Effects of axial speed and flexural
rigidity on first and second natural frequency of system are investigated. And obtained results are
compared with older studies.

Keywords: beam vibrations; supported end; flexible beam; multiple supports; axially accelerating; small
flexural stiffness; transverse vibrations 

1. Introduction

Axially moving continuous media have attracted great interest because of the importance in
engineering applications such as ropes, high speed magnetic tapes, power transmission belts, band-
saws, fiber textiles, paper sheets, aerial cable tramways, oil pipelines, etc. Especially, their vibration
analyses are very important for optimum working conditions. Their usage fields are extended with
developments of industrial process and technology from middle of last century to nowadays. A
broad literature exists on the topic which is reviewed by Ulsoy et al. (1978), Wickert and Mote
(1988). Wickert and Mote (1990) investigated the transverse vibrations of travelling strings and
beams. Wickert (1992) investigated strained beam problem. First equation of motion for axially
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moving continuous media is obtained by Miranker (1960). Mockenstrum et al. (1994) analyzed
time-dependent stress force and stability state for systems with constant velocity. Pakdemirli et al.
(1994) obtained the equation of motion for axially accelerating string by using Hamilton Principle
and they investigated stability of vibrations numerically. Pakdemirli and Batan (1993) repeated this
analysis for harmonically accelerating and decelerating systems with constant acceleration.
Pakdemirli and Ulsoy (1997) investigated principal parametric resonances combination resonances
for an axially accelerating string. They found that for velocity fluctuation frequencies near twice of
natural frequency, an instability region occurs whereas for the frequencies close to zero, no
instabilities were detected. Nayfeh et al. (1981) showed that, direct-perturbation method give better
results for quadratic and cubic non-linearity. Öz and Pakdemirli (1999), Öz (2001), Özkaya and Öz
(2002) investigated main parametric and combination resonance situation for axially moving beam
with variable velocity by using perturbation and artificial neural networks method and they showed
that these systems have sum type combination resonances and also they showed that difference type
combination resonances not occurs. Pakdemirli et al. (1995) compared results that obtained from
two methods for nonlinear cable vibrations. They showed that solutions obtained by direct -
perturbation method better represent to real system behavior of the system than the common method
of discretization-perturbation method for higher order expansions. Pakdemirli (1994), Pakdemirli
and Boyac  (1995) showed that direct - perturbation method has much sensitive solutions by using
general model with arbitrary quadratic and cubic nonlinearity. And again Pakdemirli and Boyac
(1994) showed that two methods have differences not only in nonlinear equations and also in linear
equations. Chung et al. (2001) studied vibrations of an axially moving string with translating
acceleration and they investigated the natural frequencies, the time histories of the deflections and
the distributions of the deflection and stress. Chen and Zhao (2005) studied on a numerical method
for simulating transverse vibrations of an axially moving string. In following studies researchers
studied on non-ideal boundary conditions for beam vibrations Boyac  (2005), for stretched damped
beam vibrations Boyac  (2006), for continuous systems Pakdemirli and Boyac  (2002), for simple-
simple beam with a non-ideal support in between Pakdemirli and Boyac  (2003), for stretched beam
vibrations Pakdemirli and Boyac  (2001). Linear and non-linear transverse vibrations are
investigated by Özkaya (2001, 2002). 
In recent studies, Ponomereva and van Horssen (2009) considered boundary value problem for a

linear axially moving stretched beam. They assumed the velocity as time dependent. They examined
higher order mods and they combined string and tensioned beam models to obtain flexible beam
model. Pakdemirli and Özkaya (1998) obtained approximate boundary layer solution for an axially
moving beam problem. Öz et al. (1998) considered axially moving beam with small transverse
rigidity and investigated transition behavior from string to beam. An approximate analytical
expression for natural frequency was given for the problem. For time-dependent velocity profiles,
stability borders were determined analytically. This study gives approximately solutions for only
simply supported beam with small transverse rigidity and has not possible usage for other
conditions. The one close study to this article accomplished by Özkaya and Pakdemirli (2000). In
this study transition behavior from string to beam is investigated by using different methods. But
they obtained same natural frequency values for simply supported and fixed supported cases. This
solution approximately corrects the simply supported beam but in fixed supported case it fails to
satisfy exact solution. And one close study about article accomplished by Parker et al. (2004).
Axially moving flexible beam with constant axial velocity was considered. In this study, they
defined that obtained natural frequency values in studies of Öz et al. (1998) and Özkaya and
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Pakdemirli (2000) does not valid for fixed supported case, and with their suggested method they
obtained natural frequencies for simply and fixed supported cases. Simply supported case has same
solutions with older studies but they obtained different frequency values for fixed supported case,
but difference between these solutions and exact solutions are relatively high. Ba datl  et al. (2008)
investigated non-linear transverse vibrations and 3:1 internal resonances of a tensioned beam on
multiple supports. Ba datl  et al. (2009) stepped beam systems using artificial neural networks.
Investigated nonlinear vibrations of curved Euler-Bernoulli beams carrying arbitrarily placed
concentrated masses. Tekin et al. (2009) studied on three-to one resonance in multi stepped beam
systems. Ba datl  et al. (2011) dynamics of axially accelerating beams with an intermediate support.
Ozkaya et al. (2011) nonlinear vibrations and 3:1 internal resonances on multiple supports were
investigated and excitation frequency-frequency response curves drawn for different support
numbers. Chen et al. (2009) summarized the latest progresses on nonlinear dynamics for transverse
motion of axially moving strings. A uniform governing equation incorporated arbitrary forms of the
constitutive law of the string material was presented. Ghayesh (2010) studied parametric vibrations
and stability of an axially accelerating string guided by a non-linear elastic foundation, analytically.
They presented some numerical simulations to highlight the effects of system parameters on
vibration, natural frequencies, frequency-response curves, stability, and bifurcation points of the
system. Nguyen and Hong (2010) investigated a robust adaptive boundary control for an axially
moving string that showed nonlinear behavior resulting from spatially varying tension. Ghayesh
(2011) investigated the forced dynamics of an axially moving viscoelastic beam. The governing
equation of motion was obtained via Newton’s second law of motion and constitutive relations.
Huang et al. (2011) analyzed the nonlinear vibration of an axially moving beam subject to periodic
lateral force excitations. Attention was paid to the fundamental and subharmonic resonances, since
the excitation frequency was close to the first two natural frequencies of the system. Ghayesh et al.
(2012) examined the sub- and super-critical dynamics of an axially moving beam subjected to a
transverse harmonic excitation force for the cases where the system was tuned to a three-to-one
internal resonance as well as for the case where it was not. Cetin and Simsek (2011) investigated
free vibration of an axially functionally graded (AFG) pile embedded in Winkler-Pasternak elastic
foundation within the framework of the Euler-Bernoulli beam theory, and they obtained results that
will be a reference with which other researchers can compare their results.
Except a few studies, papers that mentioned above and their references, axial velocity accepted as

constant and transverse vibrations are investigated.
In this paper, we investigated axially moving flexible beams with multiple supports. Axial

velocity is accepted as harmonically varying about a mean velocity. The beam effects are assumed
to be small. Since, in this case, the fourth order spatial derivative multiplies a small parameter; the
mathematical model becomes a boundary layer type of problem. We suggested new solutions for
inner expansion and eliminate errors in older studies. Obtained solutions are approximately satisfied
all boundary conditions and natural frequency values approximately satisfied the exact values for
small beam effects. Effects of harmonically varying velocity are analyzed and we showed that
velocity can be modeled as constant. Some axially moving continuous media have multiple support
like mass producing band. Effects of support number on the solutions and the natural frequency are
investigated and discussed in detail. 
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2. Equation of motion and approximately solutions

Linear dimensionless equation of motion for axially moving beam with two supports at both ends
can be written as (1994).

   (1)

where  dimensionless beam parameter, v axial velocity. The dimensionless quantities are defined
from the corresponding dimensional ones as follows

 (2)

where ( )* dimensional parameters, ρ is the flexible beam density, A is the cross-sectional area of the
beam, L is the length of the flexible beam, P is the axial tension force, E is the modulus of
elasticity, I is the moment of inertia. If EI is small compared to PL2,  can be chosen as.

  (3)

The velocity is assumed as harmonically varying about a constant mean velocity

 (4)

where ε is a small parameter. The dimensional velocity variation frequency (Ω*) is related to the
dimensionless one (Ω) through below relation. 

 (5)

3. Method of matched asymptotic expansions

For solution of the problem, the method of matched asymptotic expansions (MMAE) will be used
to construct a uniform expansion valid for all ranges of the spatial variable (1981). Since the
equation treated is a partial differential equation and elimination of secularities from the time
variable is needed, this method is combined with MMS by introducing two time variables 
and . To obtain valid solution; first, outer expansion solution will be found and then inner
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solutions are obtained by employing a second expansion near the both ends of the flexible beam.
Then the outer and the inner expansion solutions are combined to construct composite solution
which approximately satisfying all the boundary conditions. Two and Three supported beam systems
are analyzed separately. In two supported case simple-simple and fixed-fixed, in three supported
case simple-simple-simple and fixed-simple-fixed supported boundary conditions are investigated.

3.1 Two supported flexible beams

3.1.1 Outer solution

First, an outer solution valid for all ranges of spatial variable except near the both ends of the
flexible beam will be constructed. For outer expansion solution we made this expansion

   (6)

Time derivatives are

 (7)

Substituting Eqs. (6) and (7) into equation of motion and separating terms of different orders, one
obtain 

O(1):    (8)
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 (10)

The solution of order 1 is
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Equations that obtained from order 1 represents string problem. Because of this the outer
expansion solution can only satisfies two boundary conditions (displacements are zero at support
points). But moment and incline conditions for beam problem must satisfy at support points, too.
Other boundary conditions will be satisfied by combining the inner expansion solutions and the
outer solution. Outer solution conflicts with composite solution far from support regions. Outer
solution satisfies string conditions at its valid region and thus we can provide string conditions to
outer solution to find solvability conditions. 
Boundary conditions for string 

  (14)

By substituting (14) into (13) order 1 solution becomes

  (15)

where

  (16)

 is the natural frequency value that obtained from providing string conditions to outer
expansion. Natural frequency of system will be obtained from composite solution that contains inner
expansion solutions, too. 
Substituting Eq. (15) into order ε, Eq. (9) one has

 (17)

Eliminating secular terms, solvability condition obtains
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  (21)

Solution of Eq. (21) yields 

 (22)

where

  (23)

k0 parameter in outer expansion solution shows effects of beam characteristic on natural frequency
of system. Also beam characteristic will appear in inner expansion solutions and effect on
calculating natural frequency. k0 parameter will be added to natural frequency that obtained from
composite solution. 

3.1.2 Inner solutions

For each ends of the beam, separate inner solutions should be constructed.
Inner solution at the  side
Assuming now an inner expansion of the form

  (24)

Where, the spatial variable ζ as follows
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Inner solution at the  side obtains as

   (30)

Inner solution at the  side;
The spatial variable ζ as follows

 (31)

With using similar process for x ≈ 1 side, solution for x ≈ 1 side obtains

  (32)

Combining all solutions, the composite solution, that valid for all ranges of x is

 (33)

Natural frequency values can be calculated by considering composite solution and boundary
conditions. By adding k0 natural frequency values obtains for axially moving flexible beam. If inner
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Figs. 2-5 shows natural frequencies for flexible beams that studied. Frequency values for different
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Fig. 2 Comparison of first mode mean velocity-dependent natural frequency changes for simple-simple
supported flexible beam
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transverse rigidity versus mean velocity values are investigated in Figs. 2 and 3. Frequency value;
inversely with mean velocity and directly proportion with beam parameter. This situation is
projected. Flexible beam approaches beam behavior with increasing transversal rigidity. Natural

Fig. 3 Comparison of first mode mean velocity-dependent natural frequency changes for fixed-fixed
supported flexible beam

Fig. 4 Comparison of our solutions with solutions in Parker et al. (2004). (---) Solutions of Kong and Parker;
(__) our solution; (…) exact solution (first mode natural frequency and constant velocity for simple-
simple supported flexible beam)
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frequency values increased by using fixed supported beam instead of simply supported. Our
solutions compared with Kong and Parker’s (2004) solutions for constant velocity in Figs. 4 and 5.
From this graphics we can see that our solutions have better approximation than other solution.
Especially our solution has high achievement for fixed-fixed supported system.
The first mode shape graphic compares outer expansion solution and composite solution at

simple-simple supported system in Fig. 6. Both solutions satisfy conditions at boundary points. But

Fig. 5 Comparison of our solutions with solutions in Parker et al. (2004). (---) Solutions of Kong and
Parker; (__) our solution; (…) exact solution (first mode natural frequency and constant velocity for
fixed-fixed supported flexible beam)

Fig. 6 Comparison of first mode, deflection curves
for outer expansion solution and composite
solution for simple-simple supported flexible
beam. (---) outer expansion solution; (__)
composite solution (v0 = 0.3, Ω = 5, t = 0.3,
v1 = 0.1, vf = 0.1)

Fig. 7 Comparison of second mode, deflection curves
for outer expansion solution and composite
solution for simple-simple supported flexible
beam. (---) outer expansion solution; (__)
composite solution (vf = 0.025, v0 = 0.3, Ω = 5,
t = 0.3, v1 = 0.1)
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there are differences at other regions of system. The second mode shape graphic showed in Fig. 7.
Moment variation graphic for outer expansion solution and composite solution at same supported
system given in Fig. 8. While composite solutions satisfy moment conditions at the support points,
outer expansion solution is not.
Displacement variation graphic for outer expansion solution and composite solution at fixed-fixed

supported systems plotted in Figs. 9 (for first mode) and 10 (for second mode). And again both
solutions satisfy conditions at boundary points and there are differences at other regions of system.
These differences are larger than simple-simple supported case. Incline variation graphic for outer
expansion solution and composite solution at same supported system given in Fig. 11. Composite

Fig. 8 Comparison of first mode, moment curves for
outer expansion solution and composite
solution for simple-simple supported flexible
beam. (---) outer expansion solution; (__)
composite solution (v0 = 0.3, Ω = 5, t = 0.3,
v1 = 0.1, vf = 0.1)

Fig. 9 Comparison of first mode, deflection curves
for outer expansion solution and composite
solution for fixed-fixed supported flexible
beam. (---) outer expansion solution; (__)
composite solution (v0 = 0.6, Ω = 5, t = 0.3,
v1 = 0.1, vf = 0.1)

Fig. 10 Comparison of second mode, deflection
curves for outer expansion solution and
composite solution for fixed-fixed supported
flexible beam. (---) outer expansion solution;
(__) composite solution (vf = 0.025, v0 = 0.3,
Ω = 5, t = 0.3, v1 = 0.1) 

Fig. 11 Comparison of first mode, incline curves for
outer expansion solution and composite
solution for simple-simple supported flexible
beam. (---) outer expansion solution; (__)
composite solution (vf = 0.095, v0 = 0.6, Ω = 5,
t = 0.3, v1 = 0.1)
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solutions satisfy incline conditions at the each support points. Outer expansion solution satisfies
incline conditions at left hand side, but at right hand has big difference. 

3.2 Three supported flexible beams

Our solutions will be investigated separately for left and right regions of the middle support.
Boundary conditions for outer expansion assume as follows

  (34)

η is dimensionless distance of middle support from left support. If we repeat same process with two
supported systems under these conditions, we can obtain the correction term for frequency.
Correction term for left hand side found as

  (35)

And for right hand side obtains as

 (36)

Eqs. (35) and (36) are same at the middle support where x = 0.5. We have two correction terms.
Both correction terms can be used at x = 0.5 point. While middle support is near the right hand side

 and while middle support is near left hand side  will used for calculating the first natural
frequency. We must determine occurring region of mode to calculate the second and higher modes
of natural frequency values and consider k0 value for that region. Outer expansion solutions obtain
as
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Thus inner expansion solutions obtains as

 (42)

 (43)

Only difference between left and right parts of the system is “c” parameters as seen from
Eqs. (42) and (43). Composite solutions obtain with considering of this information as

  (44)

  (45)
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 (46)

If v1 is taken as “0”, obtained solution yields axially moving flexible beam with constant velocity.
In Fig. 12 time-dependent natural frequency changes are investigated. Amplitude of frequency
directly proportion with v1 value. Amplitude of fluctuation is small for small values of v1. v1
selected as small (v1 = 0,1) in handled study. Thus amplitude of frequency changes is negligible size
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Fig. 12 Comparison of first mode time-dependent natural frequency changes for simple-simple-simple
supported flexible beam (v0 = 0.6, Ω = 5, vf = 0.05, η = 0.5)
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and we can assume that frequency changes independent from time for our system. Similar graphics
are obtained for three supported cases in Figs. 13-18. The first mode mean velocity-dependent on
natural frequency changes in composite solution versus exact solution compared in Fig. 13 for S-S-
S (simple-simple-simple) supported beam. These solutions coincide with exact solution for small
values of beam parameter but they separated with increasing beam parameter. This case is natural,
because we obtained solutions for small beam parameter. Additionally our solutions approximate to
exact values for small axial velocity in high beam parameter situation. First and second mode
deflection curves plotted for outer expansion solution and composite solution for S-S-S supported

Fig. 13 Comparison of first mode mean velocity-dependent natural frequency changes in composite solution
and exact solution for fixed-simple-fixed supported flexible beam (---) composite solution, (__) exact
solution

Fig. 14 Comparison of first mode deflection curves for outer expansion solution and composite solution for
simple-simple-simple supported flexible beam. (---) outer expansion solution; (__) composite solution
(vf = 0.12, v0 = 0.6, η = 0.8, Ω = 5, t = 0.3, v1 = 0.1) 
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flexible beam in Fig. 14 and Fig. 15. Both solutions satisfy boundary conditions but there are big
constructive differences between these solutions. Composite solution has a shape that much
compatible with physical situation. Moment variations showed in Fig. 16 for same supported
system. While composite solutions satisfy moment conditions at the support points, outer expansion
solution is not. Deflection and incline variations for fixed-simple-fixed supported flexible beam
plotted in Fig. 17 and Fig. 18. While deflection conditions satisfied by all solutions, incline
conditions only satisfied by composite solution.

Fig. 15 Comparison of second mode deflection curves
for outer expansion solution and composite
solution for simple-simple-simple supported
flexible beam. (---) outer expansion solution;
(__) composite solution  (vf = 0.055, v0 = 0,
η = 0.8, Ω = 5, t = 0.3, v1 = 0.1)

Fig. 16 Comparison of first mode moment curves
for outer expansion solution and composite
solution for simple-simple-simple supported
flexible beam. (---) outer expansion solution;
(__) composite solution (vf = 0.12, v0 = 0.6,
η = 0.3, Ω = 5, t = 0.3, v1 = 0.1)

Fig. 17 Comparison of first mode deflection curves
for outer expansion solution and composite
solution for fixed-simple-fixed supported
flexible beam. (---) outer expansion solution;
(__) composite solution (vf = 0.1, v0 = 0.6,
η = 0.5, Ω = 5, t = 0.3, v1 = 0.1) 

Fig. 18 Comparisons of first mode incline curves for
outer expansion solution and composite
solution for fixed-simple-fixed supported
flexible beam. (---) outer expansion solution;
(__) composite solution (vf = 0.1, v0 = 0.3,
η = 0.3, Ω = 5, t = 0.3, v1 = 0.1) 
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4. Conclusions

Axially moving beam equation becomes fair enough to flexible beam by assuming small flexural
rigidity. Outer expansion solution is obtained by the method of multiple scales. It is observed that
this outer expansion solution does not satisfy the boundary conditions for moment at simple-simple
and incline at fixed-fixed supported cases. In order to eliminate this problem, inner expansion
solution is obtained by employing a second expansion near the both ends of the flexible beam. Then
outer and inner expansion solutions are combined to obtain composite solutions approximately
satisfying all the boundary conditions. At first dealt with axially moving two supported systems
with constant velocity and obtained solutions for simple-simple and fixed-fixed supported cases.
And then three supported systems are investigated and solutions produce for simple-simple-simple
and fixed-simple-fixed supported cases. Effects of axial speed and flexural rigidity on first and
second natural frequency of system for every condition are discussed. 
It’s clearly seen that an outer expansion solution does not coincide with composite solutions from

obtained graphics. This situation becomes apparent by increasing transverse rigidity. Because, outer
expansion solution only contains order 1 solution, have not order e terms. Therefore composite
solution has much sensitive results than outer expansion solution for high values of transverse
rigidity. For all situations that studied, an outer expansion solution does not satisfy boundary
conditions in comparing incline and moment variations. Composite solution is obtained for
eliminating this problem and the results show that composite solution satisfies all boundary
conditions. Increases of natural frequency values with increasing transverse rigidity value at fixed-
fixed supported case are more than simply supported cases. And again amplitude values also higher
at fixed-fixed supported cases. Other than this if we investigated displacement variation graphics,
we can see maximum amplitudes increase with increasing of mean velocity.
At the end of study we obtained different frequency values for different boundary conditions. We

investigated effects of variable velocity and showed that assuming velocity as constant is acceptable.
Frequency values, mode shape, incline and moment values are obtained with enough sensibility for
most boundary conditions. 
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