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Abstract. Truss weight is one of the most important factors in the cost of construction that should be
reduced. Different methods have been proposed to optimize the weight of trusses. The artificial bee
colony algorithm has been proposed recently. This algorithm selects the lightest section from a list of
available profiles that satisfy the existing provisions in the design codes and specifications. An important
issue in optimization algorithms is how to impose constraints. In this paper, the artificial bee colony
algorithm is used for the discrete optimization of trusses. The fly-back mechanism is chosen to impose
constraints. Finally, with some basic examples that have been introduced in similar articles, the
performance of this algorithm is tested using the fly-back mechanism. The results indicate that the rate of
convergence and the accuracy are optimized in comparison with other methods.
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1. Introduction

 

The cost of materials is one of the key factors to consider in the construction of a building. This

can be reduced by minimizing the weight or volume of the materials used. Different methods are

used to minimize the volume or weight to achieve an optimal design. These methods include a set

of design variables that are subjected to design constraints. Optimizing the cross-sectional area leads

to a reduction of the mass and size of the structure. In addition, the optimal design must satisfy the

design constraints, which limits the values of the design variables and the structure’s response.

Because the use of classic mathematical methods in optimization problems can be practically

difficult or impossible due to their nonlinear and nondifferentiable nature, researchers have devised

methods inspired by nature to solve such problems. The evolutionary algorithm is an example of

this approach.
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General types of algorithms for optimization problems fall into two categories (Consoli 2006):

a. Complete algorithms (exact)

b. Approximate algorithms

The methods based on swarm intelligence are a subcategory of metaheuristic methods for

approximate algorithms. In these methods, in addition to considering individual performance,

members of the population have social interactions with each individual member in the population.

Therefore, their operation is much more effective than when acting separately. 

In computational applications, organisms such as ants, bees, fish, and birds can be modeled. In

general, there are several types of bee algorithms, such as the Honey Bee Algorithm (HBA), the

Virtual Bee Algorithm (VBA), the Artificial Bee Colony (ABC) algorithm, and the Honey Bee

Mating Algorithm (HBMA). It appears that the HBA was first formulated in approximately 2004 by

Tovey at Georgia Tech in collaboration with Nakrani, then at Oxford University, to study a method

to allocate computers among different clients and web-hosting servers. Later in 2004 and early

2005, Yang at Cambridge University developed a VBA to solve numerical optimization problems.

In addition to solving two parameter functions, this algorithm can be used to optimize functional

and discrete problems. Later in 2005, Haddad et al. presented a HBMO algorithm, which was

subsequently applied to cluster modeling of a reservoir (Yang 2008).

Karaboga (2005) presented the idea of solving numerical problems based on bees’ social behavior

with an artificial bee colony. Karaboga and Basturk (2007) used this idea to present an artificial bee

colony algorithm as an efficient and applicable algorithm for optimizing numerical problems and

compared the results with other optimization algorithms.

Lemmens et al. (2007) used a bee colony to produce a new computational algorithm for

multiagent systems with bees’ food-finding behavior. This is different than ant colony behavior,

which uses pheromones for routing, which decreases the time required to reach a given destination.

Using Newton's law of universal gravitation to make changes in the method of selecting onlooker

bees, Tsai et al. (2009) designed an algorithm that improved numerical optimization problems

(IABC).

Karaboga and Akay (2009) compared the artificial bee colony algorithm with other optimization

algorithms, such as the genetic algorithm, particle swarm optimization, and evolutionary strategy.

For this algorithm with fewer control parameters, they showed that the results are better than or

similar to other algorithms. They (Akay and Karaboga 2012) also modified the ABC algorithm for

numerical function optimization. One of the changes made is the production of a modification rate

(MR) control parameter. This modification means that a random number is generated uniformly for

each parameter xij, and if this number is smaller than MR, the parameter is changed. Another

improvement is the scaling factor (SF) control parameter, which is related to the ratio of the

variance operator in the original ABC algorithm.

Although the ABC algorithm is a powerful algorithm for discovering food sources, it performs

poorly in the exploitation phase, so Zhu and Kwong (2010), inspired by PSO, developed the ABC

algorithm further by adding a new term to the solution search equation. 

Luo et al. (2010) divided ABC algorithm’s particles into several independent subpopulations to

increase accuracy of optimal solution.

Hadidi et al. (2010) improved the ABC algorithm to optimize the size of plane and space truss

structure profiles by applying the concept of probability to modify neighborhood search methods

and by modifying the onlooker and scout bee phase. 
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Kang et al. (2010) introduced a new algorithm based on combining an ABC algorithm with the

HJ algorithm, which Hooke and Jeeves (1961) suggested as a simple search method. The new

algorithm was more powerful for solving numerical problems in terms of accuracy and convergence

speed than the ABC algorithm.

At first, the bee colony algorithm was introduced for unconstrained problems (Karaboga and

Basturk 2007). Karaboga and Akay (2011) expanded it for constrained optimization problems by

applying a scout production period control parameter to their modified algorithm (Akay and

Karaboga 2012), and they used Deb’s rule for constraint-handling, which was initially presented by

Deb (2000) as an effective technique in genetic algorithms.

Brajevic et al. (2011) presented the simplified artificial bee colony algorithm (SC-ABC) with the

modifications in Karaboga’s algorithm (Karaboga and Akay 2011). In this algorithm during the first

run, the initial population is generated randomly, and in the next runs, if there are any, the new food

source in the initial population is the best answer from the previous run. Therefore, different runs

are related to each other. However, the scout bee’s phase will be checked for feasible solutions, and

if the solution is not in a feasible space, it should be replaced with a random solution. This

modification increases exploration in the scout bee’s phase and the exploitation of the best food

sources.

Sonmez (2011a, b) used the ABC algorithm for the first time for the discrete and continuous

weight optimization of truss structures in building design.

The purpose of this study to use a combination of the ABC algorithms offered by Karaboga and

Akay (2011) and Sonmez (2011a, b) to find the optimum weight of truss structures and to choose

the best and lightest profiles from the list of available profiles to satisfy the design constraints and

determine whether changing the constraint-handling technique could improve the convergence speed

and accuracy of the ABC algorithm and lead to the optimum solution. Currently Deb’s rule and

penalty functions are applied to constraint-handling in the ABC algorithm, but this paper uses the

fly-back mechanism technique as an improved method. Kaveh and Talatahari (2007, 2008, 2009)

used this fly-back mechanism technique as a simpler method than the other techniques in their

proposed algorithm (PSACO) for the optimization of trusses and steel frames. They also applied

this technique in their other algorithm (HPSACO).

The content of this paper is arranged as follows. 

Section 2 presents the formulation of the structural optimization problems. Section 3 describes

honeybees’ food-finding behavior. In Section 4, the algorithm is modeled based on the natural

behavior of honeybees. In Section 5, the pseudo-code of the ABC algorithm is presented. In Section

6, the efficiency of this algorithm is tested through several standard test problems. Section 7

presents the conclusions.

2. Formulation of the structural optimization problems

 

The goal of optimization is to minimize or maximize the constrained functions. These functions

are called objective functions. In the structures under consideration, the objective functions involve

the structural weight (Togan et al. 2011, Yun et al. 2006, Kim et al. 2004), cost (Cagatay et al.

2003), shape (Lee and Park 2011), and topology (Lee and Park 2011, Chen and Rajan 2000). In this

study, the objective function is the structural weight, which leads to cost reduction
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(1)

where

 = Structural weight

Aj = Cross-sectional area of the j-th member

n = Number of members

Lj = Length of the j-th member

γj= Unit weight of the j-th member

{Aj} = Represents a group of sections selected from a permissible profile list

Profile list = (2)

where

z = Number of profiles in the list

 

Subjected to the following constraints

Displacement constraints (3)

Stress constraints (4) 

Buckling stress constraints (5)

Restriction of profile size (6)

 

where

m = Number of degrees of freedom 

n = Number of structural members

nc = Number of compression members

ng = Number of design variables or groups

min= Lower bound

max = Upper bound

σj = Stress in the j-th member

δj = Displacement of the j-th degree of freedom 

 = Allowable buckling stress in the j-th compression member

 

3. Honeybees’ natural food-finding behavior 

 

Honeybees are social insects that live in colonies in hives. Each hive contains a queen, thousands

of semi-sterile female workers and thousands of males (drones) (Sonmez 2011a). The male bees’

only task is mating with the queen bee, whereas the workers’ tasks are hive cleaning, larvae

nursing, food preparation, and nest construction. The bees’ food-finding process is described as

follows.

Minimize W Aj{ }( ) AjLjγj
j 1=

n

∑=

W Aj{ }( )

A1 A2 … Az, , ,{ }

δmin δj δmax j≤ ≤ 1 2 … m, , ,=

σmin σj σmax j≤ ≤ 1 2 … n, , ,=

σj

b
σj 0 j≤ ≤ 1 2 … nc, , ,=

Amin Aj Amax j≤ ≤ 1 2 … ng, , ,=

σj

b
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There are many food sources around the hive. A number of bees are scattered around their hive

looking for quality food sources. After selecting the desired flowers, they recognize the flower

position using the angle of the sun and return to the hive (Sonmez 2011a). Traveling bees inform

others about the sources and the quality of food through “waggle dances (Karaboga 2005). The

informed bees fly toward the food source using the duration, the length of the straight path and the

angle of the dance to recognize the quality, distance, and direction of the flower, respectively. They

also explore the flowers’ surrounding area for additional food sources (flowers with better nectar).

After comparing, they choose the best source and return to the hive. By repeating this process, the

best flowers are chosen.

 

4. An ABC modeling algorithm based on bees’ natural behavior 

 

The ABC algorithm is based on the nature of bees’ behavior when searching for food. This

algorithm moves toward the optimal solution by a mechanism based on selection. The artificial bee

algorithm is composed of three groups (Sonmez 2011b):

1. Scout bees

The scout bees are constantly searching to discover new food sources. Initially, bees fly out into

the environment as scout bees, but after finding their desired flowers, they become employed bees.

2. Employed bees

The employed bees inform other bees about the amount of nectar and the position of the flowers

after returning to the hive. The information is transferred through a circular dance called the waggle

dance (Karaboga 2005). The waggle dance consists of a series of circular motions. The direction of

the dance is in line with the positions of the flower and the sun. Longer and better dance quality

indicates better flower and nectar quality.

3. Onlooker bees

Onlooker bees remain and watch the dancing in the hive. Onlooker bees review the obtained

information from employed bees in the hive, and they make selections based on the quality of the

dancing.

At first, the initial space is generated randomly. This initial space represents the surrounding space

around the hive, which includes NP (the number of desired solutions), different solutions for this

problem, which is calculated using the following equation

(7)

where

Aij = j-th variable of the i-th desired solution

= A random number between 0 and 1

= Upper bound of the j-th variable

= Lower bound of the j-th variable

NP = Number of desired solutions

D = Number of design variables

Aij Aj

min
λij Aj

max
Aj

min
–( )+=

i 1 2 3 … NP, , , ,=

j 1 2 3 … D, , , ,=

λij

Aj
max

Aj
min
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Because bees search around their hive up to a certain distance (Sonmez 2011a), the initial space

should be limited. This limitation is in fact the upper and lower bound of the variables in each

solution. The initial space should be selected from the limited values. The ABC algorithm is

essentially an algorithm based on continuous values, and it is not constrained. Bees do not have any

restriction in choosing flower locations; therefore, any value could be substituted for the position of

the flowers. However, in this study, due to the constrained problem and the discrete variable values,

a constraint-handling technique should be used, and the obtained variable values can be substituted

with the nearest available profile values. Until now, different techniques have been used for

constraint-handling for optimization problems; these techniques include penalty functions, Deb’s

rules, and the fly-back mechanism technique. The use of penalty functions is difficult due to the

difficulty in finding suitable penalty coefficients and in finding the balance between the penalty

functions and the objective functions (Geem 2010). In this study, the fly-back mechanism technique

is used for constraint-handling. Because the constraints of building design codes and specifications

are not very complex, generating an initial feasible space is not difficult or time consuming;

therefore, this technique can easily be used in structural problems.

In this technique, the global optimal situation is inside or on the boundary of the feasible region

(all of the solutions in the feasible region satisfy the existing constraints). Particles (bees) are

evaluated in the feasible region. When the optimization process begins, the particles (bees) search

for a solution in the feasible space. If a particle (bee) moves out of the feasible region, it is returned

to its previous position (Geem 2010). In fact, after generating an initial feasible population, to keep

the solution feasible when a new solution is created in the neighborhood of the previous solution

and if the new solution is of better quality and satisfies the constraints, the new solution will replace

the previous solution. However, if the new solution does not satisfy the constraints, it will be

returned to the previous solution. Because the initial population is feasible, constraint satisfaction is

guaranteed. Because the initial feasible population is generated after the initial space is generated, it

should be evaluated for any desired solution that satisfies the constraints. If at least one of the

constraints is not satisfied, it will be replaced with a new solution. Comparing this method to other

methods of constraint-handling indicates that this technique is not difficult. Some experiments have

shown that this technique can find a better solution with fewer iterations (Geem 2010).

Moreover, applying the discretization method presented by Kaveh and Talatahari (2007) is useful

due to its simplicity and efficiency in designing structures. They improved their proposed method

with Eq. (8), which presents the particle positions in the PSO algorithm with Eq. (9).

 

(8)

(9)

Fix(x) is a function in Eq. (9) that fixes the value of the member of the x vector to the nearest

permissible discrete value. With this function and Eq. (10), all of the values of Eq. (7) are fixed to

the nearest permissible discrete value in the list of profiles.

 

(10)

After producing the initial feasible space, all of the desired solutions are compared with existing

solutions in their neighborhood (Existing solutions in the neighborhood are obtained by replacing

Xi

k 1+
Xi

k
Vi

k 1+
+=

Xi

k 1+
Fix Xi

k
Vi

k 1+
+( )=

Aij Fix Aj

min
λij Aj

max
Aj

min
–( )+( )=
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the value of some variables with new values)

 
 

(11)

 
However, if no variables are changed in Eq. (11), one of them is randomly chosen and replaced

with the value of the neighborhood using the following equation 

 

(12)

 

where

φij = A random number between 1and −1.

Rj = A random number between 0 and 1.

k = An index that is randomly selected and should be different from i

MR = Modification rate control parameter

The result of Eqs. (11) or (12) is fixed to the nearest permissible discrete value in the list of

profiles again. 

The above comparison duplicates the employed bee’s flower selection procedure. In this regard,

any bee will select the solution that has better fitness (which represents the quality of nectar in

natural honeybee behavior).

 (13)

where

 =  of the i-th solution

 

Then, the probability of the employed bees being selected by onlooker bees is calculated. In the

ABC algorithm, the selection probability is representative of the waggle dance of natural bees.

 

 (14)

where

Pi is the selection probability for the i-th solution

 

After calculating the probability of selection, the solution that has a greater possibility based on

the probability is chosen by the onlooker bees. Then, the selected solution and its neighborhood are

investigated, and the best solution based on the level of fitness is selected (this step is proportional

Aij

new Aij φij Aij Akj–( ),  if Rj MR<+

Aij                          otherwise⎩
⎨
⎧

=

Aij

new
Aij φij Aij Akj–( )+=

i 1 2 3 … NP, , , ,=

j 1 2 3 … D, , , ,=

k 1 2 3 … NP, , , ,=

fitnessi
1

Wi Aj{ }( )
----------------------=

fitnessi fitness

Pi

fitnessi

fitnessi
i 1=

NP

∑

-----------------------=
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to the onlooker bees). The onlooker bees choose the desired flowers based on the selection

probability that is obtained from the employed bees’ dancing, which results in selecting a flower

with the best quality of nectar through a search in the neighborhood of the desired flowers. The best

solution is stored among available solutions in the feasible space. Knowing that some solutions may

not show any improvement (this means that each solution that is compared with generated solutions

in the neighborhood has a better fitness level during a specified number of iterations (LIMIT)),

these solutions would be replaced with a new feasible solution by Eq. (10) (this represents the

behavior of scout bees).

 

5. Pseudo-code for the ABC algorithm

 

In this study, a combination of Sonmez’s pseudo-code for the ABC algorithm (Sonmez 2011a, b)

and Karaboga’s constrained algorithm (Karaboga and Akay 2011) is used, and the fly-back

mechanism technique is applied instead of Deb’s rule for constraint-handling. So selection of

solutions from initial feasible population in fly-back mechanism comparing to selection of solutions

from initial population with feasible and infeasible solutions that is used in Deb’s rule increases the

rate of convergence. The steps of the method are as follows.

11. Determine the total number of bees (population size) NP, the maximum number of cycles

(MNC), and the LIMIT and modification rate control parameter (MR).

12. An initial population is randomly generated using the Eq. (7).

13. Use the Eq. (10) to fix all of the variables from the previous stage to the nearest permissible

discrete value in the profile list.

14. Analyze the structures and obtain the response of structures under loads.

15. Check whether any of the existing solutions in the population (food source) satisfy the

constraints; otherwise, new solutions must be produced while the constraints are satisfied.

16. Solve the Eqs. (13) and (1) to find the fitness and weight of the structure, respectively, for

each of the solutions.

17. Consider half of the number of weights, which are lightest, as employed bees. SN = NP/2

18. Select the best (lightest) weight among all existing weights.

19. Set cycle = 1

10. Repeat the following loop for each of the employed bees (Steps 11-15).

11. If MR is greater than a random number between 0 and 1 for each variable ,

the variable is replaced with a new variable in the neighborhood using Eq. (11).

12. If no variables in the 11th step are changed, one of them will be randomly chosen and

replaced with the value of the neighborhood by Eq. (12).

13. All of the variables that are obtained in Steps 11 or 12 are rounded to the nearest allowed

value in the list of available profiles.

14. Solve the Eqs. (13) and (1) to find the fitness and the structure’s weight, respectively.

15. If the fitness level of the solution is better than the previous one, analyze the structure and

obtain the response of the structure under loads. Then, if the new solution satisfies the

constraints, it will replace the previous solution.

16. The probability of each of the employed bees , which is chosen by onlooker

bees, is calculated using Eq. (14).

17. Repeat the following loop for each of the onlooker bees  (Steps 18-23). 

i 1 2 3 … SN, , , ,=

j 1 2 3 … D, , , ,=

i 1 2 3 … SN, , , ,=

i 1 2 3 … SN, , , ,=
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18. If the probability of choosing the food source (the solution) identified by the first employed

bee was more than a random value between 0 and 1, an onlooker bee would select the food

source. Otherwise, the onlooker bee surveys the probability of choosing the food source by the

other employed bees until the constraint has been satisfied. 

19. If MR is greater than a random number between 0 and 1 for each variable ,

the variable is replaced with a new variable in the neighborhood using Eq. (11).

20. If no variables in the 19th step are changed, one of them will be randomly chosen and

replaced with the value of the neighborhood by Eq. (12).

21. All variables that are obtained in Steps 19 or 20 are rounded to the nearest allowed value in

the list of available profiles.

22. Solve the Eqs. (13) and (1) to find the fitness and the structure’s weight, respectively.

23. If the fitness level of the solution is better than the previous one, analyze the structure and

obtain the response of the structure under loads. Then, if the new solution satisfies the

constraints, it will replace the previous solution.

24. Select and update the best (lightest) weight among all existing weights.

25. Replace a randomly selected solution among the solutions, that shows no improvement within

a certain number of iterations (LIMIT) and is not the best solution with a new feasible solution

using Eq. (10) (scout bees phase).

26. cycle = cycle + 1

27. If cycle > MNC, the process will stop. Otherwise, go to Step 10.

 

 

6. Numerical examples

 

The following three classical test problems were used to check the accuracy of the calculation:

 
• 10-bar plane truss 

• 25-bar space truss

• 72-bar space truss

 
In all cases, the structure is analyzed using the displacement method. The optimization algorithm

and the structural analysis were programmed using MATLAB.

In this study, the ABC algorithm parameters in Examples 1 and 2 were set as follows: size of the

bee colony NP = 50, MNC = 516, and LIMIT = MNC/3. In Example 3, the parameters were set as

follows: NP = 50, MCN = 1000, and LIMIT = MNC/3. To achieve the best, worst, and average

solutions for each problem, twenty independent runs were performed.

 

6.1 Ten-bar plane truss

 

The 10-bar plane truss in Fig. 1 is a typical problem in the optimal design of structures, and the

efficiency of different optimization methods can be evaluated with this method. The configuration

and element numbers of the structure are given in Fig. 1. A single loading condition p1 = 100 kips

(445.374 kN) was applied. All of the members’ material properties are as follows: an elastic

modulus of E = 10,000 ksi (68.971 GPa) and a mass density of ρ = 0.10 lb/in3 (2,678 kg/m3). In this

problem, there are10 design variables that are selected from a set of 42 discrete values:

j 1 2 3 … D, , , ,=
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L = {1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.35, 3.63, 3.84, 

3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.8, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 

15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5} in2.

The free nodes’ displacements in both directions must be less than ±2 in (±50.8 mm), and the

allowable stress was set to ±25 ksi (±172.25 MPa).

Table 1 shows that the ABC algorithm gives the best solution in eighteen out of 20 design runs.

The average weight of the ABC algorithm was 5491.9 (lb) with a standard deviation of 5.047 (lb).

The difference between the best and worst solutions developed by this algorithm was 0.41%. The

results are better than those obtained using Sonmez’s ABC algorithm (Sonmez 2011a). It is assumed

that MR = 0.7 in each of the 20 runs.

Fig. 2 is a weight-iteration graph that represents the high speed of convergence of this algorithm;

the optimal solution was found in 59 iterations in the best case. The average of the number of truss

analyses in the twenty runs to achieve the optimal solution was 11,050 with an average number of

iterations of approximately 221. In comparison, the average number of analyses was 25,800 for

ABC (Sonmez 2011a), 10,000 for ACO (Camp and Bichon 2004), and 50,000 for HPSO (Li et al.

2009). The number of analyses required by this study is larger than that required by ACO (Camp

and Bichon 2004), which produced the same best design result. In Table 2, the effect of the

modification rate control parameter on the results for the optimum design is shown. As observed,

the standard deviations (SD) of 10 runs and the dispersion solutions decreased with an increase in

 Fig. 1 Ten-bar plane truss

Fig. 2 Weight-Iteration graph for the ten-bar plane truss 1 lb = 0.45359 kg
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Table 1 Results of the optimal design of the 10-bar plane truss

Optimal cross-sectional area  (in2)

Element group
This study

ABC
(Sonmez 
2011a)

ACO
(Camp and 

Bichon 2004)

HPSO
(Li et al. 

2009)

SA
(Kripka 2004)

GA
(Rajeev and 

Krishnamoorthy 
1992)

33.50 33.50 33.50 30.00 33.50 33.50 A1 1

1.62 1.62 1.62 1.62 1.62 1.62 A2 2

22.90 22.90 22.90 22.90 22.90 22.00 A3 3

14.20 14.20 14.20 13.50 14.20 15.50 A4 4

1.62 1.62 1.62 1.62 1.62 1.62 A5 5

1.62 1.62 1.62 1.62 1.62 1.62 A6 6

7.97 7.97 7.97 7.97 7.97 14.20 A7 7

22.90 22.90 22.90 26.50 22.90 19.90 A8 8

22.90 22.90 22.90 22.00 22.90 19.90 A9 9

1.62 1.62 1.62 1.62 1.62 2.62 A10 10

5,490.74 5,490.74 5,490.74 5,531.98 5,490.74 5,613.84 Best (lb)

5,491.90 5,510.35 N/A N/A N/A N/A Average (lb)

5,513.32 5,536.97 N/A N/A N/A N/A Worst (lb)

11,050 25,800 10,000 50,000 N/A N/A Evaluation (#)

None None None None None None Constraint violation

1 in.2 = 6.452 cm2 and
1 lb = 0.45359 kg

Table 2 Results of the optimal design as a function of the modification rate control parameter (MR) for the
ten-bar plane truss

MR
Best solution 

(lb)
Worst solution 

(lb)

Average solution 
of 10 runs

(lb)

Standard
 deviation (SD) 

(lb)

Number of runs 
that found an 

optimal solution

0 5594.90 6018.80 5758.60 107.156 0

0.1 5502.50 5694.40 5579.70 52.025 0

0.2 5491.70 5568.40 5527.51 29.268 0

0.3 5490.74 5540.40 5506.29 20.558 3

0.4 5490.74 5527.30 5496.17 12.174 7

0.5 5490.74 5507.80 5492.51 5.382 8

0.6 5490.74 5490.74 5490.74 0 10

0.7 5490.74 5490.74 5490.74 0 10

0.8 5490.74 5513.32 5492.96 7.147 9

0.9 5490.74 5491.72 5490.80 0.316 9

1.0 5490.74 5534.70 5495.10 13.914 9

1 lb = 0.45359 kg
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the MR value from 0 to 0.7. In addition, the optimal solution was found at a higher number of

iterations. The changes were not uniform from 0.7 to 1. In this example, considering the results in

Table 2, MR = 0.7 was chosen.

 

6.2 The 25-bar space truss

 

Fig. 3 shows the configuration and element numbers of the 25-bar space truss. All of the

members’ material properties were an elastic modulus of E = 10,000 ksi (68.971 GPa) and a mass

density of ρ = 0.10 lb/in3 (2,768 kg/m3). A single load was applied to the structure as shown in

Table 3. The members were subjected to stress limitations of ±40 ksi (275.6 MPa). In this problem,

there were 8 design groups of variables that were selected from a set of discrete values as follows

The all-direction displacements at the nodes 1 and 2 must be less than ±0.35 in (±48.89 mm).

Table 4 shows the element’s groups and the best, average and worst results; it also compares these

results with other algorithms.

As the results show, the difference between the best and the worst results was zero. The average

L 0.1 0.2 0.3 … 2.5 2.6 2.8 3.0 3.2 3.4, , , , , , , , ,{ }  in
2( )=

Fig. 3 The 25-bar space truss

Table 3 Nodal loading components (kips) for the 25-bar space truss

Node
Directions

x y z

1 1.0 -10.0 -10.0

2 0 -10.0 -10.0

3 0.5 0 0

6 0.6 0 0

1 kips = 4.45 kN
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weight determined by the ABC algorithm was 484.85 (lb) with a standard deviation of zero. Fig. 4

shows that the optimal solution was found in 125 iterations in the best case. The average number of

truss analyses in twenty runs to achieve the optimal solution was 10,200 with an average number of

iterations of approximately 204. For comparison, the average number of truss analyses was 24,250

for ABC (Sonmez 2011a), 40,000 for SA (Kripka 2004), and 25,000 for HPSO (Li et al. 2009). The

number of analyses required by this study is larger than ACO (Camp and Bichon 2004) (7700) for

the same weight and larger than GA (Rajeev and Krishnamoorthy 1992) (840), but the modified

ABC algorithm identified a lighter design. In this example, based on the results of Table 5 and

comparing the effect of changing the MR to the number of runs that found an optimal solution, it

was assumed that MR = 0.9.The results showed that the optimal solution was 484.85 (lb).

Table 4 Results of the optimal design of the 25-bar space truss 

Optimal cross-sectional area (in2)

Element group
This study

ABC
(Sonmez 
2011a)

ACO
(Camp and 

Bichon 2004)

HPSO
(Li et al. 

2009)

SA
(Kripka 2004)

GA
Rajeev and 

Krishnamoorthy 1992)

0.1 0.1 0.1 0.1 0.1 0.1 A1 1

0.3 0.3 0.3 0.3 0.4 1.8 A2 ~ A5 2

3.4 3.4 3.4 3.4 3.4 2.3 A6 ~ A9 3

0.1 0.1 0.1 0.1 0.1 0.2 A10 ~ A11 4

2.1 2.1 2.1 2.1 2.2 0.1 A12 ~ A13 5

1.0 1.0 1.0 1.0 1.0 0.8 A14 ~ A17 6

0.5 0.5 0.5 0.5 0.4 1.8 A18 ~ A21 7

3.4 3.4 3.4 3.4 3.4 3.0 A22 ~ A25 8

484.85 484.85 484.85 484.85 484.330 546.010 Best (lb)

484.85 484.94 486.46 N/A N/A N/A Average (lb)

484.85 485.05 N/A N/A N/A N/A Worst (lb)

10,200 24,250 7,700 25,000 40,000 840 Evaluation (#)

None None None None 193.8×10-6 None Constraint violation

1 in.2 = 6.452 cm2 and
1 lb = 0.45359 kg

 Fig. 4 Weight-Iteration graph for the 25-bar space truss 1 lb = 0.45359 kg
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Compared with other algorithms, only the SA algorithm (Kripka 2004) was able to identify a

lighter-weight solution. By changing the displacement constraint from 0.35 (in) to 0.3501 (in), the

ABC algorithm was able reduce the weight of the truss to 484.33 (lb), which is exactly equal to the

result of the SA algorithm.

 

6.3 The 72-bar space truss

 

The 72-bar skeletal tower is shown in Fig. 5. The truss was subjected to two distinct loading

conditions as shown in Table 6. The displacements at the uppermost portion of 1, 2, 3, and 4 in the

x-direction and y-direction were less than ±0.25 in (±6.35 mm).

The allowable stresses for all of the members were ±25 ksi (±159.125 MPa). The members’

material properties were an elastic modulus of E = 10,000 ksi (68.971 GPa) and a mass density of

ρ = 0.10 lb/in3 (2,768 kg/m3).

In this problem, there were 16 design groups of variables that were selected from a set of 2,901

discrete values from 0.1 to 3.00 in2 with a 0.0010 in2.

Table 7 shows the element groups and the best, average, and the worst results and compares these

results with the other algorithms. The difference between the best and the worst answers was

0.0268% with a standard deviation of 0.028 (lb). In this example, as shown in Fig. 6, the ABC

algorithm found an optimal solution of 369.669 (lb) after 746 iterations in the best case. The

average number of truss analyses in the twenty runs that were required to achieve the optimal

solution was 37,950 with approximately 759 iterations. In comparison, the average number of truss

analyses was 50,000 for ABC (Sonmez 2011a) and 50,000 for HPSO (Li et al. 2009). It is

noteworthy that the proposed algorithm required an average of 8100 analyses to achieve a value

close to optimal solution from Sonmez’s ABC algorithm. The number of analyses required by this

study was larger than the number required by ACO (Camp and Bichon 2004) (18,500) and GA

Table 5 Results of the optimal design as a function of the modification rate control parameter (MR) for the
25-bar space truss

MR
Best solution

 (lb)
Worst solution 

(lb)

Average solution 
of 10 runs

(lb)

Standard 
deviation (SD)

(lb)

Number of runs 
that found an 

optimal solution

0 499.9492 517.2931 510.3282 6.247 0

0.1 498.1343 522.2967 505.9005 7.862 0

0.2 485.9052 499.2220 490.0912 4.027 0

0.3 485.3797 487.3456 486.3550 0.688 0

0.4 485.0488 488.5146 485.9462 1.140 0

0.5 484.8542 485.3797 485.0624 0.127 1

0.6 484.8542 485.0488 484.8931 0.082 8

0.7 484.8542 485.0488 484.8931 0.082 8

0.8 484.8542 485.0488 484.8736 0.061 9

0.9 484.8542 484.8542 484.8542 0 10

1.0 484.8542 485.0488 484.8736 0.061 9

1 lb = 0.45359 kg
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Fig. 5 The 72-bar space truss: (a) dimensions and node numbering scheme and (b) element numbering
pattern for the first story (Camp and Bichon 2004) (1 in. = 2.54 cm)

Table 6 Nodal loading conditions (kips) for the 72-bar space truss

Loading conditions Node x y z

1 1 5 5 -5

2 1 0 0 -5

2 2 0 0 -5

2 3 0 0 -5

2 4 0 0 -5

1 lb = 0.45359 kg

Fig. 6 Weight-Iteration graph for the 72-bar space truss 1 lb = 0.45359 kg
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(Erbatur et al. 2000) (840), but the resulting solution was lighter than the solutions produced by

these algorithms. Compared with the other results, the obtained result was the best and the lightest

design. 

Table 8 shows the effect of changing the MR to the number of runs that determined the optimal

solution. Because the list of allowed variables covered a wide range of variables and the distance

between them was very small, in each run of the algorithm, the optimal weight may differ only by a

decimal point. Therefore, we considered numbers with a decimal point less than 0.8 as the optimal

solution. In this example, according to Table 8, an MR = 0.7 was assumed.

 

 

7. Conclusions

In this paper, the discrete optimization of trusses using a previously developed ABC algorithm

Table 7 Results of the optimal design of a 72-bar space truss 

Optimal cross-sectional area (in2)

Element group 
This study

ABC
(Sonmez 2011a)

HPSO
(Li et al. 2009)

ACO
(Camp and 

Bichon 2004)

GA
(Erbatur et al. 

2000)

1.845 0.156 2.100 1.980 0.155 A1 ~ A4 1

0.507 0.553 0.600 0.508 0.535 A5 ~ A12 2

0.100 0.391 0.100 0.101 0.480 A13 ~ A16 3

0.100 0.597 0.100 0.102 0.520 A17 ~ A18 4

1.261 0.520 1.400 1.303 0.460 A19 ~ A22 5

0.509 0.515 0.500 0.511 0.530 A23 ~ A30 6

0.100 0.101 0.100 0.101 0.120 A31 ~ A34 7

0.100 0.103 0.100 0.100 0.165 A35 ~ A36 8

0.489 1.271 0.500 0.561 1.155 A37 ~ A40 9

0.508 0.512 0.500 0.492 0.585 A41 ~ A48 10

0.100 0.100 0.100 0.100 0.100 A49 ~ A52 11

0.100 0.100 0.100 0.107 0.100 A53 ~ A54 12

0.100 1.843 0.200 0.156 1.755 A55 ~ A58 13

0.520 0.517 0.500 0.550 0.505 A59 ~ A66 14

0.393 0.102 0.300 0.390 0.105 A67 ~ A70 15

0.535 0.100 0.700 0.592 0.155 A71 ~ A72 16

369.669 379.893 388.94 380.24 385.760 Best (lb)

369.726 380.053 N/A 383.16 N/A Average (lb)

369.769 380.173 N/A N/A N/A Worst (lb)

37,950 50,000 50,000 18,500 840 Evaluation (#)

None None None 193.8×10-6 None Constraint violation

1 in.2 = 6.452 cm2 and
1 lb = 0.45359 kg 
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and its effectiveness at modeling three standard examples, a plane truss and two space trusses was

studied and suggested. The algorithm was programmed using MATLAB software and was modified

as follows:

• Using the ABC algorithm presented by Karaboga and Akay (2011) to solve numerical problems.

• Using Sonmez’s proposed process (Sonmez 2011a) to select half of the best results in the initial

population as employed bees.

• Converting the continuous ABC algorithm to a discrete algorithm inspired by Kaveh’s and

Talatahari’s proposed process (Kaveh and Talatahari 2007).

• Appling constraint-handling to the problem. Thus far, penalty functions and Deb’s rule have

been used to apply constraint-handling in the ABC algorithm. However, this paper used the fly-

back mechanism technique to apply constraint- handling.

A brief summary of the results of this study is as follows:

• Obtained a result from the desired algorithm and compared it with the other optimization

algorithms. In some cases, it produced the same results, and in other applications, it was

significantly better.

• The difference between the best and the worst result was too small, and in some cases, the

difference equaled zero within twenty runs, so the proposed algorithm achieved the optimum

result in all twenty runs.

• Using the constraint-handling fly-back mechanism technique significantly increased the

convergence speed and the accuracy of the optimum result compared with the other techniques

applied in the ABC algorithm, such as penalty functions and Deb’s rule.

The ability to reduce the structural weight and the design time proves that this algorithm is one of

the most powerful algorithms available for structural truss weight optimization.

Table 8 Results of the optimal design as a function of the modification rate control parameter (MR) for the
72-bar space truss 

MR
Best solution

 (lb)
Worst solution 

(lb)

Average solution 
of 10 runs

(lb)

Standard 
deviation (SD)

(lb)

Number of runs 
that found an 

optimal solution

0 395.4259 489.1245 442.7402 28.5432 0

0.1 372.1467 374.4479 373.3677 0.7063 0

0.2 369.8825 370.6810 370.1346 0.2334 0

0.3 369.7306 369.9147 369.8145 0.0582 6

0.4 369.6770 369.8730 369.7566 0.0589 8

0.5 369.6932 369.8103 369.7353 0.0372 9

0.6 369.6852 369.8071 369.7297 0.0379 9

0.7 369.6877 369.7426 369.7145 0.0194 10

0.8 369.6733 369.7817 369.7319 0.0337 10

0.9 369.7115 379.8166 369.7369 0.3036 9

1.0 369.6946 369.7863 369.7516 0.0303 10

1 lb = 0.45359 kg  
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