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Abstract. This paper presents a spatial catenary cable element for the nonlinear analysis of cable-
supported structures. An incremental-iterative solution based on the Newton-Raphson method is adopted
for solving the equilibrium equation. As a result, the element stiffness matrix and nodal forces are
determined, wherein the effect of self-weight and pretension are taken into account. In the case of the
initial cable tension is given, an algorithm for form-finding of cable-supported structures is proposed to
determine precisely the unstressed length of the cables. Several classical numerical examples are solved
and compared with the other available numerical methods or experiment tests showing the accuracy and
efficiency of the present elements.
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1. Introduction

Due to the importance of aesthetic appearance, efficient utilization of structural materials cables is

widely used in engineering structures such as cable-supported bridges, cable roofs, guyed, towers/

masts and so on. Normally, the cable structures are highly flexible, they can undergo large

deformation; hence geometric nonlinear effects should be taken account in the equilibrium

equations. Recently, most of methods for analysis of realistic cable-supported structures are based

on nite element methods, and can be grouped into two broad categories as follows: (i) the finite

element approach (ii) the analytical approach. In the first approach, polynomials are employed to

describe the shape and displacement field. Three different elements are developed based on this

framework: straight bar elements, multi-node curved isoparametric bar elements, and curved

elements with rotational degrees of freedom. The straight bar elements are commonly used in

modeling the cables, which were adopted by several researchers (e.g., see Argyris and Scharpf

1972, Gambhir and Batchelor 1979, Ozdemir 1979). The sag effect of the cable can be considered

by using equivalent stiffness (Ernst 1965), which is a function of the cable force, the self-weight of
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the cable, the length of the element and the axial stiffness of a straight cable. Since possessing only

axial stiffness, these elements, on the one hand, are suitable for the representation of highly

pretension cables; on the other hand, they are used when the cable lengths are sufficiently small. In

case of slack cables with large curvature, a large number of bar elements are employed to represent

the cable geometry. However, this strategy is inefficient because the number of degrees of freedom

drastically increases. Due to the straight element assumption, one drawback can be encountered is

the spurious slope discontinuities appearing at nodes where no concentrated loads act, and thus it

may lead to numerical convergence problems. Instead of using many bar elements with linear

interpolation functions one may use fewer multi-node curved isoparametric elements with higher

order polynomials for the shape and displacements of the elements (Coyette and Guisset 1988, Ali

and Abdel-Ghaffar 1995, Chen et al. 2010, Liu and Chen 2012). The tangent stiffness matrix and

equivalent nodal forces are expressed in term of the isoparametric formulation and must be found

by numerical integration. Accordingly, it will have a potential problem of convergence in the

iteration course. Among those elements, the three- and four-node elements, which use parabolic and

cubic interpolation functions, respectively, are commonly employed; hence, the out-of-plane

response of the cable can be captured. Nevertheless, these curved elements give accurate results for

cables with small sag, and only the displacement continuity is ensured between element nodes. The

continuity of the slopes can be enforced by taking account of rotational degrees of freedom to the

cable nodes. Such an element was developed by Gambhir and Batchelor (1977). The displacement

field and shape are approximated by cubic polynomials, and the continuity at the cable nodes is

enforced by using tangential and normal displacement components, rotation and curvature. Using

the curved element can avoid the enforced continuity of higher order derivatives of the comparison

functions (e.g., change in curvature). In case of slack cables with large curvature, a large number of

elements are needed to adequately model the cable, but in the contrary to the other elements as

presented above, no slope discontinuities are appeared. Since rotational degrees of freedom are

included in the elements, the total number of degrees of freedom is, thus increased.

The second approach is based on analytical formulae to take into account the effect of uniformly

distributed force applied along the length of the cable. Two elements, each associated with a certain

type of uniformly distributed loading, have used in practice; these are parabolic, elastic catenary

element. In a parabolic element, the loading is uniformly distributed along the cable chord. In this

case, the geometry of a catenary has been approached by means of the second degree polynomials.

Several researchers, such as Cohen and Perrin (1957), Poskitt and Livesley (1963), Mollmann

(1970) have developed cable structures analysis techniques based on this approach. In general, the

geometry of a parabola is an acceptable approximation of that of a catenary cable, but errors may

be existed because of a discrepancy in geometry. The fundamental formulation of the elastic

catenary element based on the analytical solutions was proposed by O’Brien and Francis (1964).

The first element was presented by Peyrot and Goulois (1979), wherein the tangent stiffness matrix

is obtained by taking the inverse of the flexibility matrix. The formulation, however, seems less

accurate caused by the neglect of the out-of-plane stiffness. Subsequently, Jayaraman and Knudson

(1981) improved the formulation by including such out-of-plane tangent stiffness, which is carried

out by the coordinate transformation techniques. Many researchers, such as Wang et al. (2003),

Andreu et al. (2006), Yang and Tsay (2007), Such et al. (2009) have employed the catenary element

for analysis the cable-supported structures. The main advantage by using the catenary elements lies

in the fact that only one element is needed to model the static behavior of both slack and taut cables

subjected to uniformly distributed loads with a high degree of accuracy, and no discontinuities occur
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at the element boundaries. It is worth noting that the consistent mass matrices are not available for

the catenary elements, the analysis of the cable-supported structures under dynamic loads is thus

required a refined technique to obtain more accurate results (Tibert 1998, Karoumi 1999).

Nevertheless, this subject is beyond the scope of the present research work and is not addressed in

this paper.

In this paper, a spatial catenary cable element is developed for the geometrical nonlinear analysis

of cable-supported structures. The equilibrium equations of the proposed element are expressed in

the final deformed configuration of the cable, the accurate treatment of the equilibrium is thus

assured. It should be pointed that both in-of-plane and out-of-plane tangent stiffness matrices of the

element are derived directly from a set of analytical expressions. An incremental-iterative solution

based on the Newton-Raphson method is adopted for solving the implicit relationships between the

nodal forces and displacements. In addition, a form-finding algorithm for nonlinear analysis of the

cable unstressed length in case of given pre-tension force is presented. The accuracy and the

efficiency of the proposed element are first validated through three benchmark numerical examples

in comparison with other cable elements. Furthermore, to demonstrate the reliability of the proposed

spatial catenary cable element, another engineering application in the framework of aerodynamic

instability analysis for a long span bridge under an approaching crosswind is also shown. 

 The layout of the paper is as follows. The following section describes the derivation of the

stiffness matrix and nodal forces for the spatial two-node catenary cable element. The aeroelastic

flutter analysis of the long-span bridges is briefly introduced in section 3. Numerical comparative

studies are presented in detail in Section 4, while the engineering application of the proposed cable

element is discussed in Section 5. Finally, some concluding remarks are drawn from this work.

2. Formulation of spatial catenary cable element

2.1 Basic assumptions

The catenary cable element to be presented in this paper is derived based on the differential

equations for a cable which is perfectly flexible with the self-weight distributed along its length and

with the cross sectional area of the cable remaining constant. The element can be used for any sag-

to-span ratio and both very slack and taut cables can be analyzed. The present formulation is based

on the following basic assumptions:

(i) Only small deformation, but large displacement is considered.

(ii) Behavior of the cable is assumed linear-elastic constitutive

(iii) The cable is only subjected to its own weight, and conservation of the mass of the cable

during the deformation process is assumed

(iv) Only the axial strain of the cable is considered, and its bending stiffness is neglected.

 

2.2 Equations of the spatial catenary cable element

 

Fig. 1 shows the elastic cable suspended between two nodes of I and J that have the Cartesian

coordinates of  and , respectively; the Lagragian coordinates for the undeformed

and deformed configurations are s and p, respectively. With reference to the free body diagram in

Fig. 1, the horizontal, lateral and vertical equilibrium conditions of the cable are

0 0 0, ,( ) Lx Ly Lz, ,( )
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 (1a)

(1b)

(1c)

where  and F3 are the horizontal, lateral and vertical components of the cable tension in the

x-, y- and z-axis, respectively; and ϑ indicates the self-weight of the cable. From the equilibrium

equations in Eq. (1), the cable tension T can be solved in terms of the Lagrangian coordinate, s as

(2)

by noting that . Assuming that Hooke’s law is applicable to the cable material,

the constitutive relation of cable tension T and relative strain ε is, 

(3)

 

where E and A are the elastic modulus and cross-sectional area of the cable, respectively. The

Lagrangian coordinate is related to the Cartesian coordinate as follows

 (4a)

 (4b)

 (4c)
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Fig. 1 Spatial catenary cable element
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and the boundary conditions at the catenary cable ends are 

 (5a)

(5b)

Substituting Eqs. (1)-(3) into Eq. (4) and imposing the boundary conditions in Eq. (5), and noting

that a logarithmic representation is used for convenience as follows

(6)

 

After some algebraic manipulations, the horizontal, lateral and vertical projection lengths

 of the cable can be obtained.

 (7a)

(7b)

 (7c)

where Lu is unstressed length of the cable. The total length of the deformed catenary cable is given

by the sum of the unstressed length Lu and the total elongation ∆L

(8)

 

Using the relation in Eq. (2), also applying the boundary conditions in Eq. (5) and using the

logarithmic representation Eq. (6), then after manipulating we obtain the expression for the total

length of the cable

(9)

The cable tension at nodes I and J is defined as

(10a)

(10b)

wherein the nodal forces at node J are  and F6, they can be obtained from static equilibrium

equations
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(11a)

(11b)

(11c)

It can be seen that the total length L and projection lengths  are also functions of the

horizontal, lateral and vertical tension components, respectively i.e., 

,  and . By differentiating both sides of Eq.

(7) and using Eq. (6) then rewriting the results using matrix notation, the total differentials of the

projection lengths can be expressed as 

(12)

wherein the coefficients fij in the flexibility matrix [F] are given as follows 

(13)

 

, , (14a, 14b, 14c)

(15)

   , (16a, 16b, 16c, 16d)

The tangent local stiffness matrix  of a cable relates to the small changes in the end forces

due to small end displacements, or

(17)
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Once the tangent stiffness matrix and end forces vector are obtained, the cable length is estimated

as (O’Brien and Francis 1964)

, with (19a, 19b)

2.3 Algorithm for computing the stiffness matrix element and end forces

The tangent stiffness element and nodal forces of the spatial catenary cable element are calculated

using an iteration method. Based on the catenary relationships, the following expressions will be

used for evaluating the initial values of the end forces  (Jayaraman and Knudson 1981)

(20a)

(20b)

(20c)

where  and  are initial projection lengths of the cable element, while a constant of λ0 is

estimated as follows. A value of 0.2 is assumed for λ0 when the unstressed length Lu of the cable is

shorter than the chord length, i.e., , while an arbitrarily large value of 106 is

adopted for λ0 in the case of a vertical hanger, i.e., ; for other cases, the following is

adopted (Peyrot and Goulois 1978)

(21)

The tangent stiffness matrix and nodal force of the cable element are obtained by performing the

iteration procedure briefly described as follows

- Step-1: Input , and the global coordinates  and 

- Step-2: Calculate 

- Step-3: Initialize end forces  using Eq. (20)

- Step-4: Calculate projection lengths  using Eq. (7)

- Step-5: Calculate the differences between the initial and computed projection lengths

 

 
- Step-6: If  is smaller than preset tolerance, calculate the element stiffness matrix 

using Eq. (17) and nodal forces  using Eq. (18). Otherwise go to Step-7

- Step-7: Calculate the difference of nodal forces, 
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(22)

 

This equation can be written as 

(23)

From Eq. (19) and Eq. (23), the relationship between the unstressed length and tension force is as

follows 

(24)

 

In order to start the iteration one could use any good predict for initial value of Lu. However, the

expression for unstressed length may be used (Karoumi 1999).

(25)

 

The iteration procedure for estimating the unstressed cable length is briefly summarized in the

following steps

- Step-1: Input , and the global coordinates  and 

- Step-2: Calculate 
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- Step-4: Initialize end forces  using Eq. (20)
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 and 

 
- Step-6: If  and  are larger than the preset tolerance go to Step-7. Otherwise, calculate

the total cable length L using Eq. (19), and the unstressed length Lu using Eq. (9), namely

 

(26)

 
- Step-7: Calculate the differences of nodal forces, 

- Step-8: Update the end forces 

- Step-9: Update the unstressed length Lu as follows

 

 (27a, 27b)

 

and then go to Step-4.

 

3. Aerodynamic instability analysis of the long-span bridges
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smooth wind flow and the bridge, that include the lift force Lae, drag force Dae and pitching moment

Mae can be expressed as a linear combination of nodal displacement and velocity, and the entire

complement of 18 flutter derivatives are given as Sarkar et al. (1994), Jain et al. (1996) 

(28a)

(28b)

(28c)

 

where  are the non-dimensional flutter derivatives which are dependent upon the

reduced frequency, , ρ is the air mass density, U is the wind velocity, B = 2b is the
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displacement, respectively, and the dot indicates differentiation with respect to time. The motion-

dependent aeroelastic forces and the heave, sway and torsional deformations are shown in their

positive directions in Fig. 2. 

Eq. (28) represents the real-number expressions for the aeroelastic forces. In complex notation, the

corresponding expressions of the self-excited forces are (Starossek 1998, Ding et al. 2002) 
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Fig. 2 Sign convention of aerodynamic forces and deformations for a bridge deck
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be found as 

(30a)

(30b)

(30c)

 

Although the two forms of self-excited forces are equivalent, it can be seen that the complex

equations are more compact when comparing the real-notation force expressions (28) with the

equivalent complex expressions (29). Obviously, the complex coefficients represent naturally the

phasing between the displacements and displacement-induced aerodynamic forces. Meanwhile, the

velocity terms  and  with the corresponding coefficients are included to properly account for

phasing in real notation. 

By considering the effects of inertia forces, damping forces, elastic forces and self-excited wind

forces, the equations of equilibrium for the bridge can be written as

(31)

 

Eq. (31) represents the mathematical model of the structural system under the effect of wind load,

wherein  are the structural mass, damping and stiffness matrices, respectively, and

 denote the structural displacement, velocity and acceleration vectors, respectively.

 is a so-called aerodynamic matrix, of which the elements are derived by Vu (2010).

For a linear elastic structure, wherein the structure system is a very large value of degrees- of-

freedoms, the commonly used modal superposition technique is employed to solve the equation of

motion by using the first m-structural natural modes (m << n). Accordingly, the response in the

displacement vector  can be approximated by 

(32)

where  is the matrix of size  consisting of the mass-normalized mode shapes of selected

m participating modes, and  denotes the mth-order vector of the generalized modal

coordinate. Substituting Eq. (32) into Eq. (31), pre-multiplying , and then applying the

orthogonal condition gives the representing modal-motion equations as 

(33)

 

where  represents the generalized Rayleigh

damping matrix,  denotes the diagonal matrix of

eigenvalues, and  indicates a generalized aerodynamic matrix. 

Let the solution to Eq. (33) have the form , then the analysis of complex

eigenvalues and eigenvectors of the system is converted into the following generalized eigenvalue

problem (GEP) with 2m-eigenvalues and eigenvectors, namely 
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(34)

where 

      (35a, 35b, 35c)

in which  and  are the  identity and null matrix, respectively. 

Eq. (34) depends on the reduced frequency, K and vibration frequency, ω. With this equation, a

complex eigenvalue analysis process can be employed to determine the eigenvalues of the structural

system as follows. When K is fixed, solving Eq. (34) yields conjugate pairs of complex eigenvalues,

 and the conjugate pairs of complex eigenvectors,  are

obtained. 

In the border case of onset flutter instability, the corresponding imaginary part of the complex

eigenvalue ηf has a zero real part, and a positive imaginary part. Hence, K must be fixed repeatedly

until this condition is met. The critical wind speed, , wherein ωf is the flutter frequency.

For the purpose of practical flutter prediction, the lowest possible wind speed resulting in the

aeroelastic instability is most important and of concern. The algorithmic implementation for the full

order analysis is summarized in the following steps (Vu et al. 2011):

(1) Compute the reduced frequency,  from within the range of  and a reduced

frequency increment ∆K: 
(2) Compute the flutter derivatives  by the B-Spline interpolation

technique, then construct the aerodynamic matrix, 

(3) Compute  from solving the GEP defined by Eq. (34);

(4) Loop over the rth complex modes 

 If  or , with  then, 

  - Compute the reduced frequency, , and compute  using the linear interpolation

technique. 

, (36a, 36b)

  - Compute .

(5) Set : 

  If , go to Step (6), otherwise repeat Step (1) to Step (4) 

(6) Compute the lowest onset flutter for each complex mode rth:  and

 with .

(7) Compute the lowest critical speed flutter;  and the flutter frequency

 for all complex modes.

4. Numerical validations

In order to demonstrate the reliability and utility of the spatial catenary cable element presented
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here, three simple problems have been chosen and the results are compared with those obtained by

using other elements quoted in the literature. The well known Newton-Raphson method is employed

for solving the nonlinear static analysis. The spatial catenary cable element with proposed

algorithms has been incorporated in a FORTRAN program.

4.1 A single cable under a concentrated load 

The isolated cable under self-weight and concentrated load shown in Fig. 3 is examined. The

displacements of the load point are calculated. The cable is modeled by two catenary cable

elements. This problem was first considered by Michalos and Birnstiel (1960), and later analyzed by

O’Brien and Francis (1964), Jayaraman and Knudson (1981), Tibert (1998), Andreu et al. (2006),

Yang and Tsay (2007). The data for this structure are presented in Table 1.

The results from the computations are shown in Table 2 together with the results obtained by

other researchers. It can be clearly seen that the results obtained by the current cable element agree

well with those predicted by other authors. It should be noted that elastic catenary type elements

can achieve the same level of accuracy as that of the straight bar type element by using less

elements. 

Fig. 3 A single cable under a concentrated load

Table 1 Initial Isolated cable properties under self-weight and concentrated load

Description Magnitude

Cross-sectional area 5.484 cm2

Elastic modulus 13,100 KN/cm2

Self weight 46.120 N/m

Unstrained length
Segment 1-2 125.88 m

Segment 2-3 186.850 m
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Table 2 Displacement at load point for isolated cable

Investigator Element type
Displacements (m)

Vertical Horizontal

Saafan (1970) Elastic straight -5.472 -0.846

O'Brien and Francis (1964) Elastic catenary
-5.627

(-2.83%)a
-0.860
(-1.65%)

Michalos and Birnstiel (1962) Elastic straight
-5.472
(0.00%)

-0.845
(0.12%)

Jayaraman and Knudson 
(1981)

Elastic straight
-5.471
(0.02%)

-0.845
(0.12%)

Jayaraman and Knudson 
(1981)

Elastic catenary
-5.626
(-2.81%)

-0.859
(-1.54%)

Tibert (1998) Elastic catenary
-5.626
(-2.81%)

-0.859
(-1.54%)

Tibert (1998) Elastic parabola
-5.601
(-2.36%)

-0.866
(-2.36%)

Tibert (1998) Associated catenary
-5.656
(-3.36%)

-0.860
(-1.65%)

Andreu et al. (2006) Elastic catenary
-5.626
(-2.81%)

-0.860
(-1.65%)

Yang and Tsay (2007) Elastic catenary
-5.626
(-2.81%)

-0.859
(-1.54%)

Present Elastic catenary
-5.626
(-2.81%)

-0.859
(-1.54%)

aNumbers in parentheses are the percentage error with respect to Saafan (1970) values

Fig. 4 A pre-stressed plane cable net
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4.2 A pre-stressed cable net under vertical loads

The structure considered is the pre-stressed cable net shown in Fig. 4. This structure was first

studied by Saafan (1970) and subsequently considered by West and Kar (1973), Jayaraman and

Knudson (1981), Tibert (1998). Initial properties are given in Table 3. The vertical displacements of

cable net at load point for structure are compared in Table 4. A good agreement can be seen

between the displacements of the cable net predicted by the proposed program in this study and that

predicted by the other authors.

Table 4 Comparison of predict displacement of the cable net

Investigator Element type
Displacements of node 1 (mm)

x-dir y-dir z-dir

Saafan (1970) Elastic straight -40.36 -40.36 -448.27

West and Kar (1973) Elastic straight
-40.39

(-0.08%)b
-40.36
(0.00%)

-448.00
(0.06%)

Jayaraman and Knudson 
(1981)

Elastic straight
-39.62
(1.81%)

-40.20
(0.38%)

-446.32
(0.44%)

Jayaraman and Knudson 
(1981)

Elastic catenary
-40.29
(0.15%)

-40.29
(0.15%)

-448.27
(0.00%)

Tibert (1998) Elastic catenary
-40.48
(-0.30%)

-40.48
(-0.30%)

-450.01
(-0.39%)

Tibert (1998) Elastic parabola
-40.78
(-1.06%)

-40.78
(-1.06%)

-453.33
(-1.13%)

Tibert (1998) Associated catenary
-40.78
(-1.06%)

-40.78
(-1.06%)

-453.36
(-1.14%)

Present Elastic catenary
-40.47
(-0.29%)

-40.47
(-0.29%)

-449.42
(-0.26%)

bNumbers in parentheses are the percentage error with respect to Saafan (1970) values

Table 3 Initial properties of the cable net

Description Magnitude

Cross-sectional area 146.45 mm2

Elastic modulus 82,737 MPA

Self weight 1.459 N/m

Prestressing force
Horizontal members 24.283 KN

Inclined members 23.687 KN

Load acting vertically downward at all internal nodes 35.586 KN



Nonlinear analysis of cable-supported structures with a spatial catenary cable element 597

Fig. 5 Hyperbolic parabolid net

Table 5 Comparison of predict vertical displacement (mm) of the hypar net

Node
Experiment
Lewis et al. 

(1984)

Rigidity matrix
Krishna 
(1978)

Minimum energy
Sufian and 

Templeman (1992)

Approximation
by series

Kwan (1998)

Andreu et al.
(2006)

Present
method

5 19.50
19.60

(-0.51%)c
19.30
(1.03%)

19.52
(-0.10%)

19.51
(-0.05%)

19.38
(0.63%)

6 25.30
25.90

(-2.37%)
25.50

(-0.79%)
25.35

(-0.20%)
25.65

(-1.38%)
25.39

(-0.36%)

7 22.80
23.70

(-3.95%)
23.10

(-1.32%)
23.31

(-2.24%)
23.37

(-2.50%)
23.09

(-1.27%)

10 25.40
25.30
(0.39%)

25.80
(-1.57%)

25.86
(-1.81%)

25.87
(-1.85%)

25.65
(-1.00%)

11 33.60
33.00
(1.79%)

34.00
(-1.19%)

34.05
(-1.34%)

34.14
(-1.61%)

33.72
(-0.36%)

12 28.80
28.20
(2.08%)

29.40
(-2.08%)

29.49
(-2.40%)

29.65
(-2.95%)

29.25
(-1.57%)

15 25.20
25.80

(-2.38%)
25.70

(-1.98%)
25.79

(-2.34%)
25.86

(-2.62%)
25.41

(-0.84%)

16 30.60
31.30

(-2.29%)
31.20

(-1.96%)
31.31

(-2.32%)
31.47

(-2.84%)
30.74

(-0.45%)

17 21.00
21.40

(-1.90%)
21.10

(-0.48%)
21.42

(-2.00%)
21.57

(-2.71%)
21.01

(-0.07%)

20 21.00
22.00

(-4.76%)
21.10

(-0.48%)
21.48

(-2.29%)
21.62

(-2.95%)
20.61
(1.87%)

21 19.80
21.10

(-6.57%)
19.90

(-0.51%)
20.00

(-1.01%)
20.15

(-1.77%)
18.88
(4.67%)

22 14.20
15.70

(-10.56%)
14.30

(-0.70%)
14.40

(-1.41%)
14.55

(-2.46%)
13.54
(4.62%)

cNumbers in parentheses are the percentage error with respect to experiment values 
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4.3 A hypar net under some vertical loads

The hypar net is generated by two sets of straight line cables as shown in Fig. 5. The model of

the hyperbolic paraboloid surface was first investigated by Lewis et al. (1984) and then numerically

analyzed by Sufian and Tempelman (1992). This cable network consists of 31 cable segments

subjected to a concentrated load of 0.0157 KN at all internal nodes, except nodes 17, 21 and 22.

The cross-section area and elastic modulus are 124.8 KN/mm2 and 0.785 mm2, respectively. The

cable segments are pre-tensioned to carry 200.0 N prior to the application of external load. 

Table 5 shows a comparison of the vertical displacements obtained by the present work with those

predicted by the other authors using different numerical methods. It can be seen that the proposed

element can accurately predict the behavior of the cable with the maximum difference of 4.67%.

5. An engineering application for aerodynamic instability analysis of cable-stayed

bridge

In this section, the present spatial cable element is applied to the aerodynamic instability analysis

of the New Millennium Bridge, an asymmetric cable-stayed bridge in the south-western region of

Korea with a main span of 510.0 m (Fig. 6). The wind-tunnel tests of the section model and full

Fig. 6 Finite element model of the New Millennium bridge for flutter analysis

Fig. 7 Cross-section of deck of the New Millennium bridge



Nonlinear analysis of cable-supported structures with a spatial catenary cable element 599

bridge model have been conducted by the Daewoo Institute of Construction Technology (DICT). A

distinct feature of the bridge is it’s high (195.0 m) and low (135.0 m) pylons with two bundle cables

in the rear span (Kim et al. 2010). A constant modal damping ratio of critical ζ = 0.34% is

suggested for the section model tests. Fig. 7 shows that the bridge section has a streamlined steel

box with a 16.1 m width and a 2.6 m height. 

The wind tunnel tests were performed on a three degree-of-freedom elastically suspended section

model for extracting the experimental flutter derivatives,  and ; the results are

shown in Fig. 8. The structure is modeled by a three-dimensional framework with a total of 656

nodes, 772 elements (space beams, cables, and rigid links) and 279 nodal masses. 

To verify the reliability and utility of the propose method, the cable is modeled with two different

elements: truss element (called analysis I) and proposed spatial catenary cable element (called

analysis II). In the analysis I, the sagging of the inclined cables is to consider an equivalent straight

chord member with an equivalent modulus of the elasticity, as suggested by Ernst (1965). To do

vibration finite element and aerodynamic bridge analysis, consistent and lumped mass matrices of

individual elements for analysis I and analysis II, respectively, are employed. Numerical results
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Fig. 8 Experiment flutter derivatives for the New Millennium Bridge: (a) , (b) ,
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Fig. 9 Fundamental mode shapes of the New Millennium bridge
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derived from the MIDAS commercial software are used as reference solutions to assess the

agreement of the proposed codes.

From the free vibration analysis, some of the fundamental mode shapes of the cable-stayed bridge

are presented in Fig. 9. The natural frequencies and mode shapes for the first 30 modes are shown

in Table 6, and are essential for the analysis of the aerodynamic instability of the bridge under

laminate wind flow approaches. Table 6 also shows the discrepancy between the results of analysis I

and that of analysis II, which is less than 1.5%. It should be noted that both results are agreed well

with those given by the MIDAS commercial software.

Based on the multi-mode flutter algorithm using 18 flutter derivatives expressed in a complex

form as described in section 3, the coupled flutter problem of the New Millennium Bridge is

analyzed by performing a series of complex-eigen analyses, wherein the reduced frequency varies

from 0.20 to 1.07 while using a step of 2.5 × 10−3. According to the results, multiple intersection

points may occur, showing the theoretical instability at a certain reduction of frequency. 

The critical condition of flutter instability is that in which an eigenvalue that is characterized by

the real part passes to the zero point from the negative to the positive part, and the imaginary part

becomes the corresponding frequency. The critical wind velocity for flutter should be a minimum

value corresponding to its frequency. It is observed that two possible critical flutter states are found;

however, the onset flutter was estimated at  and .

In order to illustrate the pre-flutter and post-flutter behavior of the cantilevered structure, a

diagram illustrates the real part (logarithmic decrement σj) versus the imaginary part (oscillation

Uf2 82.11 m/s= ω f2 2.142 rad/s=

Fig. 9 Continued
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frequency ωj) corresponding to the range of the reduced frequency Kj as shown in Fig. 10 for the

case of the multi-mode flutter analysis, which is based on the first 30 modes of this structure. 

Table 7 shows a comparison of the flutter wind velocity and critical frequency predicted by both

analysis I, analysis II and the Ding et al., methods (2002) with those measured from the aeroelastic

Table 6 Comparison of natural frequencies and mode shapes of the New Millennium Bridge

Mode No.
Natural frequency ω (rad/s)

Mode shape
MIDAS Analysis I Analysis II Error ∆ω (%)

1 1.650 1.677 1.693 -0.96 L-S-1

2 1.968 1.975 1.981 -0.31 V-S-1

3 2.782 2.849 2.851 -0.07 HT-L-A-1*

4 2.845 2.876 2.869 0.27 V-A-1

5 3.723 3.728 3.723 0.13 V-S-2

6 4.105 4.181 4.175 0.14 L-A-1

7 4.468 4.664 4.649 0.31 LT-L-A-1*

8 4.651 4.790 4.775 0.31 V-A-2

9 5.434 5.458 5.430 0.51 V-A-3

10 5.735 5.929 5.848 1.36 LS-L-S-1*

11 6.041 6.060 6.041 0.31 V-S-3

12 6.987 6.963 6.944 0.28 V-A-4

13 7.112 7.071 7.011 0.85 T-S-1

14 7.184 7.184 7.184 0.00 V-A-5

15 7.506 7.388 7.357 0.42 T-S-2

16 7.512 7.499 7.470 0.39 V-A-6

17 8.299 8.080 8.047 0.41 V-S-4

18 8.563 8.551 8.552 -0.02 SS-V-S-1*

19 8.709 8.930 8.821 1.22 SS-L-S-1*

20 9.071 9.092 9.059 0.37 V-S-5

21 9.577 9.585 9.585 0.00 LS-V-S-1*

22 9.701 10.145 10.022 1.22 LS-L-A-2*

23 10.117 10.196 10.145 0.50 HT-L-A-2*

24 10.986 11.045 11.004 0.38 L-A-2*

25 11.016 11.348 11.296 0.46 V-A-7

26 11.206 11.670 11.648 0.19 HT-L-S-1*

27 12.983 12.776 12.685 0.72 T-A-1

28 13.246 13.172 13.090 0.62 T-A-2

29 13.475 13.448 13.397 0.38 V-S-6

30 14.571 14.102 14.052 0.36 V-A-8
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full model test for the bridge in service stage (Kim et al. 2010). The use of the multi-mode flutter

analysis procedure based on analysis II predicts the flutter speed of 82.11 m/s and critical frequency

of 2.142 rad/s, which are in good agreement with other methods and the value of the flutter speed is

also very close to the experimental result.

Fig. 10 Flutter eigenvalue evolution of the New Millennium Bridge
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6. Conclusions

In this article, a spatial catenary cable element has been presented for the analysis of cable-

supported and tension structures. The derivation is based on the exact analytical expressions of the

elastic catenary. The self weights of the cables are included accurately without any assumptions, and

the element stiffness matrix and the end forces are calculated based on the iteration procedures. The

prestress state in the cable element is also considered. Furthermore, an iterative algorithm for form-

finding of cables is proposed to determine their original lengths, which are definitely balanced in

the initial geometrical conditions as well as the pretensioned forces. Numerical comparisons with

results obtained by the other formulations of other cable elements or available experimental

evidences show the effectiveness and efficiency of the spatial catenary cable element.

References

Andreu, A., Gil, L. and Roca, P. (2006), “A new deformable catenary element for the analysis of cable net
structures”, Comput. Struct., 84 (29-30), 1882-1890. 

Ali, H. and Abdel-Ghaffar, A. (1995), “Modeling the nonlinear seismic behavior of cable- stayed bridges with
passive control bearings”, Comput. Struct., 54(3), 461-492.

Argyris, J. and Scharpf, D. (1972), “Large deflection analysis of prestressed networks”, J. Struct. Div., ASCE,
98(3), 633-654. 

Cohen, E. and Perrin, H. (1957), “Design of multi-level guyed towers: analysis”, J. Struct. Div., ASCE, 83,
1356.1.

Coyette, J. and Guisset, P. (1988), “Cable network analysis by a nonlinear programming technique”, Eng. Struct.,
10(1), 41-46. 

Chen, Z.H., Wu, Y.J., Yin, Y. and Shan, C. (2010), “Formulation and application of multi-node sliding cable
element for the analysis of Suspend-Dome structures”, Finite Elem. Anal. D., 46(9), 743-750.

Ding, Q.S., Chen, A.R. and Xiang, H.F. (2002), “Coupled flutter analysis of long-span bridges by multimode and
full-order approaches”, J. Wind Eng. Ind. Aerodyn., 90, 1981-1993. 

Table 7 Flutter analysis results by using contributed modes for the New Millennium Bridge

Reference Contributed modes
Error 

∆U (%)
Flutter velocity 

Uf (m/s)
Critical frequency 

ω (rad/s)

Analysis I

Fundamental modes (1,2,13) -3.11 81.46 2.125

Sysmetrical modes
(1,2,5,11,13,15,17,20,29)

-2.80 81.71 2.132

First 30 modes -2.82 81.70 2.131

Analysis II

Fundamental modes (1,2,13) -2.52 81.94 2.138

Sysmetrical modes
(1,2,5,11,13,15,17,20,29)

-2.28 82.13 2.142

First 30 modes -2.30 82.11 2.142

Ding et al. (2002) First 30 modes -7.29 78.29 2.042

Wind tunnel tests 
(Kim et al. 2010)

- - 84.00 -



Nonlinear analysis of cable-supported structures with a spatial catenary cable element 605

Ernst, H. (1965), “Der E-modul von seilen unter beruecksichtigung des durchhanges”, Der Bauingenieur, 40(2),
52-55. (in German)

Gambhir, M. and Batchelor, B. (1977), “A finite element for 3-D prestressed cable nets”, Int. J. Numer. Meth.
Eng., 11(11), 1699-1718.

Gambhir, M. and Batchelor, B. (1979), “Finite element study of the free vibration of a 3-D cable networks”, Int.
J. Solids Struct., 15(2), 127-136.

Jain, A., Jones, N.P. and Scanlan, R.H. (1996), “Coupled aeroelastic and aerodynamic response analysis of long-
span bridges”, J. Wind Eng. Ind. Aerod., 60, 69-80.

Jayaraman, H. and Knudson, W. (1981), “A curved element for the analysis of cable structures”, Comput. Struct.,
14(3-4), 325-333.

Karoumi, R. (1999), “Some modeling aspects in the nonlinear nite element analysis of cable supported bridges”,
Comput. Struct., 71, 397-412.

Kim, D.Y., Kim, H.Y., Kim, Y.H., Kwak, Y.H., Park, J.G. and Shin, S.H. (2010), “Wind engineering studies for
the New Millennium Bridge (1st Site)”, Technical Report, DAEWOO Institute of Construction Technology,
South Korea. 

Krishna, P. (1978), Cable-suspended Roofs, McGraw-Hill, New York. 
Kwan, A. (1998), “A new approach to geometric nonlinearity of cable structures”, Comput. Struct., 67(4), 243-252.
Lewis, W., Jones, M. and Rushton, K. (1984), “Dynamic relaxation analysis of the non-linear static response of
pretensioned cable roofs”, Comput. Struct., 18(6), 989-997.

Liu, H. and Chen, Z. (2012), “Structural behavior of the suspen-dome structures and the cable dome structures
with sliding cable joints”, Struct. Eng. Mech., 43(1), 53-70. 

Michalos, J. and Birnstiel, C. (1960), “Movements of a cable due to changes in loading”. J. Struct. Div., ASCE,
86(12), 23-38. 

Mollmann, H. (1970), “Analysis of plane prestressed cable structures”, J. Struct. Div., ASCE, 96, 2059.
O’Brien, W. and Francis, A. (1964), “Cable movements under two-dimensional loads”, J. Struct. Div., ASCE,
90(3), 89-123.

Ozdemir, H. (1979), “A finite element approach for cable problems”, Int. J. Solids Struct., 15(5), 427-437.
Peyrot, A.H. and Goulois, A.M. (1978), “Analysis of flexible transmission lines”, J. Struct. Div., ASCE, 104,
763-779.

Peyrot, A.H. and Goulois, A.M. (1979), “Analysis of cable structures”, Comput. Struct., 10(5), 805-813.
Poskitt, T.J. and Livesley, R.K. (1963), “Structural analysis of guyed masts”, Proc. Inst. Civ. Eng., 14, 373.
Saafan, S.A. (1970), “Theoretical analysis of suspension roofs”, J. Struct. Div., ASCE, 96(2), 393-404.
Sarkar, P.P., Jones, N.P. and Scanlan, R.H. (1994), “Identification of aeroelastic parameters of flexible bridges”, J.
Eng. Mech., ASCE, 120(8), 1718-1742.

Starossek, U. (1998), “Complex notation in flutter analysis”, J. Struct. Eng., ASCE, 124(8), 975-977.
Such, M., Jimenez-Octavio, J.R., Carnicero, A. and Lopez-Garcia, O. (2009), “An approach based on the
catenary equation to deal with static analysis of three dimensional cable structures”, Struct. Eng., 31(9), 2162-
2170.

Sufian, F.M.A. and Tempelman, A.B. (1992), “On the non-linear analysis of pre-tensioned cable net structures”,
Struct. Eng., 4(2), 147-158. 

Tibert, G. (1998), Numerical Analyses of Cable Roof Structures, Royal Institute of Technology, Dept. of
Structural Engineering.

Vu, T.V. (2010), “Aeroelastic flutter analysis of long-span bridges”, Ph.D. dissertation, Korea University, South
Korea.

Vu, T.V., Kim, Y.M., Lee, H.Y., Yoo, S.Y. and Lee, H.E. (2011), “Flutter analysis of bridges through use of by
state space method”, Proceedings of the 8th Int. Conf. Struct. Dyn., EURODYN 2011, Belgium, 3083-3090.

Wang, C., Wang, R., Dong, S. and Qian, R. (2003), “A new catenary cable element”, Int. J. Space Struct., 18(4),
269-275. 

West, H.H. and Kar, A.K. (1973), “Dicretized initial-value analysis of cable nets”, Int. J. Solids Struct., 9, 1403-
1420.

Yang, Y.B. and Tsay, J.Y. (2007), “Geometric nonlinear analysis of cable structures with a two-node cable
element by generalized displacement control method”, Int. J. Struct. Stab. Dyn., 7(4), 571-588.




