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Abstract. The size and topology of geometrically nonlinear dome structures are optimized thereby
minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity.
Design constraints are implemented from provisions of American Petroleum Institute specification (API
RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by
use of arc-length technique as a nonlinear structural analysis method are checked at each load increment.
Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is
correspondingly neglected. In order to solve this complex design optimization problem with multiple
objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a
multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby
integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped
dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal)
members into the geometrical configuration of dome structure provides a weight-saving dome designation
with higher load-carrying capacity. The proposed optimization approach is recommended for the design
optimization of geometrically nonlinear dome structures. 
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1. Introduction

The design of a dome structure, which is utilized to span large areas without an intermediate

support, has been one of the challenging application problems in engineering optimization field

(Saka 2007a, Kaveh 2010, Hasancebi 2009). The dome structures are generally constructed by use

of tubular steel sections in a way of welding its steel members to each other. Therefore, they are

lighter and cheaper compared to those constructed by use of ready profiles with different geometric

cross-sections. But, both possibility of including slender members and welding process cause to

increase the effect of bending moments on axial stiffness of the steel members (Saka 1998). Thus,

dome structure can exhibit structural instability leading to a significant change in its structural

configuration even when the static responses are well below a yield point of material. The optimal

design of geometrically nonlinear steel structures were accomplished based on either using strain

energy densities of its members for maximizing critical loads (Khot 1985, Kamat 1984, Sedaghati

2000, Levy 1988, 1994a, b) or design sensitivity information (Cardoso 1988, Choi 1987, Santos
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1988, Ohsaki 2001, 2005, 2006). Recent optimization approaches performed for geometrically

nonlinear steel structures have directly involved a robust nonlinear structural analysis method into

their optimization procedures (Hrinda 2008). This nonlinear structural analysis has been also

integrated with provisions of an available design specification (Saka 2007b, Carbas 2011, Kaveh

2011). In this regard, the member responses of the steel structure are computed where the

determinant value of global rigidity matrix becomes to be positive. But, checking the strengths of its

members computed at each incremental step of nonlinear structural analysis is neglected. Thus, the

computing expense is correspondingly increased due to discarding the designations are resulted with

a negative determinant of global rigidity matrix (Kannan 2009).

The other important task in the design optimization of geometrically nonlinear dome structures is

the determination of the most appropriate one from several design criteria (entire weight, node

displacement, load-carrying capacity etc.) conflicted to each other. In order to deal with this

bottleneck, one of the reasonable approaches is to employ a multi-objective optimization algorithm

for optimization-related computing procedure. Although a recent extended overview on the usage of

multiple objectives for design optimization problems of structural engineering is presented in

Reference Talaslioglu (2011), a study about multi-objective design optimization of geometrically

nonlinear dome structures according to an available design specification is not found in the

literature.

A general multi-objective optimization problem with N design (decision) variables is consisted m

objective functions and J constraints. Its mathematical expression is given as

 (1)

 (2)

 (3)

A decision variable set defined in design variable space (DS) is represented by X bounded by

upper and lower values,  and . Thus, objective functions f and constrains gj(x) are accordingly

computed in a solution space (SS). 

At each run of an evolutionary optimization algorithm, a set of random solutions is obtained.

Some of them are non-dominated solutions (none is better for all objectives) and referred as “pareto

solution” defined in a concept named as domination (Srinivas 1995). Thus, the pareto solutions are

used to form “pareto front” which determines bounds of non-dominated solutions.

The first multi-objectives optimization methods utilized gradient information derived from

objective functions in order to compute the decision variables of continuous type (Talaslioglu 2011).

However, these mathematical programming approaches easily failed when search space was concave

and discontinuous. Although aggregating approaches such as weighted sum, game theory (Deb

2001a, Sunar 2001) were utilized as multi-objectives optimization methods, evolutionary based

algorithms has been achieved to become the most attractive one (Talaslioglu 2011, Sepehri et al.

2012). The main feature of the evolutionary based multi-objective algorithms is their ability of

either including or excluding the pareto solutions into optimization related computing procedure.

One of the first evolutionary based multi-objective algorithms, named as Vector Evaluated Genetic

Algorithm Schaffer (1984) did not utilized pareto solutions. In order to improve the computing

capacity of the preliminary evolutionary based multi-objective algorithms, pareto solutions have

min/maxF x( ) f1 x( )( ) f2 x( )( ) … fm x( )( ), , ,{ }, x DS∈=

DS xn

L
xn xn

U
, n 1 2 … N, , ,=≤ ≤{ }=

SS x:gj x( ) 0, j 1 2 … J, , ,=≤{ }=

xn

U
xn

L



Multiobjective size and topolgy optimization of dome structures 797

been involved into solving mechanism of new multi-objective optimization procedures (Non-

dominated Sorting Genetic Algorithm (NSGA) by Srinivas (1995), a Niched Pareto Genetic

Algorithm (NPGA) by Horn (1994), a Multi-objective Genetic Algorithm (MOGA) by Fonseca

(1993), and a Multi-objective Evolutionary Algorithm (MOEA) by Tanaka (1992)). Then, the

improvement of their optimal results has been attained thereby i) enhancing their current

optimization strategies, such as Non-dominated Sorting Genetic Algorithm II (NSGA II) (Deb

(2001b, 2002), Improved Strength Pareto Evolutionary Algorithm II (SPEA II), Improved Pareto

Envelope-Based Selection Algorithm (Region-Based Selection) II (PESA II), ii) adapting a

competitive Search Technique, such as Adapting Scatter Search AbYSS (see Sunar (2001) for a

further consideration of these optimization algorithms). 

In this study, optimal size and topology of geometrically nonlinear dome structures is determined

by minimizing both its entire weight and node displacements and maximizing its load-carrying

capacity. The structural responses of dome structure are computed by using a software package

ANSYS to run the computing procedure of arc-length method as a nonlinear structural analysis

approach. The design constraints are implemented from provisions of API RP2A-LRFD. In the

generation of optimal designations, the qualities of objective function values are evaluated according

to the computing basis of NSGAII approach. The computing steps of proposed design optimization

procedure are accordingly coded in MATLAB. 

The organization of this study begins by a brief introduction to both multi-objectives optimization

approaches and geometrically nonlinearity issue utilized in dome structure. Then, following the

presentation of design constraints implemented from API RP2A-LRFD, an application example with

two members is included to verify the member responses obtained by arc-length method. The

computing steps of proposed design optimization approach are described in Chapter 4 by defining

both design&optimization-related parameters and toolbox names according to codes in MATLAB

scripts. The design results obtained are evaluated taking into account of a search methodology

presented in Chapter 5 and summarized in Chapter 6. The last section is reserve for conclusion.

2. Design constraints defined according to provisions of API RP2A-LRFD specifica-

tion

In this study, the size and topology optimization of the dome structures are carried out according

to design constraints based on provisions of API RP2A-LRFD specification. For this purpose, the

total weight of dome structure, f1 and node displacements, f2 are minimized whereas its carrying

capacity, f3 is maximized. It is noted that the member forces are utilized to define the carrying

capacity of dome structure (see Eqs. (4)-(9)). Thus, the higher values of member forces indicate an

increase in carrying capacity of dome structure. The member forces, f3. The objective functions are

is formulated as

 (4)

 (5)

 (6)

f1 w*l( )k k 1 … m, ,=( )
k 1=

m

∑=

f2 min dij( ) i 1 … 12 and j 1 … n, ,=, ,=( )=

f3 min sij( ) i 1 … 12 and j 1 … n, ,=, ,=( )=
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Design constraints as 

(7)

(8)

(9)

(10)

(11)

(12)

(13)

Displacement constraint as,

(14)

The term W is computed depending on member length l and unit weight w assigned from a

circular-shaped steel profile list. While dij is termed as node displacement corresponding to the

related degree of freedom i and node j, the terms n and m indicate total numbers of node and dome

member. Axial force of dome members (compression and tension) fa, bending moment strength of

dome member s fby and fbz, and shear strength of dome member s fv in the constraints are limited by

allowable nominal axial force (compression and tension) Fa and Ft, nominal shear strength Fv,

Nominal Yield Strength Fy, Nominal Elastic and In-elastic Local Buckling Strength, Fxe and Fxc.

Displacements of nodes are constrained by an upper limit dmax. The proposed structural analysis of

steel structures is performed to obtain the outputs (fa, fby, fbz and fv). The determination of nominal

strengths Fa, Ft, Fv, Fy, Fxe and Fxc according to provisions of API RP2A-LRFD specification is

formulated in Appendix I. 
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3. Application of nonlinear structural analysis method, arc-length method to design

example

ANSYS is employed to perform the computing procedures of arc-length method (see the

governing equitation in Eq. (15) and chapter 15.3.6. arc-length method in ANSYS help for a further

consideration). 

 (15)

A truss system which was used by Sedaghati (2000) (Fig. 1(a)) is devised in order to validate its

responses obtained by ANSYS. LINK1-element assigned from ANSYS element database is used to

represent truss member. A basic command list governed arc-length method are written in a file with

an extension named “mac”. The basic parameter values of these commands are taken as: F for

convergence label, 0.0001 for convergence tolerance (see command CNVTOL), 400 for load step

(see command NSUBST), 40 for maximum arc-length multiplier and 0.004 for minimum arc-length

multiplier (see command ARCLEN). After the computation of nonlinear responses by arc-length

method, it is observed that this truss system exhibits snap-through behavior (Fig. 1(b)). In Fig. 1(b),

the variations on member force, stress and load factor with displacement are sketched. According to

Fig. 1 the load, displacement and stress values set (200 lbs, 1.0567 inch, 1333 lbs/in2)

corresponding to the limit point obtained by Sedaghati (2000) is a good agreement with the set of

(200 lbs, 1.052 in and 1330 lbs/in2) obtained by ANSYS. It is noted that both force and stress

values of truss members is increased to their maximum values 12999 lbs and 2002 lbs/in2 although

load factor that is computed using arc-length approach is decreased after passing a limit point

corresponding to the displacement value (1.052 in) and load factor value (200 lbs).

Ki

T[ ] ui∆{ } λ F
a{ }∆– λn λi+{ } F

a{ } Fi

nr{ }– Ri{ }–= =

Fig. 1 (a) A Truss structure with two-bars for verification example and (b) illustration of its snap-through
behavior
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4. Solving optimal design problem of geometrically nonlinear dome structure by

NSGA II optimization algorithm

Sphere shapes are used to form the geometrical configuration of the dome structures. Both

longitudinal-horizontal arched (chord) and diagonal members are utilized to construct the dome

structure (see Fig. 2). Hence, three geometrical configurations are offered to generate the sphere-

shaped dome structures using size and topology-related design variables (see Table 1). The size-

related design variables ParDV are represented by a steel profile database with 37 ready circular

hollow cross-sections. Thus, the upper and lower limit of size-related design variables ParDVU and

ParDVL are 37 and 1. The topology-related design variables are represented by longitudinal-

horizontal division numbers ParLDN and ParHDN and used to determine longitudinal and horizontal

arched members of dome structures located on semi sphere. The upper and lower limits of

longitudinal and horizontal division numbers are ParLDNU & ParLDNL and ParHDNU & ParHDNL. In this

regard, the sphere-shaped dome structure is generated by use of mathematical expression formulated

by Eq. (16).

Table 1 Three geometrical configurations used to arrangement of arched and diagonal members for sphere-
shaped dome structures 

Geometrical 
Configuration 1

Geometrical 
Configuration 2

Geometrical 
Configuration 3

Cross-sectional Properties of Longitudinally 
Arched Members

Same Different Different

Cross-sectional Properties of Horizontally 
Arched Members

Different Different Different

Cross-sectional Properties of Diagonal 
Members

Not Included Different Not Included

Fig. 2 (a) Top and (b) side view of sphere-shaped dome structure
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Fig. 3 A Pseudo code for NSGA II in conjunction with its toolbox names 
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 (16)

The computing steps of the proposed optimization algorithm are presented by a pseudo code

without including their arguments passing to other toolboxes (see MATLAB toolbox names in

Fig. 3). Thus, the governing parameter values of NSGAII optimization algorithm are easily altered

since they are coded in structure fields. It is noted, BM3D-element assigned from ANSYS element

database is used to represent members of dome structure.

According to the pseudo code, the first step is the creation of fitness functions f1, f2 and f3 (see

ROUTINE1 defined by FitnessFunction in Fig. 3). For this purpose, these fitness functions are

accordingly formulated for definition of a dome structure which is constructed by use of size, and

topology-related design variables. Thus, the first individual of any population, x0 and the upper-

lower values of design variables (lb and ub) are formulated by Eqs. (17)-(19). 

(17)

(18)

(19)

The maximum number of design variables (numberOfVariables), ParND are limited into 13 due to

ParHDNU = 5 for geometrical configuration 2 (see Eq. (17) and Fig. 3). The fitness values are

computed by use of some numbers located in each individuals depending on two parameters ParLDN

and ParHDN. It is noted that the proposed multi-objective design optimization procedure does not

require any penalization process since checking process is terminated once the design constraints

defined by provisions of API RP2A-LRFD specification is violated at any incremental stage of

nonlinear structural analysis. The fundamental parameter values and genetic operator names are

defined by making use of a structure field name named as option. Then, the first toolbox named as

Gamultiobj is executed by use of these parameters. In this toolbox, firstly design constraints and

parameters defined in option are checked against the violation of their pre-defined values. Then, the

computing procedure of NSGA II algorithm begins by an execution of the toolbox gamultiobjsolve

which calls two toolboxes named GamultiobjMakeState and stepgamultiobj. In fact, GamultiobjMakeState

named ROUTINE2 is used to constitute the toolbox named stepgamultiobj. The toolbox named

gamultiobjsolve calls GamultiobjMakeState in order to create the first initial population using

options.CreationFcn, compute fitness functions (fcnvectorizer), rank them (rankAndDistance). Also,

an execution of evolutionary genetic operators named selection, mutation and crossover is executed

x ParSDVx*cos pi/2( )*V( )*cos pi/U( )=

y ParSDVy*cos pi/2( )*V( )*sin pi/U( )=

z ParSDVz*sin pi/2( )*V( )=
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Multiobjective size and topolgy optimization of dome structures 803

in the toolbox named GamultiobjMakeState (indicated by ROUTINE2 in Fig. 3). NSGA II toolbox

is equipped with rich features allowing the output to both plot and save. The desired output and

plots are executed in two toolbox named gadsplot and gaoutput. The main generation that is ended

according to the value of parameter options.Generations begins to run (see gamultiobjConverged for

further information about the other termination options). Then, the toolbox named stepgamultiobj is

employed to execute three evolutionary operators, selection, mutation and crossover which are

defined by ROUTINE 1. The desired output is both saved and plotted by gadsplot and gaoutput

following the activation of migration process. 

5. Search methodology for evaluation of obtained results

The genetic search carried out by NSGAII algorithm is managed by probabilistic transition rules.

Therefore, the computing complexity arisen from the number of interacted genetic parameters is

high. However, the difficulty in determining an appropriate genetic parameter set is relatively low

due to limiting the application area to the design optimization of geometrically nonlinear dome

structures in structural engineering field. In this regard, four combination sets contained different

parameter values of crossover and mutation operators are devised in associated with lower and

higher population size. Thus, total eight parameter sets are considered to determine the best one

allowing to an increase in the computing performance of NSGAII algorithm. Although the

convergence degrees of optimal designations are utilized to assess the computing performance of

any optimization approach with a single-objective function, it is not sufficient for multi-objective

optimization approaches due to usage of multiple objective functions at same time. In this regard,

different quality measuring metrics have been developed to evaluate the optimality quality of

designations generated by any multi-objective optimization approach (Zhou and et al. 2011). In this

study, well-known three quality indicators named spread, average distance and hyper-volume are

utilized along with a statistical test procedure carried out in a certain level of confidence. Whereas

the computing procedures of spread and average distances are already coded in current toolboxes,

named rankAndDistance.m, distancecrowding.m, the code scripts of hyper-volume is externally

included (see web page presented in Reference (12)]). In order to increase the consistency in

assessing the values of these quality indicators, 100 different runs of proposed design approach are

performed. While higher values of hyper-volume indicate a large coverage of non-dominated

solutions in a solution space, a lower spread and average distance values are expected for a better

and uniform distribution among non-dominated solutions. Furthermore, lower spread and average

distance values indicate to locate non-dominated solutions in uniformly different position of solution

space. Hence, if a probability value outcome from performing the statistical test procedure satisfies

a user defined significance level, then it is said that current genetic parameter set is acceptable.

Considering the average values of these quality indicators, the parameter sets corresponding to the

lower spread and average distance and higher hyper-volume values are determined as the best

parameter set.

5.1 Details of statistical test procedure

The computing procedures of the statistical analysis are performed in MATLAB. The spread and

average distance values of each execution are stored. Then, the average values of these spread and
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average distance values are checked about whether to exhibit a normal distribution thereby

employing the lillie test. If those values do not shown a normal distribution, a kruskal-wallis test

method is utilized to compare these average spread and average distance values. Furthermore, in

order to accomplish a more explicit comparison among them, a comparison of pairs is made using a

post hoc 5% hsd-test (also known as Tukey-Kramer test) (see function “multicompare” in MATLAB

Statistical Toolbox). Basically, this function returns a matrix of pair wise comparison results with

information about which pairs of distributions are significantly different.

6. Results and discussion

A dome structure, which has an elasticity module of 205 kN/mm2, a diameter of 20 m and an

upper limit for node displacements taken as 28 mm, (see further details in Kaveh 2011) is devised

as a design example. The design of this dome structure is optimized by use of 37 ready circular

hollow cross-section properties (see Carbas 2011). The best parameter sets and dome configurations

are determined using the values of three quality indicators. Furthermore, it is also proposed to

highlight the requirement of using the multi-objective optimization approach for geometrically

nonlinear dome structures. Therefore, this section is divided into two sub-sections, each of which

contains a corresponding summarization of obtained results. 

Table 2 Design variable and parameters governed the proposed optimal design approach

Parameter or Design Variable Names Parameter and Design Variable Values

Genetic Operator Parameter Names Genetic Operator Parameter Combination No (GPCN)

1 2 3 4 5 6 7 8

options. Generations 100 100 100 100 100 100 100 100

options.PopulationSize 50 50 50 50 100 100 100 100

options.MutationFcn= {@mutationuniform,} 0.50 0.20 0.50 0.20 0.50 0.20 0.50 0.20

options.CrossoverFcn= {@crossoverheuristic,} 0.80 0.80 0.40 0.40 0.80 0.80 0.40 0.40

Design Variable Names Design Variable Values

Size Related Design Variables
ParDV

ParDVL=1 < <ParDVU=37

Shape Related Design Variables
ParSDVx

ParSDVy

ParSDVz

ParSDVxL=19m < <ParSDVxU=21m

ParSDVyL=19m < <ParSDVyU=21m

ParSDVzL=19m < <ParSDVzU=21m

ParSDVxL=ParSDVxU=20m

ParSDVyL=ParSDVyU=20m

ParSDVzL=ParSDVzU=20m

Topology Related Design Variables
ParLDN

ParHDN

ParLDNL = 2 < <ParLDNU = 5
ParHDNL = 2 < <ParHDNU = 5

Structural Analysis Related Parameter Names Structural Analysis Related Parameter Values

Convergence Tolerance (see com. CNVTOL)
Load step                 (see com.NSUBST)
Arc-length mult.         (see ARCLEN)

0.00001
500
50
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6.1 Assessment of proposed parameter sets and determination of better geometrical

configuration 

In order to investigate the impact of genetic parameters on optimality quality of designations

obtained, total eight genetic parameter combination sets (GPCN1-GPCN8) are proposed. In fact,

these genetic parameter sets are obtained by combining higher-lower mutation rates (0.5-0.2) and

crossover rates (0.8-0.4) with higher-lower population size (100-50) (see Table 2). 

These proposed genetic parameter sets are applied for design optimization of a dome structure

with ParLDN = ParLDN = 2, ParLDN = ParLDN = 5 and ParLDN = varying, ParLDN = varying. Thus, a

variation in member number of dome structure is also taken into account for evaluation of genetic

Table 3 Pair wise comparison of spread values for sphere shaped geometrical configuration1 with GPCN1-
GPCN8 come from the post-hoc testing named “multicompare”

GPCN GPCN Lower Bound
Average of Lower Bound 

and Upper Bound
Upper Bound

1 2 -154,01 -54,96 44,09

1 3 -180,11 -81,06 17,99

1 4 -177,29 -78,24 20,81

1 5 -205,57 -106,52 -7,47

1 6 -154,43 -55,38 43,67

1 7 -106,09 -7,04 92,01

1 8 -151,05 -52,00 47,05

2 3 -125,15 -26,10 72,95

2 4 -122,33 -23,28 75,77

2 5 -150,61 -51,56 47,49

2 6 -99,47 -0,42 98,63

2 7 -51,13 47,92 146,97

2 8 -96,09 2,96 102,01

3 4 -96,23 2,82 101,87

3 5 -124,51 -25,46 73,59

3 6 -73,37 25,68 124,73

3 7 -25,03 74,02 173,07

3 8 -69,99 29,06 128,11

4 5 -127,33 -28,28 70,77

4 6 -76,19 22,86 121,91

4 7 -27,85 71,20 170,25

4 8 -72,81 26,24 125,29

5 6 -47,91 51,14 150,19

5 7 0,43 99,48 198,53

5 8 -44,53 54,52 153,57

6 7 -50,71 48,34 147,39

6 8 -95,67 3,38 102,43
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Table 4 A statistical assessment of spread, average distance and hyper-volume for proposed sphere-shaped geometrical configurations (ParLDN=2,
ParHDN=2)

Geometrical 
Configuration

GPCN

Spread Average Distance Hyper Volume

max min average
Statistical 

significance
max min average

Statistical 
significance

max min average
Statistical 

significance

Sphere-shaped 
Geometrical 

Configuration
1

1 0.079 0.021 0.057

0.01592579

0.7936 0.2017 0.4805

0.01719158

0.3998 0.1013 0.2751

0.01605552

2 0.095 0.020 0.063 0.9366 0.2018 0.5308 0.2497 0.1024 0.1790

3 0.089 0.021 0.058 0.8913 0.2087 0.5626 0.2999 0.1029 0.2203

4 0.084 0.020 0.060 0.8476 0.2192 0.5200 0.3457 0.1028 0.2407

5 0.090 0.020 0.060 0.8958 0.2193 0.5735 0.2990 0.1005 0.2199

6 0.084 0.021 0.058 0.8496 0.2003 0.5175 0.3477 0.1016 0.2445

7 0.075 0.021 0.051 0.7498 0.2047 0.4402 0.4477 0.1003 0.2827

8 0.080 0.020 0.056 0.7991 0.2082 0.5182 0.3964 0.1115 0.2743

Sphere-shaped 
Geometrical 

Configuration
2

1 0.070 0.021 0.047

0.01487559

0.6990 0.2001 0.4712

0.00844113

0.4987 0.1017 0.3309

0.00416201

2 0.085 0.021 0.057 0.8314 0.2122 0.5454 0.3482 0.1051 0.2422

3 0.075 0.023 0.049 0.7413 0.2038 0.4432 0.4480 0.1054 0.3046

4 0.079 0.021 0.048 0.7908 0.2358 0.5271 0.3986 0.1074 0.2749

5 0.079 0.020 0.053 0.7933 0.2005 0.5154 0.3972 0.1055 0.2678

6 0.065 0.020 0.044 0.8461 0.2015 0.5405 0.5398 0.1223 0.3612

7 0.070 0.021 0.049 0.6868 0.2035 0.4359 0.4965 0.1078 0.3167

8 0.074 0.020 0.051 0.7449 0.2033 0.4844 0.4444 0.1233 0.3052

Sphere-shaped 
Geometrical 

Configuration
3

1 0.075 0.021 0.050

0.01324721

0.7414 0.2049 0.4729

0.00980036

0.3957 0.1016 0.2573

0.01841320

2 0.085 0.021 0.056 0.8438 0.2001 0.5159 0.2495 0.1006 0.1793

3 0.090 0.020 0.058 0.8772 0.2038 0.5450 0.2991 0.1012 0.2135

4 0.080 0.021 0.055 0.7969 0.2157 0.5036 0.3482 0.1068 0.2391

5 0.079 0.021 0.055 0.7942 0.2056 0.4728 0.2996 0.1002 0.2086

6 0.085 0.023 0.059 0.8426 0.2157 0.4939 0.3485 0.1056 0.2416

7 0.070 0.021 0.048 0.6996 0.2151 0.4484 0.4481 0.1237 0.2969

8 0.075 0.021 0.053 0.7413 0.2001 0.4449 0.3977 0.1001 0.2488
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Table 5 A statistical assessment of spread, average distance and hyper-volume for proposed sphere-shaped geometrical configurations (ParLDN=5.
ParHDN=5) 

Geometrical 
Configuration

GPCN

Spread Average Distance Hyper Volume

max min average
Statistical 

significance
max min average

Statistical 
significance

max min average
Statistical 

significance

Sphere-shaped 
Geometrical 

Configuration
1

1 0.070 0.020 0.051

0.00411948

0.8455 0.2020 0.5144

0.00896022

0.3491 0.1008 0.2483

0.00831001

2 0.085 0.022 0.058 0.6996 0.2037 0.4546 0.4988 0.1127 0.3443

3 0.080 0.021 0.055 0.7940 0.2204 0.4865 0.3992 0.1169 0.2758

4 0.075 0.020 0.050 0.7439 0.2030 0.4422 0.4468 0.1044 0.3044

5 0.079 0.022 0.056 0.7959 0.2002 0.4933 0.3993 0.1065 0.2569

6 0.069 0.020 0.047 0.6971 0.2053 0.4580 0.4970 0.1020 0.3323

7 0.074 0.021 0.051 0.7369 0.2079 0.4546 0.4459 0.1032 0.2864

8 0.065 0.022 0.046 0.6495 0.2004 0.4363 0.5391 0.1170 0.3427

Sphere-shaped 
Geometrical 

Configuration
2

1 0.070 0.020 0.049

0.01692922

0.6941 0.2027 0.4417

0.01472192

0.4986 0.1064 0.3395

0.01112704

2 0.065 0.020 0.043 0.6453 0.2043 0.4541 0.5450 0.1020 0.3587

3 0.075 0.020 0.050 0.7435 0.2005 0.4465 0.4498 0.1087 0.2941

4 0.058 0.020 0.041 0.5998 0.2024 0.3980 0.5939 0.1023 0.3762

5 0.065 0.021 0.046 0.6490 0.2016 0.4186 0.5461 0.1068 0.3643

6 0.060 0.021 0.042 0.5993 0.2090 0.4076 0.5976 0.1196 0.3954

7 0.070 0.020 0.046 0.6968 0.2064 0.4554 0.4989 0.1089 0.3043

8 0.055 0.021 0.040 0.5487 0.2005 0.3701 0.6484 0.1507 0.4280

Sphere-shaped 
Geometrical 

Configuration
3

1 0.080 0.022 0.053

0.00994541

0.7820 0.2181 0.4964

0.00686949

0.3969 0.1045 0.2741

0.01055673

2 0.064 0.020 0.045 0.6469 0.2002 0.4142 0.5497 0.1026 0.3648

3 0.069 0.021 0.046 0.6971 0.2039 0.4640 0.4978 0.1089 0.3344

4 0.074 0.020 0.051 0.4991 0.2095 0.3354 0.4452 0.1061 0.3062

5 0.075 0.021 0.051 0.7406 0.2001 0.4739 0.4427 0.1098 0.2853

6 0.065 0.020 0.045 0.6490 0.2052 0.4172 0.5462 0.1186 0.3393

7 0.070 0.022 0.049 0.6929 0.2061 0.4526 0.4994 0.1136 0.3285

8 0.060 0.020 0.041 0.5997 0.2018 0.3801 0.5904 0.1122 0.3712
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Table 6 A statistical assessment of spread, average distance and hyper-volume for proposed sphere-shaped geometrical configurations (Varying
Topology)

Geometrical 
Configuration

GPCN

Spread Average Distance Hyper Volume

max min average
Statistical 

significance
max min average

Statistical 
significance

max min average
Statistical 

significance

Sphere-shaped 
Geometrical 

Configuration
1

1 0.060 0.020 0.041

0.00591774

0.7479 0.2037 0.4547

0.00230717

0.4499 0.1007 0.2917

0.00226123

2 0.075 0.022 0.048 0.5867 0.2003 0.3864 0.5971 0.1058 0.4087

3 0.070 0.020 0.049 0.6967 0.2101 0.4480 0.4977 0.1214 0.3315

4 0.065 0.020 0.047 0.6496 0.2009 0.4457 0.5479 0.1017 0.3496

5 0.070 0.021 0.050 0.6984 0.2036 0.4171 0.4983 0.1200 0.3160

6 0.060 0.020 0.041 0.5948 0.2017 0.4028 0.5913 0.1092 0.3895

7 0.065 0.020 0.046 0.6461 0.2011 0.4138 0.5458 0.1232 0.3641

8 0.055 0.021 0.039 0.5485 0.2164 0.3872 0.6494 0.1176 0.4439

Sphere-shaped 
Geometrical 

Configuration
2

1 0.060 0.020 0.042

0.01788833

0.5941 0.2056 0.3851

0.00507919

0.5995 0.1083 0.3857

0.00453963

2 0.055 0.020 0.038 0.5499 0.2045 0.3609 0.6499 0.1450 0.4258

3 0.065 0.020 0.044 0.6497 0.2014 0.4395 0.5486 0.1273 0.3733

4 0.049 0.020 0.036 0.4999 0.2023 0.3580 0.6982 0.1104 0.4500

5 0.055 0.021 0.041 0.5494 0.2071 0.3663 0.6466 0.1497 0.4384

6 0.050 0.020 0.036 0.4998 0.2010 0.3441 0.6909 0.1192 0.4657

7 0.060 0.021 0.042 0.5944 0.2012 0.4058 0.5947 0.1048 0.4080

8 0.045 0.020 0.033 0.4481 0.2136 0.3390 0.7481 0.1293 0.5059

Sphere-shaped 
Geometrical 

Configuration
3

1 0.070 0.020 0.047

0.00139300

0.6941 0.2013 0.4798

0.00149026

0.4896 0.1035 0.3213

0.00198096

2 0.054 0.021 0.038 0.5485 0.2023 0.3711 0.6455 0.1140 0.4264

3 0.060 0.020 0.041 0.5985 0.2011 0.4173 0.5942 0.1184 0.3932

4 0.064 0.022 0.045 0.6498 0.2012 0.4338 0.5401 0.1009 0.3442

5 0.065 0.021 0.043 0.6477 0.2085 0.4037 0.5498 0.1078 0.3693

6 0.055 0.020 0.039 0.5402 0.2038 0.3823 0.5360 0.1156 0.3519

7 0.060 0.022 0.043 0.5940 0.2004 0.3901 0.5941 0.1280 0.3867

8 0.049 0.020 0.036 0.4973 0.2048 0.3397 0.6960 0.1908 0.4618
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parameter sets. The results obtained are summarized in Tables 4-6. According to statistical

significance values listed in Tables 4-6, it is said that current genetic parameter seta are acceptable

due to their lower values (P < 0.5). Furthermore, in order to highlight the statistical testing

procedure, a visualization of statistical results obtained from MATLAB execution for design

optimization of sphere-shaped geometrical configuration is presented for spread value in Figs. 4(a)-

(c) (see cells corresponding to statistical significance value= 0.015925 in Table 4). 

Considering Table 4, the success of GPCN1 is higher for a decrease in population size due to

lower spread and average distance values (0.057-0.047-0.050 and 0.4805-0.4712-0.4729) and higher

hyper-volume values (0.2751-0.3309-0.2573). However, an increase in population size is resulted

with a success of GPCN7 due to lower spread and average distance values (0.051-0.048 and

0.4402-0.4484) and higher hyper-volume values (0.2827-0.2969) for geometrical configuration 1

and 3. Inclusion of diagonal members into geometrical configurations (see properties of geometrical

configuration 2 in Table 1) causes to a decrease in mutation rate and an increase in crossover rate.

Thus, the most success of genetic search is increased by use of GPCN6 along with geometrical

configuration 2 due to lower spread and average distance value, 0.044 and 0.5405 and higher hyper-

volume value 0.3612. 

Taking into account of Table 5, an increase in the member number is resulted with the success of

GPCN2 and GPCN4 for the decreased population size. The increase in population size causes to a

decrease in mutation and crossover rates. Thus, lower spread and average distance values (0.046-

0.040-0.041) and (0.4363-0.3701-0.3801) and higher hyper-volume values (0.3427-0.4280-0.3712)

for three geometrical configurations 1-3. It is clear that geometrical configuration included diagonal

members achieves to obtain the lowest spread and average values 0.40 and 0.3701 and highest

hyper-volume value 0.4280. 

The execution the proposed design approach for varying topology (ParLDN= varying,

Fig. 4 Kruskal-wallis test results for spread values for sphere-shaped geometrical configuration1 with
GPCN1-GPCN8 for fixed topology (see Table 4 and Post-hoc Test named “multicompare” in
MATLAB’ help) 
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ParLDN= varying) is resulted with similar results obtained by use of ParLDN= ParLDN= 2,

ParLDN= ParLDN= 5 (see Table 6). Considering Table 6, the contribution of GPCN2 and GPCN4

along with decreased population size to the genetic search is higher than the other GPCN’s due to

lower spread and average distance values (0.041-0.036-0.038) and (0.3864-0.3580-0.3711) and

higher hyper-volume values (0.3496-0.4500-0.4264). However, the success of GPCN8 is highest for

increased population size due to lowest spread and average distance values (0.0330 and 0.3390) and

highest hyper-volume value 0.5059. 

Fig. 5 Pareto fronts and random solutions sphere-shaped geometrical configurations with fixed topology-
related design variables ParLDN=2& ParHDN=2 (a1-a3) and ParLDN=5& ParHDN=5 (b1-b3)
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6.2 Evaluation of relation between conflicted objective functions

In order to indicate the load-carrying capacity of dome structure, its member forces are utilized.

Considering the literature for similar studies, usage of member forces as an indicator for load-

carrying capacity of dome structure is firstly attempted in this study. In this regard, the relation

between conflicted three objective functions, entire weight, node displacements and member forces

is laid down. The forms of the pareto fronts obtained by use of three size and topology-related

design variables (ParLDN= ParLDN= 2, ParLDN= ParLDN= 5 and ParLDN= varying,ParLDN= varying)

are presented for each of three geometrical configurations (see red lines located on top of Figs. 5-6).

In order to clarify the load-carrying capacity of dome structure obtained by use of different

geometrical configurations, an external joint load taken as 1000 kN is also presented by a red

surface. If the maximum member forces corresponding to a designation that satisfies the design

constraints based on provisions of API RP2A-LRFD are higher than the external joint load value,

then the corresponding maximum member force is utilized to indicate the load-carrying capacity of

dome structure. In general, the load-carrying capacity of dome structures corresponding to random

solutions obtained is higher than external joint load value (see Figs. 5-6). Furthermore, some

extreme designations chosen from random solutions presented in Figs. 5-6 are both visualized for

Fig. 6 Pareto fronts and random solutions sphere-shaped geometrical configurations with varying topology-
related design variables
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Fig. 7 Member-node numbers (a1-a2) and maximum unity values for designation obtained by use of sphere-
shaped geometrical configuration 2 with fixed topology-related design variables ParLDN=2&
ParHDN=2 and GPCN6 (corresponding to minimum weight (b1-b5), maximum displacement (c1-c5)
and maximum force (d1-d5))
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Fig. 8 Member-node numbers (a1-a2) and maximum unity values for designation obtained by use of sphere-
shaped geometrical configuration 2 with fixed topology-related design variables ParLDN=5&
ParHDN=5 and GPCN8 (corresponding to minimum weight (b1-b5), maximum displacement (c1-c5)
and maximum force (d1-d5))
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their design constraints at each load steps (see Figs. 7-9) and tabulated to report their objective

function values along with design variables (see Tables 7-9).

Considering Tables 7-9, it is obvious that a decrease in the topology related design variables leads

Fig. 9 Maximum unity values for designation obtained by use of sphere-shaped geometrical configuration 2
with varying topology-related design variables (corresponding to minimum weight (b1-b5), maximum
displacement (c1-c5) and maximum force (d1-d5)) 
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to a reduce in the entire weight of dome structure to its lowest value 6.3865 kN (see Table 7). But,

it is also noted that the weight reduction causes to decrease in load-carrying capacity of dome

structure. However, when the designation corresponding to the lowest entire weight value 6.3865 kN

is considered, it is seen that the load-carrying capacity, 1304.2828 kN is the lowest compared to the

other extreme designations’ (see Tables 7-9). 

It is clear that an increase in the entire weight of dome structure leads to an elevation in values of

its node displacement and load-carrying capacity of its members. Because, the load step numbers

that determine load-displacement increments in the nonlinear structural analyses are increased.

Table 7 Values of size, shape-related design variable corresponding to designations with minimum weight,
maximum displacement and maximum force obtained by use sphere-shaped geometrical configuration2
and GPCN6 (for Topology-related Design Variable, ParLDN=2, ParHDN=2)

Topology-related Design Variables

ParLDN ParHDN

Designation1 Corresponding 
to Minimum Weight

2 2

Designation2 Corresponding 
to Maximum Displacement

2 2

Designation3 Corresponding 
to Maximum Force

2 2

Size-related Design Variables

1 2 3 4 5 6 7 8 9 10 11 12 13

Designation1 Corresponding 
to Minimum Weight

P
IP
E
S
T
2
5

P
IP
S
T
1
9

P
IP
E
S
T
1
3

P
IP
S
T
1
9

Designation2 Corresponding 
to Maximum Displacement

P
IP
S
T
8
9

P
IP
E
S
T
1
9

P
IP
E
S
T
1
3

P
IP
D
E
S
T
1
2
7

Designation3 Corresponding 
to Maximum Force

P
IP
E
S
T
1
9

P
IP
D
E
S
T
1
5
2

P
IP
D
E
S
T
5
1

P
IP
D
E
S
T
5
1

Entire Weight 
(kN)

Elem. Force
 (kN)

Node Disp. 
(mm)

Maximum Load Step

Designation1 Corresponding 
to Minimum Weight

6.3865 1304.2828 1.2521 3

Designation2 Corresponding 
to Maximum Displacement

76.7392 198652.1573 25.1757 5

Designation3 Corresponding 
to Maximum Force

72.3115 653761.0440 15.0639 6
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However, this fact is conflicted with the tabulated results of extreme optimal designations in Table 7.

Considering Table 7, an increase in entire weight of dome structure from 72.3115 kN to 76.7392 kN

causes a decrease in load-carrying capacity from 653761.0440 kN to 198652.1573 kN, but an

increase in the node displacement values from 15.0639 mm to 25.1757 mm. Similarly, an increase

in entire weight from 357.1588 kN and 294.8972 kN to 436.0169 kN and 350.1250 kN causes a

decrease in node displacement value from 27.9652 mm and 27.5528 mm to 13.4257 mm and

19.7811 mm. Therefore, solely usage of a single objective function (for example entire weight of

Table 8 Values of size, shape-related design variable corresponding to designations with minimum weight,
maximum displacement and maximum force obtained by use sphere-shaped geometrical
configuration2 and GPCN8 (for Topology-related Design Variable, ParLDN=5, ParHDN=5) 

Topology-related Design Variables

ParLDN ParHDN

Designation1 Corresponding to 
Minimum Weight

5 5

Designation2 Corresponding to 
Maximum Displacement

5 5

Designation3 Corresponding to 
Maximum Force

5 5

Size-related Design Variables

1 2 3 4 5 6 7 8 9 10 11 12 13

Designation1 Corresponding to 
Minimum Weight

P
IP
S
T
8
9

P
IP
E
S
T
3
8

P
IP
S
T
1
9

P
IP
E
S
T
3
8

P
IP
S
T
3
2

P
IP
E
S
T
6
4

P
IP
S
T
3
2

P
IP
E
S
T
3
8

P
IP
S
T
1
2
7

P
IP
E
S
T
1
9

P
IP
E
S
T
2
5

P
IP
D
E
S
T
5
1

P
IP
E
S
T
7
6

Designation2 Corresponding to 
Maximum Displacement

P
IP
E
S
T
3
0
5

P
IP
E
S
T
1
9

P
IP
S
T
1
0
2

P
IP
D
E
S
T
1
2
7

P
IP
D
E
S
T
7
6

P
IP
E
S
T
2
5
4

P
IP
E
S
T
2
5
4

P
IP
E
S
T
3
0
5

P
IP
E
S
T
1
3

P
IP
D
E
S
T
5
1

P
IP
E
S
T
5
1

P
IP
S
T
2
5

P
IP
S
T
2
5

Designation3 Corresponding to 
Maximum Force

P
IP
S
T
2
0
3

P
IP
E
S
T
3
2

P
IP
S
T
3
2

P
IP
E
S
T
2
5

P
IP
D
E
S
T
2
0
3

P
IP
E
S
T
3
0
5

P
IP
D
E
S
T
1
5
2

P
IP
S
T
8
9

P
IP
S
T
3
2

P
IP
S
T
7
6

P
IP
D
E
S
T
1
0
2

P
IP
S
T
3
0
5

P
IP
E
S
T
2
0
3

Entire Weight 
(kN)

Elem. Force 
(kN)

Node Disp. 
(mm)

Maximum Load Step

Designation1 Corresponding to 
Minimum Weight

73.4320 1585.2410 0.4129 4

Designation2 Corresponding to 
Maximum Displacement

357.1588 38846.2703 27.9652 6

Designation3 Corresponding to 
Maximum Force

436.0169 476752.6054 13.4257 6
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dome structure) for design optimization of geometrically nonlinear dome structure is not appropriate

for accurately assessment of an optimal design. In this regard, the usage of multi-objective

optimization approach increases the correctness degree in the assessment of optimality quality. 

7. Conclusions

In this study, the size and topology of dome structures, geometrical configurations of which are

automatically generated, is optimized by use of an optimization tool named NSGA II coded in

Table 9 Values of size, shape-related design variable corresponding to designations with minimum weight,
maximum displacement and maximum force obtained by use sphere-shaped geometrical
configuration2 and GPCN8 (for Varying Topology-related Design Variable)

Topology-related Design Variables

ParLDN ParHDN

Designation1 Corresponding to 
Minimum Weight

2 2

Designation2 Corresponding to 
Maximum Displacement

3 3

Designation3 Corresponding to 
Maximum Force

2 5

Size-related Design Variables

1 2 3 4 5 6 7 8 9 10 11 12 13

Designation1 Corresponding to 
Minimum Weight

P
IP
E
S
T
1
9

P
IP
E
S
T
3
2

P
IP
S
T
5
1

P
IP
S
T
3
2

Designation2 Corresponding to 
Maximum Displacement

P
IP
E
S
T
1
5
2

P
IP
D
E
S
T
7
6

P
IP
D
E
S
T
1
0
2

P
IP
D
E
S
T
6
4

P
IP
S
T
3
8

P
IP
D
E
S
T
1
5
2

P
IP
E
S
T
3
0
5

Designation3 Corresponding to 
Maximum Force

P
IP
D
E
S
T
7
6

P
IP
D
E
S
T
1
5
2

P
IP
D
E
S
T
6
4

P
IP
E
S
T
3
0
5

Entire Weight 
(kN)

Elem. Force (kN) Node Disp. (mm) Maximum Load Step

Designation1 Corresponding to 
Minimum Weight

11.4337 6556.0100 2.0420 4

Designation2 Corresponding to 
Maximum Displacement

294.8972 350569.0328 27.5528 6

Designation3 Corresponding to 
Maximum Force

350.1250 1562597.4696 19.7811 7
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MATLAB. Three objective function values are computed in case of termination during executing

computing procedure of nonlinear structural analysis method once the member strengths or node

displacements does not satisfy the design requirements of API RP2A-LRFD. Therefore, it does not

require any penalization process. For this purpose, three distinct sphere-shaped geometrical

configurations that are generated by an automatic dome generator tool are employed. Total eight

genetic operator parameter sets are utilized in order to determine the most appropriate parameter set

leading to an increase in the computing performance of NSGA II algorithm.

The proposed optimization procedure is performed to optimize the design of a dome structure. It

is demonstrated that the optimality quality of designations are increased when the dome structure is

designed thereby utilizing longitudinal, horizontal and diagonal members along with a genetic

operator parameter set with lower crossover and mutation rates. Furthermore, it is also shown that

the usage of multiple objectives at same time increases the accuracy in the evaluation of optimality

degree of designations. 

Consequently, the proposed design optimization approach is recommended to optimize the design

of geometrically nonlinear dome structures. As a next study, the shape of dome structure will be

also included into the size and topology optimization procedure. Also, different multi-objective

optimization algorithms will be proposed to compare their computing performance with NSGA II

algorithm. 
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Appendix

Member strength related design requirements based on provisions of API RP2A-LRFD

specification

(See Section D, named Cylindrical Member Design, in API RP2A-LRFD Specification)
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(34)

Nonations

Member-related Design Constraints 
fc : Axial Compressive Stress due to Factored Loads
Fbn : Nominal Bending Strength
ft : Axial Tensile Stress due to Factored Loads
fb : Bending Strength due to factored Loads
Fy : Nominal Yield Strength 
S : Elastic Section Modulus
Φcn : Nominal Axial Compressive Strength
Φb : Resistance Factor for Bending Strength (0.95)
Φt : Resistance Factor for Axial Tensile Strength (0.95)
Z : Plastic Section Modulus
Φc : Resistance Factor for Axial Compressive Strength (0.85)
fv : Maximum Shear Stress due to Factored Loads
λ : Column Slenderness Parameter
V : Beam Shear due to Factored Loads
E : Young’s Modulus of Elasticity
A : Cross-sectional Area
K : Effective Length Factor
Φv : Resistance Factor for Beam Shear Strength (0.95)
L : Unbraced Length
fv : Maximum Shear Stress due to Factored Loads
r : Radius of Gyration
Mvt : Torsional Moment due to Factored Loads
Fxe : Nominal Elastic Local Buckling Strength
Ip : Polar Moment of Inertia
Fxc : Nominal In-elastic Local Buckling Strength
Fey : Euler Buckling Strengths Corresponding to Element y Axes
Cx : Critical Elastic Buckling Coefficient
Fez : Euler Buckling Strengths Corresponding to Element z Axes
D : Outside Diameter
λy : Column Slenderness Parameter for Element y Axes
t : Wall Thickness
λz : Column Slenderness Parameter for Element z Axes
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