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with gradient thickness and elastic foundations to
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Abstract. In this paper, the static behavior of bi-directional functionally graded (FG) non-uniform
thickness circular plate resting on quadratically gradient elastic foundations (Winkler-Pasternak type)
subjected to axisymmetric transverse and in-plane shear loads is carried out by using state-space and
differential quadrature methods. The governing state equations are derived based on 3D theory of
elasticity, and assuming the material properties of the plate except the Poisson’s ratio varies continuously
throughout the thickness and radius directions in accordance with the exponential and power law
distributions. The stresses and displacements distribution are obtained by solving state equations. The
effects of foundation stiffnesses, material heterogeneity indices, geometric parameters and loads ratio on
the deformation and stress distributions of the FG circular plate are investigated in numerical examples.
The results are reported for the first time and the new results can be used as a benchmark solution for
future researches.
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1. Introduction

One of the interesting problems in engineering is the static and dynamic analysis of structures

such as beams, plates and shells resting on elastic foundations. Components made of FGMs like

plates/shells resting on elastic foundations often find application in aerospace, mechanical, nuclear,

vehicles and offshore structures. They are in general subjected to various types of mechanical and

thermal loads. There are different approaches to analyze the interaction between a structure and an

ambient medium. The Winkler-Pasternak approach is a famous model, widely used to describe the

structure-foundation interactions by many researchers and scientists during the past decades.

Functionally graded materials (FGMs) have gained considerable attention in recent years. The

mechanical behavior of FGMs circular plates with/without resting on elastic foundation, such as

bending due to mechanical loads, vibration, stability and buckling, etc., have also been studied by

many scientists. For example, (Praveen and Reddy 1998) studied and analyzed the geometrically

nonlinear and transient thermo-elastic behavior of rectangular FGM plates. Yang and Shen (2001)

dealt with the dynamic response of initially stressed functionally graded rectangular thin plates
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subjected to partially distribute impulsive lateral loads. Nemat-Alla (2003) introduced the concept of

adding a third material constituent to the conventional FGMs material in order to significantly

reduce the thermal stresses in machine elements that subjected to sever thermal loading, and his

investigation on 2D-FGMs has shown that it is more capable of reducing thermal and residual

stresses than one-directional FGMs. Nie and Zhong (2007) investigated the axisymmetric bending of

2D-FGM circular and annular plates based on the three-dimensional theory of elasticity using semi-

analytical and ANSYS software. Li et al. (2008) presented the elasticity solutions for a transversely

isotropic FGM circular plate subject to an axisymmetric transverse load in terms of the polynomials

of even order. Huang et al. (2008) presented an exact solution for FGMs rectangular thick plates

resting on elastic foundation based on the three-dimensional theory of elasticity using infinite dual

series of trigonometric functions combined with the state- space method. Ayvaz and Burak (2008)

analyzed the free vibration of plates embedded on elastic foundations by using modified vlasov

model, and presented the effects of the subsoil depth on natural frequencies and corresponding

mode shapes. Wang et al. (2009) applied direct displacement method to investigate the free

axisymmetric vibration of transversely isotropic Circular plate. Malekzadeh (2009) used DQ method

to analysis the free vibration of thick FGM rectangular plates supported on two-parameter elastic

foundation. Pradhan and Murmu (2009) investigated the Thermo-mechanical vibration of

functionally graded (FG) and functionally graded sandwich (FGSW) beams under variable elastic

foundations using differential quadrature method. Lu et al. (2009) analyzed free vibration of FG

thick rectangular plate on elastic foundations by using 3D theory of elasticity. Nie and Zhong

(2010) investigated the dynamic behavior of 2D directional FGM annular plates based on the three-

dimensional theory of elasticity using the state- space method combined with the one dimensional

differential quadrature rule (DQM). Malekzadeh et al. (2010) studied the free vibration analysis of

FGMs thick annular plates subjected to thermal environment based on the 3D elasticity theory by

using DQ method. Hosseini-Hashemi et al. (2010) investigated buckling and free vibration

behaviors of radially functionally graded circular and annular sector thin plates subjected to uniform

in-plane compressive loads resting on the Pasternak elastic foundation by using the DQ method.

(Alibeigloo 2010) discussed bending behavior of FGM rectangular plate with integrated surface

piezoelectric layers resting on elastic foundation. Yun et al. (2010) investigated the axisymmetric

bending of FG circular plates as analytically by using direct displacement method. Behravan Rad et

al. (2010) studied the static behavior of FGM annular plate resting on uniform elastic foundations

under axisymmetric transverse load based on the 3D theory of elasticity and using semi-analytical

method. Yu and Wang (2010) studied the buckling of a circular plate on partial concentric elastic

foundation by using an exact solution. Sburlati and Bardella (2011) obtained elastic solutions for FG

thick circular plate subject to axisymmetric conditions. Naderi and Saidi (2011) presented an exact

analytical solution for buckling analysis of moderately thick functionally graded (FG) sector plates

resting on Winkler elastic foundation based on the first order shear deformation plate theory.

Golmakani and Kadkhodayan (2011) analyzed the axisymmetric nonlinear bending of an annular

functionally graded plate under mechanical loading based on FSDT and TSDT by using the

dynamic relaxation (DR) method combined with the finite difference technique. Mirtalaie and

Hajabasi (2011) studied the free vibration of functionally graded thin annular sector plates by using

DQ method. The post buckling behavior of elastic beams on gradient foundation is investigated by

Challamel (2011). Kacar et al. (2011) considered the free vibration of an Euler-Bernoulli beam

resting on a variable Winkler foundation by using the differential transform method. The static and

dynamic responses of a completely free elastic beam resting on Pasternak type foundation to



Static response of 2-D functionally graded circular plate 141

symmetrically distributed load and concentrated load at its middle are investigated by Celep et al.

(2011). Akgoz and Civalek (2011) applied the discrete singular convolution method to investigate

the nonlinear vibration behavior of geometrically nonlinear thin laminated plates resting on non-

linear elastic foundation. Yas and Tahouneh (2012) investigated the free vibration of functionally

graded annular plates on elastic foundations based on the three-dimensional theory of elasticity and

using the differential quadrature method. Ponnusamy and Selvamani (2012) studied the wave

propagations in a thermo elastic homogeneous circular plate embedded in an elastic medium based

on generalized two dimensional theory of thermo elasticity. 

Reviewing the literature shows that static analysis of 2D functionally graded non-uniform

thickness circular plate resting on quadratically gradient elastic foundations in the radius direction

has not been considered and this paper deals with this subject. In this work, material properties are

assumed to be graded in the thickness and radius directions according to an exponent and power

law distributions with the Poisson’s ratio, ν, to be constant. The formulations are based on the three-

dimensional theory of elasticity. A semi-analytical method, which makes use of the state space

method and the one-dimensional differential quadrature rule, is employed. Effects of the gradient

indices, the plate geometric parameters, the foundation stiffnesses and the loads ratio on the static

behavior of circular and annular plates are investigated. 

2. Problem formulation 

2.1 Basic equations 

Fig. 1 shows a variable thickness bi-directional functionally graded circular plate with radius ro

rested on quadratic type gradient elastic foundations along radius direction and subjected to

combined uniform axisymmetric transverse and in-plane shear loads. A cylindrical coordinate

system (r, θ, z) with the origin o located at the center of mid surface of the plate is introduced to

describe the displacement field. The FG plate is transversely isotropic and material properties of the

plate except the Poisson’s ratio ν, varies continuously throughout the thickness and radius directions

in accordance with the exponential and power law distributions. The geometry of the plate varies

with the quadratic form along the radius direction. The Young’s moduli and the thickness of the FG

plate are as follow

Fig. 1 Geometry of variable thickness 2D-FGMs circular plate resting on gradient elastic foundations 
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(2)

Moreover, the plate geometry, the material properties distribution, applied loads, and boundary

conditions are independent from circumferential direction, the problem is axisymmetric. For the

axisymmetric problem, in the absence of body forces the equilibrium equations are

, (3)

the comma denotes differentiation with respect to the indicated variable.

The kinematic equations are

, (4)

The linear stress-displacement equations are

 (5)

By introducing the following non-dimensional parameters 

(6)

and considering Eqs. (1)-(5), the normalized form of the governing differential equations in the

bottom surface of the plate can be obtained in terms of displacement components as
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(7-b)

where 

, ,

 For exponential distribution of material properties  

   For power law distribution of material properties  

2.2 The plate-foundation interaction

The foundation is assumed is perfect, frictionless, attached to the plate and separation does not

arise. The variable foundation interface pressure pzb for an axisymmetric problem in the referred

coordinate system may be expressed as

(8)

where pzb is the force per unit area, wb is the deflection of the bottom surface of the plate. ,

 are the quadratic variable Winkler-Pasternak coefficients along the radial direction and can be

expressed as 

, (9)

2.3 Boundary conditions

The edge and boundary conditions for solid circular plate with radius ro and annular plate with

inner radius ri and outer radius ro are:

1) solid circular plate
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2) annular plate

Clamped – clamped edges (C-C)

(14-a)

(14-b)

Simply – simply supported edges (S-S)

(15-a)

(15-b)

Simply supported – clamped edges (S-C)

(16-a)

(16-b)

Clamped – free edges (C-F)

(17-a)

(17-b)

Boundary conditions at the top and bottom surfaces of the plate are assumed as follows.

at 

(18)

at 

(19)

3. Solution procedure 

It is difficult to analytically solve the governing differentials equations appeared in Eq. (7), if it is

not impossible. Hence, one should use an approximate method to find a solution. Here, the semi-

analytical approach is employed. This method combines the state space method (SSM) to provide

an analytical solution along the thickness direction (z-direction) to express the through-thickness

behavior of the plate and the one dimensional differential quadrature method (DQM) to approximate

the radial direction effects of the plate. By using this method the governing differentials equations is

transformed from physical domain to a normalized computational domain and the special

derivatives are discretized by applying the one dimensional differential quadrature method as an

efficient and accurate numerical tool. Finally a linear eigenvalue system in terms of the

displacements is established and by solving the resulted eigenvalue system, the static response of

the plate is obtained.

3.1 DQM procedure and its application

The principle of DQ rule is stated as follow: for a continuous function  defined in an
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interval , its nth order derivative with respect to argument r at an arbitrary given point ri

can be approximated by a linear sum of the weighted function values of  in the whole domain

(Shu 2000, Zong and Zhang 2009). This procedure can be expressed mathematically as 

(20)

where  are the weighted coefficients determined by the coordinates of the sample points ri.

It is deduce from this equation, that the important components of DQ approximation are the

weighting coefficients and the choice of sample points. In order to determine the weighting

coefficients a set of Lagrange polynomials are employed as test functions, and to achieve more

accuracy the non-uniform grid spacing is considered. Explicit expressions of the first and second

derivatives of the weighted coefficients matrices and also criterions to adopt non-uniformly spaced

grid points are presented in appendix 1.

The partial derivatives of the unknown displacements U, W with respect to η appeared in Eq. (7)

after applying the DQ rule at an arbitrary sample point ηi can be expressed as
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The discretized forms of the edge conditions discussed in Eqs. (10)-(17) can be expressed as

follows
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Regularity conditions in the center of the plate
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Simply – simply supported edges (S-S)

 (27-a)

 (27-b)

Simply supported – clamped edges (S-C)

  (28-a)

(28-b)

Clamped – free edges (C-F)

(29-a)

 (29-b)

The discretized forms of the boundary conditions at the lower and upper surfaces of the plate,

Eqs. (18) and (19) can be written as
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,  for exponential and power law variations of materials properties of the

plate, respectively.

3.2 The state space method

By taking the elements of state vector as , the global state space notation of

Eq. (7) in discretized points can be written as

 (32)

Here,  is the global state vector along the plate thickness at the level

of ζ and Di is the coefficient matrix at the sample points. The elements of matrix Di are given in

Appendix 2.

By considering all edge conditions the Eq. (32) can be denoted as follow

 (33)

where the subscript ‘e’ denotes the modified matrix or unknown vector taking account of the edge

conditions.

According to the rules of matrix operation, the general solution to Eq. (33) is
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Eq. (34) establishes the transfer relations from the state vector on the bottom surface to that at an

arbitrary plane ζ of the plate by the exponential matrix of . Setting ζ = 1 in Eq. (34)

gives 
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where  is the global transfer matrix and ,  are the values of the state variables
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By substituting the boundary conditions presented in Eqs. (30) , (31) in to Eq.(35), the following

algebraic equations for bending analysis can be obtained
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By solving Eq. (36), all state parameters at ζ = 0, ζ = 1 are obtained. We can use Eqs. (34) and

(5) to calculate the displacements and the stresses through the thickness of the FGMs circular plate.
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4. The numerical results and discussion

In order to extract the numerical results, Aluminum EAl = 70 GPa and Zirconia Ezr = 151 GPa are

considered as the metal and ceramic constituents of the FGMs plate. The material properties of the

FGM constituents are taken from (Praveen and Reddy 1998), which are summarized in Table 1. The

numerical results are derived for a non-uniform thickness 2D-FGMs clamped solid circular and

clamped-clamped annular plates resting on quadratically gradient elastic foundations. The material

properties are assumed to have exponential and power law distributions in the thickness and radius

directions of the plate according to Eq. (1). The non-linear thickness variation in the radial direction

is considered as Eq. (2). To achieve the numerical results non-equally spaced discretization points

(Appendix. 1) are considered and the number of discrete points in the radial direction is nine. The

plate structural data and the boundary conditions on the lower and the upper surfaces of the plate are

 (38)

The effects of the plate thickness variability, the plate geometric parameters, the material

heterogeneity indices, the loads ratio and the foundation stiffnesses on static behavior of the non-

uniform thickness FG circular plate are intensively discussed in the following text. The numerical

results for clamped circular plate with exponential and an annular plate with power law distributions

of material properties are shown in Figs. 3-9 and Figs. 10-11, respectively. 

 

4.1 Validation of the code

The validity of the prepared code is investigated by solving the small deflection bending of the

clamped supported two directional uniform thickness FG circular plate under a uniformly distributed

transverse pressure p without elastic foundation. The structural parameters (ro = 1.0 m, h = 0.1 m,

γ1 = γ2 = 1, Eb = 380 GPa, ν = 0.3) of the plate and boundary conditions on the bottom and the top

surfaces (bottom: σz = 0, τrz = 1 and top: σz = −1 GPa, τrz = 0) are considered same as given

previously by Nie and Zhong (2007). Non-dimensional transverse deflection of the mentioned plate

is determined and the results are presented in Table 1. An excellent agreement is observed between

the present results and those are given by Nie and Zhong (2007). 

4.2 Convergence of the DQ method

For numerical illustration and to show the effect of the number of the selected discrete points,

convergence study of the DQ method is conducted firstly, and is used as an evaluation criterion.

The dimensionless transverse deflection Wb vs. the number of discrete points N for clamped edge

Eb 70 GPa= , Et 151 GPa, ν= 0.3, ro 1.0 m, ri 0.1 m, s 0.015,= α1 α2 0.1= = = = =

τrz 0, σz pzb at z ho/2–= = = τrz 1 GPa– , σz 1 GPa– at z ho/2= = =

Table 1 Mechanical properties of FGMs plate constituents (Praveen and Reddy 1998)

Materials Aluminum Zirconia

Young’s modulus, E (GPa) 70 151

Poisson’s ratio, ν 0.3 0.3
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circular plate and clamped-clamped supported annular plate with structural data and boundary

conditions appeared in Eq. (38), and , ,  are depicted

in Fig. 2. It can be seen from Fig. 2 that the non-dimensional deflection of the plate at the midpoint

of radius approaches to a specific value with an increase in the number of the discretization points.

Fig. 2 confirms that the convergence of this method is great.

4.3 Effect of thickness variability

The effect of the plate geometry variation coefficients on static response of the plate with

conditions shown in Eq. (38) and , ,  at radius

midpoint section is plotted in Fig. 3. It is seen from Fig. 3 that in-plane stresses distribution through

the thickness of the plate are nonlinear and stresses decreases gradually as α1 and α2 increases.

4.4 Effect of the plate aspect ratio

The effect of the plate aspect ratio on static behavior of the plate with conditions discussed in

Eq. (38) and , ,  at radius midpoint section is presented

in Fig. 4. It can be found from Fig. 4 that W decreases and  increases through the thickness of

the plate as plate aspect ratio (s) increase.

k1 k2 0.1= = γ1 γ2 n1 n2 0.5= = = = f1 f2 0.1= =

γ1 γ2 ln 151/70( )= = f1 f2 0.1= = k1 k2 0.1= =

γ1 γ2 ln 151/70( )= = f1 f2 0.1= = k1 k2 0.1= =

σξ

Fig. 2 Convergence of the DQ method, Wb vs. N 

Table 2 The non-dimensional deflection of two-directional functionally graded circular plate 

ξ
η

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875

-0.5
Nie and Zhong (2007) -1.523 -1.462 -1.297 -1.056 -0.776 -0.494 -0.247 -0.073

present -1.521 -1.460 -1.295 -1.054 -0.775 -0.493 -0.246 -0.074
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4.5 Effect of the material property heterogeneity

In order to extract the effect of material heterogeneity indices on static response of the plate, the

conditions appeared in Eq. (38) and , , are chosen and the results are

plotted in Figs. 5-7. Fig. 5 illustrates distribution of the displacement components along the

thickness at  due to the distributed in-plane shear load only whereas Fig. 6 includes effect

of normal transverse load. The shear traction is exerted on the top surface of the plate has pressed

the layers in the radial direction and caused a bending in the layers. For this reason, signs of the

displacement components have changed. The radial displacement is affected by the compression due

to the shear force much more than that of the bending caused by the transverse loading.

f1 f2 0.1= = k1 k2 0.1= =

η 0.5=

Fig. 3 Effect of the plate geometry variation coefficients on plane stress components versus the plate thickness

Fig. 4 Effect of the plate aspect ratio on variation of displacement and stress components versus the plate
thickness
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Fig. 7 illustrates distribution of the displacement and stress components along the thickness at

 due to the compound loads ( ). It can be found from Fig. 7 that the

displacement components decreases, ση and σΘ firstly decreases and then increases, σξ and τηξ
decreases along the thickness of the plate as γ1 and γ2 increases. For the reason of the compression

of the layers in the radial direction, the radial and hoop stresses have increased. The distribution of

τηξ stress through the thickness of the plate converges to the horizontal line with decreasing the

graded indices. Decreases of displacements indicate that increasing the material heterogeneity

indices will certainly enhance the deformation rigidity of the plate. From Figs. 5-7, it is observed

that the deflection of the plate under transverse loading and the radial displacement in shear

interaction are more than the other loadings.

η 0.96= p 1, q– 2–= =

Fig. 5 Effect of the material property graded indices on variation of displacement components versus the
plate thickness

Fig. 6 Effect of the material heterogeneity indices on non-dimensional displacements across the plate
thickness
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Fig. 7 Effect of the material heterogeneity indices on mechanical entities versus the plate thickness



Static response of 2-D functionally graded circular plate 153

Fig. 8 Effect of the loads ratio on variation of physical quantities across the plate thickness
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Fig. 9 Effect of the foundation coefficients on variation of mechanical entities across the plate thickness
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Fig. 10 Effect of the radiuses ratio on variation of mechanical entities across the plate thickness (C-C annular
plate)
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4.6 Effect of the loads ratio

With structural parameters discussed in Eq. (38) and , ,

 the effect of loads ratio on static response of the plate at  is plotted in Fig. 8.

It is observed from Fig. 8 that all displacements and stresses increases as increase the loads ratio. 

4.7 Effect of the foundation stiffnesses

Effect of the foundation stiffnesses on static behavior of the plate whit above mentioned

conditions at  is depicted in Fig. 9. It can be found from Fig. 9 that displacements, ση, σΘ

decreases and σξ, τηξ increases as increase k1, k2.

4.8 Effect of the radiuses ratio 

In this section a variable thickness 2D-FGMs clamped-clamped annular plate is considered. The

material properties of the plate vary in thickness and radius directions in accordance with power law

distribution as shown in Eq. (1-b). The interactions of the top surface of the plate and the plate

structural data are as similar to Eq. (38). The coefficients of plate substrate and the plate material

property graded indices are , , , respectively. The effect of the

radiuses ratio on mechanical quantities with coordinate ξ at a location η = 0.97 is shown in Fig. 10.

It is seen from Fig. 10, that the W, ση, σΘ vary linearly in the thickness direction and the U, σξ, τηξ
are nonlinear functions of thickness coordinate. It is easy to observe from Fig. 10 that the

displacements and stresses become smaller as the radiuses ratio increases.

4.9 Effect of the foundation variability

To demonstrate the effect of the substrate variation coefficients on static response of the plate a

γ1 γ2 ln 151/70( )= = f1 f2 0.1= =

k1 k2 0.1= = η 0.5=

η 0.96=

f1 f2 0.1= = k1 k2 0.01= = n1 n2 1= =

Fig. 11 Effect of the foundation variation coefficients on transverse displacement (C-C annular plate) 
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clamped-clamped annular plate with conditions shown in Eq. (38) and  

is considered and the extracted results is plotted in Fig. 11. It can be seen from Fig. 11 that with

increasing foundation variation coefficients the plate deflection decreases.

5. Conclusions

In the present paper, the static behavior of two directional functionally graded circular plate of

quadratically varying thickness and resting on gradient two- parameter elastic foundations is

investigated based on three dimensional elasticity theory. The plate is assumed to be subjected to

both transverse and in-plane shear tractions. The material properties are assumed to vary

exponentially and non-exponentially in both thickness and radial directions. The solution is obtained

by employing the semi-analytical method. The results confirm the high rate convergence and

accuracy of the present method. 

By using this method, some results are derived with the most important conclusions that: 

1. The presented method is particularly useful to analysis the behavior of heterogeneous plates

with a more complicated geometry and boundary conditions. 

2. The radial displacement is affected by the compression due to the shear force much more than

that of the bending caused by the transverse loading.

3. The additional compression of the layers in the radial direction of the plate due to shear

interaction increases the radial and circumferential stresses. 

4. Variation scheme of displacements and stresses through the thickness of the plate for

exponentially distribution of material properties is different with variation scheme of these

quantities to the plate with other distribution of material properties.
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Appendix 1

The elements of weighting coefficients of the first-order derivative matrix A can be obtained from the follow-
ing algebraic formulation (Shu 2000)

(A1)

The weighting coefficients of the second-order derivative can be obtained from the following recurrence rela-
tion (Zong and Zhang 2009).

(A2)

In this study the following criterions are used for nodes discretization.
1- Richard-Shu criterion for solid circular plate

(A3)

2- Chebyshev criterion for annular plate 

(A4)

Appendix 2 

The elements of matrix Di

where 
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, , ,

,

,

(A5)
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Notations

ro outer radii of the FGM circular plate
ri inner radii of the FGM annular plate
Eij(r, z) Young’s modulii of any arbitrary point of the plate
Eb Young’s modulii at the center point of lower surface of the plate 
Et Young’s modulii at the corner of upper surface of the plate
ν Poisson’s ratio
ho thickness of the plate at the center of the plate
kwbo elastic coefficient of Winkler’s foundation at the center of bottom surface of the FGM plate

(N/m3)
kpbo elastic coefficient of shear layer foundation at the center of bottom surface of the FGM

plate (N/m)
k1, k2 the dimensionless coefficients of the elastic foundation 
N number of the grid points in the radial direction
P external load (uniform transverse pressure)
q external load (uniform radial shear pressure)
r  radius (radial direction) 
u, w displacements in the radial and transverse directions
z transverse coordinate 
f1, f2 the elastic foundation variation coefficients 
γrz transverse shear strain

normal strains in the r, θ and z directions
material properties gradient indices 
the plate geometry variation coefficients 

θ circumferential coordinate 
 normal stresses in the r, θ and z directions

transverse shear stress
weighting coefficients matrix of the first derivative

weighting coefficients matrix of the second derivative

εi i r θ z, ,=( )
γi ni i 1 2,=( ),
α1 α2,

σi i r θ z, ,=( )
τrz
Aij

Aij

2( )




