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Abstract. Free vibration analysis of arbitrary quadrilateral thick plates with internal columns and elastic
edge supports is presented by using the powerful pb-2 Ritz method and Reddy’s third order shear
deformation plate theory. The computing domain of arbitrary quadrilateral planform is mapped onto a
standard square form by coordinate transformation. The versatile pb-2 Ritz functions defined by the
product of a two-dimensional polynomial and a basic function are taken to be the admissible functions.
Substituting these displacement functions into the energy functional and minimizing the total energy by
differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver.
Stiffness and mass matrices are numerically integrated over the plate by using Gaussian quadrature. The
accuracy and efficiency of the proposed method are demonstrated through several numerical examples by
comparison and convergency studies. A lot of numerical results for reasonable natural frequency
parameters of quadrilateral plates with different combinations of elastic boundary conditions and column
supports at any locations are presented, which can be used as a benchmark for future studies in this area.

Keywords: free vibration; thick plate; arbitrary quadrilateral plate; third order shear deformation theory;
pb-2 Ritz method; coordinate transformation

1. Introduction

Plates having internal column supports are typical structures in civil engineering. The internal

columns can greatly enhance the loading capacity and improve the dynamic characteristics of the

plate. Usually the plate is modeled to be fully clamped or simply supported along four edges for

simplification of analysis. However, such models are not completely in accordance with the actual

situation. The edges of the plates are restrained much more like elastic restraints. Therefore, it is

important for designers to understand how the columns and elastic springs affect the dynamic

behaviors of these structures. 

There are several models to describe the effect of a column on the vibration of a plate. The

simplest model is to consider the column as a pinned point rigid support, which neglects the

bending stiffness of the column in two transverse directions and takes the stiffness of column in

longitudinal direction as infinity. An improved model is taking the column as three massless springs
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in the longitudinal and two rotational directions, which considered the effects of the column in three

directions simultaneously. 

Large amount of literature for free vibration studies of plates with either rigid or elastic point

supports and elastic edge supports is available and here mentioned a little. Narita (1981, 1984, 1985)

presented a series solution for the vibration analysis of rectangular plates with complex mixed

conditions, point supports and cantilever plates with point constraints. A general study to vibration

characteristics of rectangular plate with arbitrarily located point supports came from Fan and

Cheung (1984) using the spline finite strip method. Cheung and Zhou (2000) presented a study on

the vibrations of rectangular plates with elastic intermediate line-supports and edge constraints.

Gorman (1999) gave an accurate solution for free vibration problems of point supported Mindlin

plates by the superposition method. Kim and Dickinson (1987) used the Lagrangian multiplier

method combined with the orthogonally generated polynomials to study the rectangular plates with

point supports. Taking Timoshenko beam functions as admissible functions, Zhou (2001)

investigated the free vibration problem of rectangular Mindlin plates with elastic supported edges

using Rayleigh-Ritz method. Zhou and his partner Cheung (2002, 1999) used static beam functions

as admissible functions to study the tapered rectangular plates with point supports and composite

rectangular plates with point supports, respectively. They also studied the free vibration of thick

laminated rectangular plates with point supports by finite layered method (Zhou et al. 2000).

Recently, Zhou and his partners (2002, 2005, 2006) presented several papers to study the vibration

problems of rectangular plate and skew plate with various boundary conditions using the Chebyshev

polynomial and Ritz method based on the three dimensional theory. Lee and Lee (1997) studied the

flexural vibration of rectangular plates on elastic point supports and discussed the effect of support

stiffness. Huang and Thambiratnam (2001) studied the free vibrations of rectangular plates on

elastic intermediate supports by the finite strip method. In their studies, four column models were

employed and the effects of various factors on the natural frequencies were discussed in detail.

Ohya et al. (2006) are the pioneers to analyze the vibration problem of plates with both elastic edge

supports and internal column supports. They obtained an analytical solution for this problem via the

superposition technique based on the first order shear deformation theory. Zhou and Ji (2006)

proposed a direct method to derive the exact solution for the free vibration of thin rectangular plate

with two opposite edges simply supported and with internal column supports. Recently, Wu and Lu

(2011) presented a free vibration study of rectangular plates with internal columns and uniform

elastic edge supports by pb-2 Ritz method. Wang et al. (2010) used the meshless method to study

the transverse vibration of rectangular thin plate with finite elastic point support. The effects of rigid

constant and locations of elastic point supports on the transverse vibration characteristics of thin

plate are discussed in detail. Du and et al. (2011) presented an analytical method for determining

the vibrations of two plates which are generally supported along the boundary edges and elastically

coupled together at an arbitrary angle. Through solving the governing differential equations of plate,

Seyedemad (2011) gave a closed form solution to the free vibration problem of thin rectangular

plates on Winkler and Pasternak elastic foundation model which is distributed over a particular

arbitrary area of the plate. Malekzadeh (2008) investigated the large amplitude free vibration of

tapered rectangular thin plates with edges elastically restrained against rotations based on the thin

plate theory in conjunction with von Karman assumption.

From the literature survey, one can easily find that most of the previous papers confined their

studies to the vibration characteristics of rectangular plates. Few of them are concerned with the

plates having arbitrary geometric shapes. Kanrunasena et al. (1996) presented the pioneer study to
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vibration problems of plate with quadrilateral planforms, in which the powerful pb-2 Ritz method

combined with the first order shear deformation theory were used. Wu (2001) investigated the free

vibration of arbitrary quadrilateral plate by the weighted residual spline least squares method. Wu

and his colleagues (2005) also presented the free vibrations of arbitrarily shaped thick plates by

differential cubature method. In their studies, moderately thick plates with various geometric shapes

such as rectangular, circular, quadrilateral, triangular, and super elliptical were all discussed. For

plates with arbitrary shapes including internal column supports, Liew et al. (1994) investigated the

vibration problems of Mindlin plates of arbitrary shapes with internal point supports by the

Rayleigh Ritz method. Using A hybrid numerical approach combining the Rayleigh-Ritz method

and the Lagrange multiplier method, Kitipornchai and et al. (1994) presented the free vibration

study on Mindlin plates with arbitrary shapes and supported at corners. To the author’s knowledge,

no studies have been reported on the free vibration problem of arbitrary quadrilateral thick plate

having internal columns together with elastic boundary conditions up to now. This is the motivation

for this paper. 

In the present paper, the powerful solution technique, pb-2 Ritz method combined with Reddy’

higher order shear deformation plate theory are employed to treat the free vibration problem of

quadrilateral thick plate with arbitrarily located internal columns and elastic boundary constrains in

three directions. Two models of column are examined in this paper, one is taking it as three elastic

massless springs in longitudinal and two rotational directions; the other is taking it as local

uniformly distributed elastic springs only in the longitudinal direction. The correctness and

numerical accuracy of the present method is verified firstly by the comparison of the present results

with corresponding exact solutions or other numerical solutions in the open literature. Then

parametric studies are conducted to examine the effects of the locations, sizes of the columns and

different column models as well as the edge elastic support stiffness on the dynamic behavior of the

plate column system. 

2. Theoretical analysis

2.1 Displacement field

Consider an arbitrary quadrilateral plate shown in Fig. 1. The length of the edge AB, BC, CD are,

respectively, a, b and c. The thickness of the plate is h. It is assumed that the plate is supported

elastically in each direction at all edges of the plate, and with several columns in the plate domain.

According to Reddy’s third order shear deformation theory, the displacement field is as assumed as

follows (Reddy 1999, Shufrin 2005)

(1)

u x y z, ,( ) u x y,( ) zθx x y,( ) 4z
3

3h
2

-------- θx x y,( )
∂w
∂x
-------+–+=

v x y z, ,( ) v x y,( ) zθy x y,( ) 4z
3

3h
2

-------- θy x y,( ) ∂w
∂y
-------+–+=

w x y z, ,( ) w x y,( )=
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where  and  are the displacement components along the  directions, respectively, at

any point  of the plate thickness;  and  denote the in-plane displacements of the

mid-plane respectively, in x and y direction, and  is the transverse deflection in the middle

plane which assumed to be independent to z;  are rotations of the plate normal about the y and

x axes respectively. For isotropic materials, the in-plane displacements  and  can be

neglected because there exists no coupling between in-plane and out of plane displacements.

2.2 Energy functional

The energy functional Π for plate vibration problem can be written in terms of the maximum
strain energy Umax and the maximum kinetic energy Tmax of the plate column system as

(2)

where

(3)

in which  and  are respectively, the strain energy of plate, springs at the edge of the plate

u v, w x y z, ,
x y z, , u x y,( ) v x y,( )

w x y,( )
θx θy,

u x y,( ) v x y,( )

Π Umax Tmax–=

Umax U
P

U
S

U
C

+ +=

U
P
U

S, U
C

Fig. 1 The sketch of a quadrilateral plate with internal columns and elastic edge supports

Fig. 2 Coordinate transformation and geometric mapping
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and internal columns, and they are given as follows 

Table 1 Convergence and comparison of frequency parameters  for a quadrilateral plate with
different boundary conditions along four edges

Boundary 
Conditions

h/a p
Mode sequence number

1 2 3 4 5 6

CCCC

0.001

4 73.675 1932.623 1970.820 2792.888 4744.910 5208.290

6 67.847 132.839 144.283 229.367 265.399 279.189

8 67.397 130.100 141.779 207.769 226.618 256.193

9 67.384 129.704 141.583 206.199 222.824 254.757

10 67.381 129.609 141.545 205.674 221.282 254.070

Wu (2005) 67.378 129.585 141.527 205.596 226.666 __

0.2

4 42.345 68.232 72.306 95.891 102.678 109.840

6 42.317 67.987 72.120 94.432 99.145 108.114

8 42.315 67.979 72.115 94.341 98.875 108.026

9 42.315 67.978 72.115 94.337 98.868 108.023

10 42.315 67.978 72.114 94.337 98.867 108.022

Wu (2005) 42.311 67.982 72.134 94.347 98.983 __

SSSS

0.001

4 42.098 123.384 288.812 8 376.377 10999.847 11988.630

6 36.966 99.210 102.190 184.586 232.703 275.121

8 36.840 86.479 95.367 152.089 170.805 194.820

9 36.817 86.207 95.144 150.563 164.946 191.087

10 36.796 86.135 95.129 150.159 163.284 190.063

Wu (2005) 36.774 86.321 95.283 151.126 162.601 __

0.2

4 28.889 59.679 63.245 98.893 107.491 116.157

6 28.035 57.167 61.557 87.426 93.574 103.834

7 27.965 56.801 61.423 85.863 92.281 102.064

8 27.935 56.751 61.336 84.782 91.021 101.451

9 27.925 56.723 61.305 84.483 90.862 101.258

10 27.923 56.705 61.298 84.439 90.707 101.192

Wu (2005) 27.921 56.732 61.325 84.515 90.777 __

λ ωa
2

ρh/D=
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(4)

(5)

where  are the elastic coefficients of lateral spring, rotational spring and torsional spring

respectively; δi ( ) is a governing factor for δi = 0 implies the corresponding edge is

free while δi = 1 the corresponding edge is elastically constrained. For convenience of presentation,

the coefficients of the elastic springs are represented in terms of the plate flexural rigidity, i.e.,

, , . θn and θs are, respectively, the rotations of the mid-plane

in the normal plane and in the tangent plane to the plate boundary, and the subscripts n and s

represent, respectively, the normal and tangent directions of the edge. These rotations can be

obtained by the composition of rotations along x and y directions, and they are expressed as

 

 

kL kR kT, ,
i 1 2 … 12, , ,=

kL µLD/a
3

= kR µRD/a= kT µTD/a=

Table 2 Convergence and comparison of frequency parameters  for a square plate with
elastic boundary conditions 

h/a p
Mode sequence number

1 2 3 4 5 6 7 8

0.001

7 68.305 193.938 193.938 649.119 740.816 799.786 1082.148 1082.148

8 3.647 122.096 122.096 171.961 316.773 340.188 878.136 878.136

9 3.647 7.527 7.527 99.073 211.509 227.620 238.353 238.353

10 3.647 7.526 7.526 11.002 13.905 14.038 145.428 145.428

11 3.647 7.440 7.440 11.002 13.897 14.018 17.102 17.102

Xiang (1997) 3.646 7.437 7.437 10.965 13.332 13.397 16.738 16.737

0.2

7 2.668 4.693 4.693 6.864 8.103 8.379 9.743 9.743

8 2.666 4.664 4.664 6.280 7.189 7.334 9.412 9.412

9 2.666 4.654 4.654 6.227 7.153 7.308 8.524 8.524

10 2.666 4.653 4.653 6.210 7.114 7.267 8.458 8.458

11 2.666 4.653 4.653 6.210 7.114 7.264 8.411 8.411

Xiang (1997) 2.639 4.593 4.593 6.123 7.008 7.156 8.280 8.280

λ ωa
2

/π
2

ρh/D=
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, (6)

where nx and ny  are the cosines of the boundary normal. Substituting Eq. (6) into Eq. (5), one has

(7)

The internal columns are simulated as the following two models in this paper

Model A: Point elastic supports in three directions

Since the size of the cross section of the column is much smaller than the dimension of the plate,

it can be modeled as three elastic massless springs that restraint the rotations and deflection of the

plate. The potential energy of the columns for this model is easily obtained

(8)

where,  are the elastic modulus of these springs in lateral and rotational directions. When

the column is fixed to the foundation at the other end, they are given by 

 (9a,b,c)

where Ai is the area of the cross section; H is the length of the column; Iy and Ix are the second

θn nxθx nyθy+= θs n– yθx nxθy+=

 

U
C 1

2
--- kfiw

2
xi yi,( ) kxiθx

2
xi yi,( ) kyiθy

2
xi yi,( )+ +[ ]

i 1=

n

∑=

kfi kxi kyi, ,

kfi EAi/H, kxi 4EIy/H, kyi 4EIx/H= = =

Table 3 Convergence characteristics of frequency parameters  for a simply supported
quadrilateral plate with one inner column support (Model A)

p
Mode sequence number

1 2 3 4 5 6

4 26.400 55.301 56.959 108.728 127.430 166.639

6 24.776 51.229 52.211 97.845 108.882 123.667

7 24.553 50.618 51.244 97.391 106.234 114.032

8 24.408 50.466 51.141 97.080 104.732 112.663

9 24.284 50.058 51.000 96.852 103.172 110.693

10 24.227 49.857 50.965 96.752 102.861 110.301

λ ωa
2

ρh/D=
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moments of area about the y and x axis respectively. When the column is supported by a pin at the

other end, they are given by 

(10a,b,c)

Model B: Uniformly distributed spring

The column can also be treated as distributed (or patch) supports only in the longitudinal

direction, it is assumed to have only a mean axial stiffness and no rotational stiffness. In this case,

the strain energy of the columns is

(11)

where

(12)

The maximum kinetic energy of the plate is

(13)

where ρ and ω are, respectively, the mass density and vibrating circular frequency of the plate.

2.3 Coordinate transformation

For convenience of numerical integration and application of boundary conditions, the quadrilateral

plate in the  plane is mapped onto a basic square domain in the  plane(as shown in

Fig. 2(b)) by using the coordinate transformation defined by

(14)

where xi and yi are the coordinates of the ith corner of the quadrilateral plate in the  plane. The

mapping function Ni are defined by

ffi EAi/H, kxi 3EIy/H, kyi 3EIx/H= = =

U
C 1

2
---  kfi x y,( )w2
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Table 4 Convergence characteristics of frequency parameters  for a quadrilateral plate with
two inner column supports and two opposite edges simply supported while the other two opposite
edges free (Model A)

p
Mode sequence number

1 2 3 4 5 6

4 27.242 57.994 66.397 157.676 159.726 175.445

6 25.860 53.252 58.638 111.984 135.472 145.228

7 25.678 52.144 58.152 108.735 131.949 141.542

8 25.562 51.897 57.457 107.362 129.803 138.673

9 25.497 51.437 57.252 106.790 129.431 136.078

10 25.421 51.280 57.037 106.572 128.752 135.124

λ ωa
2

ρh/D=
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(15)

where ξi and ηi are the coordinates of the ith corner of the square basic plate in the  plane.

According to the chain rule of differentiation, the first and the second order derivatives of any

quantity in the two coordinate systems are related by

(16)

where  and  are, respectively, the first and the second order Jacobian matrices of the geometric

mapping, and they are expressed as 

(17)

Ni
1

4
--- 1 ξξi+( ) 1 ηηi+( )= i 1 2 3 4, , ,=( )

ξ η–

 

J1 J2

 

Table 5 Comparison study of frequency parameters  for a square plate with four simply
supported edges and an internal column at the plate center

Column 
section

Column 
model

Mode sequence number

1 2 3 4 5 6

0.5 × 0.5

A 49.232 52.475 52.475 78.214 97.901 111.455

Huang (2001) 49.348 52.401 52.837 78.959 98.711 __

B 50.688 50.688 57.255 78.218 110.859 127.310

Huang (2001) 50.858 50.898 59.248 78.968 111.133 __

0.8 × 0.8

A 51.044 54.674 54.674 78.214 97.901 128.824

Huang (2001) 51.896 54.118 55.279 78.959 98.711 __

B 56.211 56.992 63.992 78.357 122.948 129.564

Huang (2001) 55.521 56.089 64.839 79.097 123.032 __

1 × 1

A 54.095 55.351 55.351 78.214 97.901 131.573

Huang (2001) 52.171 54.421 55.755 78.959 98.711 __

B 57.266 62.427 65.427 78.762 126.210 131.380

Huang (2001) 59.312 60.865 67.285 79.423 128.929 __

λ ωa
2

ρh/D=
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The factors  in Eq. (16) are written as

where

2.4 pb-2 Ritz functions

The admissible functions of deflection and rotations of the plate may be assumed to be a set of

pb-2 Ritz functions in the  plane as follows

(18a)

(18b)

(18c)

α′ β′,

α′ α
∂y
∂η
------ β

∂y
∂ξ
------–⎝ ⎠

⎛ ⎞ / J1 , β ′ α
∂x
∂η
------ β

∂x
∂ξ
------–⎝ ⎠

⎛ ⎞ / J1==

α
1

4
---ξiηixi

i 1=

4

∑ , β
1

4
---ξiηiyi

i 1=

4

∑==

ξ η–

w ξ η,( ) ciφi ξ η,( )
r 0=

q

∑
q 0=

p
1

∑ ciφi ξ η,( )
i 1=

m

∑ c
TΦ= = =

θx ξ η,( ) diψxi ξ η,( )
r 0=

q

∑
q 0=

p
2

∑ diψxi ξ η,( )
i 1=

n

∑ d
TΨx= = =

θy ξ η,( ) eiψyi ξ η,( )
r 0=

q

∑
q 0=

p
3

∑ eiψyi ξ η,( )
i 1=

l

∑ e
TΨy= = =

Table 6 Influence of spring stiffness on the frequency parameters  of a quadrilateral plate with
elastic boundary conditions and an internal column support at center (Model A)

µL µR µT

Mode sequence number

1 2 3 4 5 6

100 108 108 5.797 20.147 22.735 40.694 47.641 57.064

102 108 108 32.636 47.256 49.183 65.458 68.661 75.016

104 108 108 42.871 67.649 71.748 93.885 98.646 107.541

106 108 108 43.016 67.985 72.127 94.427 99.281 108.243

108 108 100 42.726 67.409 71.633 93.317 98.601 107.723

108 108 102 43.005 67.967 72.112 94.392 99.258 108.225

108 108 104 43.017 67.988 72.130 94.432 99.287 108.250

108 108 106 43.017 67.989 72.130 94.432 99.288 108.251

108 108 108 43.017 67.989 72.130 94.432 99.288 108.250

102 100 102 28.260 46.371 48.609 65.073 67.421 72.577

102 102 102 32.466 47.178 49.121 65.353 68.567 74.889

102 104 102 32.617 47.213 49.145 65.364 68.601 74.962

102 106 102 32.619 47.214 49.145 65.364 68.601 74.962

102 108 102 32.619 47.214 49.145 65.364 68.601 74.962

λ ωa
2

ρh/D=
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where  are the degrees of the mathematically complete two-dimensional polynomial space;

 and ei are the unknown coefficients to be determined, whose subscript i is given by

(19)

 are the unknown coefficient vectors with corresponding elements of  and ei; 

are, respectively, the dimensions of  and given by

, ,  (20a,b,c)

 are the pb-2 Ritz function vectors whose elements are given as

 (21)

where  are, respectively, the basic functions which consist of the products

of each boundary expression so as to satisfy the boundary conditions automatically. These basic

functions are given as 

(22a)

(22b)

(22c)

where  depends on the support edge conditions. Takes the edge  as an example,

when the edge is clamped, ; if the edge is simply supported, ,

; when the edge is free or elastic support, .

2.5 Eigenvalue problem

By transforming the integration domain of the integrals in Eq. (4), (7), (11) and (13) into 

plane and substituting Eq. (18) in the resulting expressions, the energy functional in Eq. (2) can be

written as

(23)

in which

(24)

(25)

where  are, respectively, the stiffness matrices corresponding to plate, springs and

columns and M are the mass matrix of the plate. They are given as

p1 p2 p3, ,
ci di,
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(26)

 

where

(27a)

(27b)

(27c)

(27d)

(27e)

(27f)

(28a)
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(28b)

(28c)

(28d)

(28e)

(29a)

(29b)

(29c)

(29d)

(30a,b)
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(30c,d)

 (30e,f)

Setting the first variation of the functional in Eq. (23) to be zero, results in the following

eigenvalue equation

(31)

In the numerical analysis, Gauss quadrature is employed to evaluate the integrals appearing in

Eqs. (27) to (30). Standard eigenvalue solvers can be used to compute the natural frequencies of the

plate by solving the general eigenvalue problem defined by Eq. (31).

3. Convergence and comparison studies

In this section, convergency and comparison studies are conducted firstly in order to validate the

present numerical method. Firstly, take a quadrilateral plate with classical CCCC and SSSS

boundary conditions as an example. The shape of the plate is described in Fig. 2, and the size is

assumed b = 0.8a, , . For convenience of presentation, a non-dimensional

frequency parameter  is introduced in this example. The first six natural frequency

factors of this plate are computed using the standard eigenvalue solver in Matlab internal matrix

function, and the numerical results are presented in Table 1. Both thin and thick plates are

considered in this study. From Table 1, it is seen that with increasing the polynomial power p, the

frequency parameter λ converges rapidly and monotonically from above to stable values for both

thin and thick plate. The convergence rate for thin plate is relatively slower than that for thick plate.

We can easily find that for moderately thick plate, the frequency parameter converges very fast even

for the higher modes, whether for the simply supported boundary condition or for the fully clamped

boundary condition. The corresponding results given by Wu et al. (2005) using the differential

 

 

K ω
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M–( )q 0=

c 0.7a α, 70
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λ ωa
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Table 7 Comparison of frequency parameters  for a quadrilateral plate having center column
support between two kinds of column models

µL µR µT

Column 
Model

Mode sequence number

1 2 3 4 5 6

0 0 0 A 0.842 0.876 3.491 20.505 25.560 33.282

B 0.842 0.898 6.622 20.507 25.799 33.749

108 0 0 A 28.721 56.730 61.333 84.459 91.008 101.373

B 30.812 56.785 61.414 84.475 91.420 101.707

108 108 108 A 43.017 68.017 72.161 94.435 99.289 108.251

B 44.877 68.077 72.247 94.451 99.622 108.594
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cubature method, are also presented in Table 1. It is observed that the present results agree very

well with those available in the reference, especially for moderately thick plates.

In the following example, a square plate with for edges elastically supported is considered. The

coefficients of the spring stiffness are set as  , . In this study, the frequency

parameter is defined as  in order to compare the present results with those given

by other researchers. The first eight frequency parameters are computed and tabulated in Table 2. It

is found that whether for thin and thick plate the frequency parameters 

converges monotonically from above to stable values; however, the convergence rate demonstrates

different characteristics. For moderately thick plate with , the convergence rate is very

fast. In this case the frequency parameters would have sufficient numerical accuracy just by taking

the polynomial index p = 8 for the first six modes. However, for thin plate with , the

convergence rate is relatively slow. It is seen that the polynomial index p must be taken as 10 at

least so as to obtain results with acceptable accuracy for the first six modes. The present results are

also compared to existing results given by Xiang et al. (1997). Close agreement is also found in this

example.

To further demonstrate the numerical convergency and accuracy of this method for vibration

analysis of quadrilateral plates with inner column support, the third example is selected as a

quadrilateral thin plate one or two inner column supports. In this case, a = 10, b = 8, c = 7, α = 70o,

β = 75o, h = 0.2, . The columns of 6 m lengths are fixed to the foundation. Model A

is employed in the computation. Table 3 is the numerical results of the frequency parameters for

plate with inner one column at the plate center and four edges simply support conditions. The

column is with 1 m × 1 m cross section and located at the cross point of two diagonal straight lines.

Table 4 presents the numerical results of the frequency parameters for plate with inner two column

supports and two edges simply supported (AC and BD) and the other two edges (AB and CD) free.

The two columns are with 0.5 m × 0.5 m cross sections and the supporting location coordinates are

(3.943,3.633) and (6.519,3.507). From these two tables it is observed again that the frequency

parameters are converged monotonically from above to stable values, whether for SSSS or SFSF

boundary conditions, with one or two internal column supports.

Table 5 is a comparison study of frequency parameters for a square plate with four edges simply

supported and an internal column at the center. The relative thickness of the plate is taken as h/a =

0.02. We should note that the column models A and B in the present paper are corresponding to

models B and C in the reference of Huang (2001). We can see that for almost all cases the present

results are close agreement with those given by Huang (2001) except for the large column cross

section 1 × 1.

It is necessary to point out that the selected order of the polynomial should not be too large,

otherwise, the computation would be unstable because the eigen matrix of the problem will be ill-

conditioned. For most cases in this section, rational solutions with acceptable numerical accuracies

could be obtained when the order of the polynomial p is set as 10. In the following studies, the

index p is all chosen as 10 except special statement.

4. Results and discussion

Based on the previous convergence and comparison studies, some new numerical results are

presented in this section to study the effects of various factors on the natural frequency parameters.
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Firstly, a quadrilateral plate with a column support at center and four edges elastically supported by

springs in three directions. In this case, the dimension of the plate is a = 10, b = 8, c = 7, α = 70o,

β = 75o, h = 0.2. The length and cross section of the column are assumed to be 5 and 1 × 1. Poison’s

ratio is set as 0.3. The first six frequency parameters  of this plate column system

are computed and listed in Table 6. It is found from table 6 that the frequency parameters increase

with increasing the relative stiffness of spring. When the relative stiffness of the rotational and

torsional springs remains constant, the frequency parameters increase significantly with increasing

the relative stiffness of lateral spring. However, this variation trend is not remarkable when the

stiffness factor µL of lateral spring remains constant. This indicates that the lateral support will have

greater influences on the vibration behavior than the rotational support and torsional support.

Table 7 is a comparison of frequency parameters of this plate column system between the two

column models. All the factors of this plate are taken the same as the above example. The length

and cross section of the column are 5 and 1 × 1 respectively. It is seen that the difference of the

numerical values of frequency parameters between the two column models is very small except

some special cases. In general, the numerical values generated by model B are slightly larger than

those generated by model A. For the third frequency when the plate is free at four edges and the

fundamental frequency when the plate is simply supported at four edges, model B generates much

greater numerical values than model A.

Table 8 presents the effect of connecting pattern between the column and the foundation on the

frequency parameters of a quadrilateral plate with a center column and elastic edge supports. The

plate model is the same as the former cases. The dimensions and location of the column are also

taken the same as above. The numerical results are calculated by using column model A. It is

obvious that the numerical results generated by fixed mode are slightly lager than those generated

by pinned mode. However, the differences of the numerical values between the two different

connecting patterns are so small that they can be neglected in engineering.

λ ωa
2

ρh/D=

Table 8 Effects of connecting pattern between column and foundation on the frequency parameters
 of a quadrilateral plate having center column and elastic boundary conditions (Model

A)

µL µR µT

Connection 
pattern 

Mode sequence number

1 2 3 4 5 6

0 0 0 Fixed 0.842 0.942 3.491 20.505 25.560 33.282

pinned 0.730 0.817 3.490 20.503 25.559 33.281

0 100 100 Fixed 3.445 11.836 13.437 28.702 34.923 42.306

pinned 3.445 11.828 13.428 28.701 34.922 42.305

0 102 102 Fixed 3.457 19.212 21.893 39.928 46.974 56.401

pinned 3.457 19.207 21.886 39.926 46.973 56.401

102 0 0 Fixed 24.311 43.429 46.168 60.694 63.274 69.176

pinned 24.311 43.424 46.162 60.694 63.274 69.176

108 108 108 Fixed 43.017 68.017 72.161 94.435 99.289 108.251

pinned 43.017 68.010 72.153 94.435 99.289 108.251

λ ωa
2
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In the following, a quadrilateral plate with two or four internal columns at the side of the plate is

analyzed to discuss the influences of the column locations on the frequency parameters. The plate

dimensions are also taken as a = 10, b = 8, c = 7, α = 70o, β = 75o, h = 2. The height and the area of

cross section of the columns are 5 and 1 × 1, respectively. Poisson’s ratio is also taken to be 0.3.

Fig. 3 gives the distributing pattern in various locations of these columns. These columns are

located at either the opposite corners or the middle points of the opposite edges of the plate. Table 9

Table 9 Frequency parameters  of a quadrilateral thick plate under various column supports
and different boundary conditions (Model A)

Boundary 
conditions

Column
 location

Mode sequence number

1 2 3 4 5 6

EEEE 
µL = µR = µT = 0

Fig. 3(a) 0.242 0.973 3.355 20.691 25.565 33.205

Fig. 3(b) 0.208 1.067 3.363 20.636 25.605 33.218

Fig. 3(c) 0.804 2.927 6.867 20.530 26.229 33.693

Fig. 3(d) 0.909 4.863 5.713 20.955 26.000 33.453

Fig. 3(e) 4.414 6.707 6.958 20.727 26.947 34.016

Fig. 3(f) 1.210 3.273 3.543 20.836 25.703 33.312

EEEE 
µL = µR = µT = 1

Fig. 3(a) 4.678 13.387 14.801 29.586 35.433 42.672

Fig. 3(b) 4.674 13.338 14.860 29.560 35.445 42.687

Fig. 3(c) 5.466 13.257 15.978 29.507 35.853 43.093

Fig. 3(d) 6.138 13.960 15.313 29.876 35.627 42.959

Fig. 3(e) 6.354 14.602 15.993 29.587 36.198 43.386

Fig. 3(f) 4.752 13.500 14.967 29.652 35.485 42.711

EEEE 
µL = µR = µT = 104

Fig. 3(a) 42.172 67.648 71.737 93.950 98.565 107.434

Fig. 3(b) 42.172 67.647 71.738 93.898 98.557 107.407

Fig. 3(c) 42.183 67.651 71.775 93.890 98.511 107.454

Fig. 3(d) 42.263 67.718 71.890 94.112 98.538 107.502

Fig. 3(e) 42.193 67.691 71.780 93.902 98.570 107.460

Fig. 3(f) 42.174 67.650 71.742 93.968 98.619 107.439

SSSS Fig. 3(a) 27.928 56.707 61.301 84.454 90.716 101.202

Fig. 3(b) 27.927 56.706 61.301 84.443 90.715 101.197

Fig. 3(c) 27.970 56.724 61.341 84.476 90.719 101.218

Fig. 3(d) 28.527 56.936 61.981 85.375 90.724 101.476

Fig. 3(e) 28.012 56.773 61.355 84.516 90.745 101.230

Fig. 3(f) 27.932 56.707 61.305 84.458 90.724 101.207

CCCC Fig. 3(a) 42.316 67.979 72.116 94.342 98.867 108.023

Fig. 3(b) 42.316 67.979 72.116 94.339 98.868 108.024

Fig. 3(c) 42.321 67.979 72.124 94.340 98.870 108.036

Fig. 3(d) 42.619 68.160 72.659 95.117 98.877 108.362

Fig. 3(e) 42.326 67.989 72.125 94.344 98.883 108.037

Fig. 3(f) 42.317 67.980 72.117 94.344 98.869 108.025

λ ωa
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presents the numerical results of the first six natural frequency parameters  for this

plate column system. All the numerical results are generated by using Model A for the columns in

this problem. Different boundary conditions are considered. It is found from this table that for plates

having two columns, Figs. 3(c) and 3(d) generate larger frequency parameters than Figs. 3(a) and

3(b), for the lower modes. This indicates that the columns give much stronger stiffness for the plate

when they are arranged at the middle of the edges than at the opposite corner points. For the higher

modes however, the frequency parameters keep almost the same values. This implies that the

positions of the columns have little effects on the higher mode frequency parameters. It is

interesting to find that for the first two modes, Fig. 3(c) generates lower frequency parameters than

Fig. 3(d), for the third mode however, the opposite phenomenon occurs, when the stiffness of the

elastic springs at the edges of the plate are relatively small. We can also find that the larger the edge

spring stiffness, the smaller the effects of the columns location on the frequency parameters will be.

When the stiffness factors of spring are taken as , the numerical results are

almost identical to those of the plate with fully clamped boundary conditions (CCCC). For plates

with four columns, Fig. 3(e) generates larger frequency parameters than Fig. 3(f) especially for the

λ ωa
2

ρh/D=

µL µR µT 10= = =

Fig. 3 Arrangement of columns at the edges of the plate

Fig. 4 Arrangement of columns inside the plate
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lower modes. When the edge spring stiffness factors becomes large, the numerical results generated

by Fig. 3(e) are closed to those generated by Fig. 3(f). 

To further study the effects of column locations on the normalized natural frequencies, we set four

columns inside the domain of the plate as shown in Fig. 4. Let two columns be located at two fixed

points along one diagonal of the plate, while the other two columns are in different positions along

the other diagonal of the plate. For convenience of presentation, we define a new variable k, which

is the ratio of the distance between a column and the corner nearby to the length of that diagonal.

For the two columns ③ and ④ which are located at fixed position, this factor is taken as k = 0.2.

For columns ① and ② on the other diagonal, variable k changes from 0 to 0.45. All the material

constants and dimensional parameters of the plate and the columns are the same as above examples.

Also, model A for the columns is used again in this example. Figs. 5 to 9 illustrate the changing

tendency of the first six orders frequency parameters  with respect to column

location factor k for the plate column system having different boundary conditions. Fig. 5 is the

curve of frequency parameters λ vs the column location factor k for a plate with free boundary

conditions. From Fig. 5 it is observed that the frequency parameters λ of the plate first increase then

decrease with increasing the factor k, and they will have a maximum as k approaches to 0.1,

whether for the lower modes or the higher modes. Fig. 6 is the curve of frequency parameters vs

factor k for a plate having weak elastic boundary conditions, in which the spring stiffness factors are

set as . Similar phenomenon can be found from this figure. The dimensionless

frequency parameters are increased first to a maximum value when k reaches 0.1, then decreased

slowly. For the first order mode however, the frequency parameter does not decreased when the

factor k across 0.1, it will remain almost a constant value as the column location factor is changed

from 0.1 to 0.45. Fig. 7 presents the variation tendency of frequency parameters vs the column

location factor k for a plate having strong elastic boundary conditions, in which the spring stiffness

factors are set as . It is seen that all the frequency parameters change very

slowly when the column location factor k is changed from 0 to 0.45. This is due to the strong

boundary conditions. For the first three order modes, the frequency parameters would reach unclear

maximum values as the factor k is close to 0.3. Figs. 8 and 9 are the curves of frequency parameters

vs column location factor k for a plate having simply supported and fully clamped boundary

λ ωa
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µL µR µT 1= = =

µL µR µT 10000= = =

Fig. 5 Frequency parameters vs column location
factor µL µR µT 0= = =( )

Fig. 6 Frequency parameters vs column location
factor  µL µR µT 1= = =( )
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conditions, respectively. From these two figures one can easily find that the frequency parameters

change very slowly with changing the column location along the diagonal of the plate. This is

chiefly because the restraint stiffness of the columns is smaller than that of the boundary constraint.

It is interesting to find that for case of fully clamped boundary conditions, the two lower order

frequency parameters have maximum values, whereas the two higher order frequency parameters

have minimum values when the column location factor reaches 0.3.

5. Conclusions

The natural frequencies for arbitrary quadrilateral thick plates with internal column supports and

elastic boundary conditions have been investigated by using the powerful pb-2 Ritz energy method

combined with Reddy’s higher shear deformation theory. Large amount of numerical examples

demonstrate the applicability and versatility of the present method through the convergency and

comparison studies. Parametric studies on the dimensionless frequencies show:

Fig. 7 Frequency parameters vs column location
factor µL µR µT 10000= = =( )

Fig. 8 Frequency parameters vs column location
factor (SSSS boundary conditions) 

Fig. 9 Frequency parameters vs column location factor (CCCC boundary conditions, Model A) 
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(1) The stiffness of lateral spring at the edges of the plate has greater influence on the vibration

behavior than the rotational and torsional springs.

(2) Except some special cases, the differences of the numerical values of frequency parameters

between the two column models (elastic point support in three directions and the uniformly

distributed springs) are very small.

(3) The differences of the numerical values of frequency parameters between the two different

connecting patterns of column to foundation are small enough to be neglected in engineering.

(4) When the columns change their position along the edges of the plate, the column locations

have significant effects on the lower order frequency parameters, but little effects on the higher

order frequency parameters. The columns offer much stronger stiffness for the plate when they are

arranged at the middle of the edges than at the corner points.

(5) When the columns change their position along the diagonal of the plate, the frequency

parameters first increase to a maximum then decrease with increasing the column location factor,

for plates having weak boundary conditions.
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