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Abstract. Accurate finite element (FE) models are needed in many applications of Civil Engineering
such as health monitoring, damage detection, structural control, structural evaluation and assessment.
Model accuracy depends on both the model structure (the form of the equations) and the model
parameters (the coefficients of the equations), and can be generally improved through that process of
experimental reconciliation known as model updating. However, modelling errors, including (i) errors in
the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading
to an updated model which replicates measurements but lacks physical meaning. In this paper, an
application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building
structure is reported in which both types of error are met. The error in the model structure, originating
from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced
through a reduction of the experimental modal model. The error in the model parameters, due to the
inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced
through a multi-model parameterization approach consisting in the generation and solution of a multitude
of models, each characterized by a different set of updating parameters. Results show that modelling
errors may significantly impair updating even in the case of seemingly simple systems and that multi-
model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of
calibration. 

Keywords: model updating; modelling errors; multi-model parameterization; ambient vibration; second-
ary structural elements; resonant appendages 

1. Introduction

Accurate finite element (FE) models are needed in many applications of Civil Engineering,

ranging from health monitoring to structural control, from damage detection to structural evaluation

and assessment. FE models used for design may not truly reproduce all the peculiar physical aspects

of a real structure and are typically inadequate to replicate the results of experimental testing. FE

model updating is the inverse problem of identifying and correcting invalid assumptions in an FE

model by matching predicted and observed response. Model updating methods in structural

dynamics have been developed and improved for more than 30 years. Extensive reviews of existing

techniques can be found in (Friswell and Mottershead 1995, Maia and Silva 1997). The interest in
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this area is proven by the large number of papers recently published on this topic (Aoki and Sabia

2005, McFarland and Mahadevan 2008, Cheung and Beck 2009, Govers and Link 2010, Yan et al.

2010, Zapico-Valle et al. 2010, Altuni ik et al. 2010, Bayraktar et al. 2010, Yu and Chung 2012).

Model updating methods can be mainly grouped into two categories: the non-iterative methods,

which are one-step procedures that directly update the elements of the stiffness and mass matrices,

and the iterative methods, which are multiple-step procedures that progressively adjust model

parameters to match measured data. Non-iterative methods are seldom used in practice since in

general they do not preserve the structural connectivity and the physical significance of the model.

In iterative methods, model-updating is posed as an optimization problem, in which discrepancies

between analytical and experimental results (the residuals) are set as an objective function to be

minimized by making changes to a pre-selected set of physical parameters. Because such objective

function is generally nonlinear in the parameters, an iterative process is performed, using either

gradient-based methods, i.e., sensitivity-based approaches (Li and Law 2010), or direct-search

methods, such as simulated annealing, genetic algorithms, hybrid approaches (Levin and Lieven

1998, Jung and Kim 2009).

The success of FE model updating depends on a number of aspects, including having an

appropriate numerical model, performing an accurate identification of the experimental modal

parameters, choosing a meaningful objective function and using an effective optimization algorithm.

Modelling errors, in particular, play a major role in the calibration process. In the presence of

modelling errors, an incorrect or shifted baseline model might be reconciled to the measured data,

leading to an updated model which would replicate measurements though lacking physical meaning

(Saitta et al. 2005). Major contributions to modelling error in an FE model are the existence of

unmodelled structural members, uncertainty in material properties and geometric section properties

of known parameters, incomplete information about boundary conditions and internal connections,

nonlinear structural response, energy loss and environmental variability (Sanayei et al. 2001). For

the sake of convenience, modelling errors may be distinguished into errors in the model structure

(the form of the equations) and errors in the model parameters (the coefficients of the equations)

(Mottershead et al. 2011). Errors in the model structure depend on wrong assumptions mainly

concerning mathematical modelling (differential equations, boundary conditions) and discretisation

(meshing, FE type). Every effort should be made to eliminate these errors from the initial FE

model, prior to updating. This can be rarely achieved without the application of considerable

physical insight. Exploring and comparing several alternative candidates of model structures is a

possible way to reduce the impact of this type of error (Robert-Nicoud et al. 2005). On the other

hand, errors in the model parameters depend on wrong values assigned to the geometrical and

mechanical properties of the model (e.g., Young modulus, flexural inertias etc). Once the model

structure is determined, removing errors in the parameters is the main objective of model

calibration. Usually, however, only few parameters can be simultaneously adjusted, due to the

limited amount of data and to computational reasons. Various parameterization techniques exist to

make the overall number of model parameters depend on a restricted set of updating parameters,

the latter becoming the variables of the optimization process (Kim and Park 2008, Perera and Ruiz

2008, Adhikari and Friswell 2010, Mthembu et al. 2011). The constraint implicit in such

dependence constitutes the part of the error in the model parameters which can not be corrected

through the updating process. 

The present paper reports an application of ambient-vibration-based direct-search model updating

to a large-scale benchmark prototype of a building structure in which errors in the model structure

sç



Robust finite element model updating of a large-scale benchmark building structure 373

as well as errors in model parameters have been encountered.

Errors in the model structure, on the one hand, originate from the presence of unmodelled

secondary structural elements which accidentally happen to work as resonant appendages for the

main frame, thus completely altering one of its vibration modes. To the authors’ knowledge, such a

fortuitous dynamic interaction has never been observed before in buildings. No effort will be done

herein to correct the original structure of the baseline FE model. Instead, after providing a consistent

physical explanation of the observed phenomenon of dynamic interaction, a mere reduction of the

experimental modal model will be performed by removing the altered mode from modal data before

calibration.

Errors in the model parameters, on the other hand, originate from the inevitable constraints

imposed on parameters to avoid ill-conditioning and under-determinacy. Aiming at exploring the

trade-off between the need to limit the updating set for conditioning and computational reasons and

the desire to enlarge it as much as possible in order to correct erroneous assumptions, a multi-model

parameterization approach is adopted consisting in the generation and solution of a multitude of

models, all sharing the same model structure but differing from each other in terms of the updating

set. By progressively increasing the number of parameters until reaching non-uniqueness of the

solution, and tracking the evolution of the updated model (both in the domain of the search

variables and in terms of the objective function), the said trade-off is fathomed and significant

information is obtained about the reliability of the calibration process. 

The paper is organized as follows. Section 2 will present the benchmark prototype and its testing.

Section 3 will describe the FE baseline model. Section 4 will identify the experimental modal

model, focusing on the anomalous contribution of secondary structural elements. Section 5 will

introduce the multi-model methodology and will use it to update the FE model. Section 6 will draw

conclusions.

2. The experimental model

The test structure is a large-scale (2:3) model of a two-storey steel frame building with composite

steel-concrete floors (Fig. 1). Built at the Structural Laboratory of the University of Basilicata

(Italy), it served as a benchmark for the experimental assessment of the seismic effectiveness of

different passive and semi-active control strategies, in the framework of the inter-university Italian

DPC-ReLUIS 2005-08 Project.

The steel structure, consisting of columns and beams orthogonally interconnected into a regular

(doubly-symmetrical) three-dimensional frame with one bay in both directions and two rectangular

floors (level 1 and 2), is mounted on a rigid horizontal base (level 0), resting on two sliding guides

and connected to a dynamic hydraulic actuator which can impart the desired mono-dimensional

excitation to the structure. Four equal columns, fixed to the base, extend continuously to the top

floor. Eight lateral beams, welded to the columns, support the two composite floors, made up of

concrete slabs cast on coffer profiled steel sheeting. The columns free length is 4.00 m, divided into

two 2.00m inter-storey heights. The beams length is 4.00 m in the along-excitation (longitudinal or

x-) direction and 3.00 m in the across-excitation (transverse or y-) direction. The floors thickness is

larger than expected because of the sagging effect occurred during concrete casting. In order to

house the dissipating devices during tests on the controlled structure, four V-inverted braces,

crowned with gusset plates, are bolted at both storeys, parallel to the x-direction. Columns, beams
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and braces have I-type cross sections of, respectively, HE140B, IPE180 and HE100A classes,

according to the commercial Italian Standard.

At the initial stage of the Project, the need of an accurate numerical model of the benchmark

building, for the purposes of test design and results interpretation, motivated a preliminary campaign

of dynamic tests on the uncontrolled structure (i.e., with no dissipative device installed). In order to

increase the amount of data available so as to improve the numerical conditioning and identify both

stiffness and mass properties simultaneously, the classical approach of “perturbed boundary

condition testing” (Nalitolela et al. 1992) was followed, consisting in perturbing both the structure

and, subsequently, the analytical model by adding the same amount of mass at given positions. A

total of eight additional lumped masses, consisting of concrete blocks (about 340 kg each), were

fixed onto the floors during testing according to three different configurations. Starting from the

basic configuration (referred to as BC in the following), characterized by no additional mass, a

second doubly-symmetric configuration (SC) was obtained by the addition of four blocks on each

storey, then a non-symmetric configuration (NC) was obtained by removing two blocks from the SC

configuration at each storey. 

For each of the three mass configurations, long-duration vibration tests (2400 s) were conducted

Fig. 1 The structural prototype: (a) overall view, (b) beam-column joint, (c) gusset plates atop V-inverted
braces, (d) rigid steel base
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on the uncontrolled structure, using the external excitation furnished by the ambient noise and

keeping the sliding guides locked. The dynamic response was measured in terms of acceleration

data, recorded at a sampling frequency of 200 Hz. The instrumentation setup consisted of 15 uni-

axial high-sensitivity force balance Columbia SA107LN accelerometers (operating in the range

±0.1 g), deployed in the most significant observation points: a subset of two accelerometers was

placed at the ground level; three subsets of four accelerometers each were mounted in orthogonal

pairs at the two opposite corners of, respectively, the base, the first and the second levels; and a

single accelerometer was placed on the gusset plate atop one of the two lower braces.

Fig. 2 Location of the accelerometers and of the additional lumped masses

Table 1 Location and properties of the additional lumped masses 

Block Level Mass (kg) ex (m) ey (m) BC NC SC

MA-I 1 338 -0.95 -1.00 No Yes Yes

MB-I 1 340  0.95 -1.00 No Yes Yes

MC-I 1 336 -0.95  1.00 No No Yes

MD-I 1 336  0.95  1.00 No No Yes

MA-II 2 336 -0.95 -1.00 No Yes Yes

MB-II 2 340  0.95 -1.00 No Yes Yes

MC-II 2 338 -0.95  1.00 No No Yes

MD-II 2 330  0.95  1.00 No No Yes
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The location of the accelerometers and of the additional masses is described in Fig. 2. Further

data, including the position and the inertial properties of concrete blocks, are reported in Table 1.

3. The baseline analytical model

The initial (baseline or nominal) analytical model of the test structure is developed on the basis of

the original design drawings and in-site visual inspection. 

3.1 The model structure

In view of the seeming plainness of the structural prototype, the model structure is kept as simple

as possible. Due to the low intensity of recorded ambient vibrations a linear dynamic model is

assumed. Vertical inextensibility of columns, in-plan rigidity of floors, lumped-mass formulation for

columns and beams are assumed as reasonable idealizations, in order to reduce model dimensions

without compromising its accuracy. With the same purpose (but with the unexpected effect of

severely distorting the model structure, as explained later in Section 4), the dynamics of V-inverted

braces is neglected and their mass is conglobed into that of the supporting floor. Other assumptions,

which might sound less physically plausible, are however accepted because reconcilable through the

subsequent parameter adjustment: columns and beams are modelled as mutually clamped, columns

as clamped at their base (as if the base level were perfectly rigid), beams and floor slabs as

flexurally independent (as if no mutual connection existed). 

Under the said assumptions, the analytical FE spatial model is formulated as a three-dimensional

6-degrees-of-freedom (6-DOF) parametric discrete model, whose six coordinates, ordered in the

vector η = {δx1 δy1 δθ1 δx2 δx2 δθ2}
T, include the three barycentric components of the in-plan rigid

motion of each floor. This spatial model is essentially described by a 6 × 6 mass matrix M and by a

6 × 6 stiffness matrix K. Damping is not accounted for since of scarce interest in the present case,

and anyway low enough to make acceptable the assumption of non-complex modes. Starting from

the said analytical spatial model, the analytical modal model is obtained by solving the eigenvalue

problem for the M−1K matrix. It results in the 6 × 1 eigen-frequency vector f and in the 6 × 6 eigen-

mode matrix Φ, whose i-th column φi represents the i-th modal shape, further normalized so as to

have unit norm (i.e., unit Euclidean length). 

3.2 The model parameters

In the baseline analytical model (including both spatial and modal model), the geometrical and

material properties of the structural members are equalled to their expected nominal value. The

baseline analytical models corresponding to the three mass configurations, respectively denoted as

M 0
BC, M0

NC, M0
SC, possess the same K matrix and different M, f and Φ matrices. Since they share

the same model parameters except the additional masses (which are known data), these three

models can be more conveniently regarded as three different states of a unique perturbed baseline

model, denoted as M0, and in fact described by a total of one K and three triplets of M, f and Φ. A

list of the main nominal parameters assigned to M0 is given in Table 2. An axonometric view of the

baseline model in the BC configuration is given in Fig. 3, together with a planar schematic view of

its six mode-shapes.
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4. The experimental modal identification: errors in the model structure

The experimental modal model is identified on the basis of ambient vibration tests. Many output-

only identification techniques have been developed in the past few years for use in ambient

vibration conditions. They are widely applied to full-scale civil structures, where forced vibration

testing and free vibration testing are typically precluded by the difficulties of imparting large

external loads under normal operational conditions. Several review papers concerning the state-of-

the-art identification methods and recent developments are present in the scientific literature (Maia

Table 2 Nominal parameters of the baseline analytical model M0 

Symbol Description Value Unit

lx Distance between columns along x 4.00 m

ly Distance between columns along y 3.00 m

h Inter-storey height 2.00 m

E Steel Young’s modulus 206 GPa

ρs Steel mass density 7850 kg/m3

ρc Composite slab mass density 2500 kg/m3

mi Slab mass at the i-th level (i = 1, 2) 3539 kg

Joi Slab polar inertia (i = 1, 2) 7702 kg·m2

Icxi Columns bending inertia along x (i = 1, 2) 1.509·10-5 m4

Icyi Columns bending inertia along y (i = 1, 2) 0.550·10-5 m4

Ibxi x-oriented beams bending inertia (i = 1, 2) 1.317·10-5 m4

Ibyi y-oriented beams bending inertia (i = 1, 2) 1.317·10-5 m4

Ict Columns torsional inertia 2.000·10-7 m4

Ibt Beams torsional inertia 0.480·10-7 m4

Fig. 3 The FE baseline model (BC configuration): (left) axonometric view, (right) planar schematization of
the mode-shapes
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and Silva 1997). A certain effort is recognized to produce qualitative and quantitative comparisons

among different methods, mostly based on experimental or pseudo-experimental data from

benchmark structures (Giraldo et al. 2009). 

Modal identification methods generally fall into two categories, depending on whether they

operate in the time domain or in the frequency domain. Hybrid methods operating in the joint time-

frequency domain have also been recently developed. The applicability and success of a given

method depend on a variety of aspects, including the expected structural peculiarities (modal

density, damping ratios, nonlinearities), the target results (modal model order, completeness) and

finally the nature (periodicity, stationarity) and quality (noise-to-signal ratio) of the available data

(Peeters and Ventura 2003).

In this study, three classical output-only methods are used, respectively working in the time-

domain, in the frequency-domain and in the time-frequency domain: ERA (Eigensystem Realization

Algorithm) (Juang and Pappa 1984), FDD (Frequency Domain Decomposition) (Brincker et al.

2001) and TFIE (Time-Frequency Instantaneous Estimators) (Bonato et al. 2000). The accelerations

measured by the 8 sensors placed at the first and second levels are used for identification. By

Fig. 4 Modal frequency identification for, respectively, the BC (left), NC (centre) and SC (right)
configurations: (top) FDD singular values; (middle) TFIE phase difference standard deviations;
(bottom) TFs from the ground to the two storey levels in the along-y direction
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enforcing the assumption of rigid in-plan motion of each floor so as to reduce (in a least-square

sense) measurement data to the 6 DOFs of the analytical model, 6-components eigenvectors are

finally synthesized. Transfer Functions (TFs) are also computed from the accelerations measured at

the ground level to the accelerations measured at other locations, in order to verify the presence of

spurious frequency components inherent in ground vibration. In order to minimize measurement and

processing errors, each method is first applied to several data fragments and then the experimental

modal model is obtained as the average over the whole of data fragments and the whole of the three

methods. By repeating the procedure for each of the three mass configurations, the resulting

experimental modal model is finally obtained, consisting (like its analytical counterpart) of a triplet

of eigen-frequency vectors fe and a triplet of eigen-mode matrices Φe (the “e” subscript standing for

“experimental”).

Fig. 4 exemplifies the modal identification procedure on a single fragment of data. The three top

sub-figures show the FDD singular value curves, with the structural natural frequencies identified

through peak-picking (red circles), for respectively the BC, the NC and the SC mass configurations.

Similarly, the three central sub-figures show the TFIE standard deviations of the phase difference.

Unexpectedly, seven natural frequencies are identified. Same results are obtained using the ERA

method (no graphical output is available in this case). Finally, the three bottom sub-figures contain the

TFs from the ground acceleration to the acceleration at respectively the first and the second floors. 

Table 3 Experimental modal properties – Mean values (‰ standard deviation in brackets) 

Conf. Mode fei (Hz) φei1 φei2 φei3 φei4 φei5 φei6

BC

1 3.37 (.3) -.009  .507 (6)  .001 -.005  .862 (2)  .004

2 4.23 (.6)  .445 (2) -.004 -.002  .895 (0)  .006  .000

3 5.89 (.2)  .057  .053  .478 (84)  .054 -.011  .873 (7)

4a 9.39 (.6)  .026  .777 (27)  .006 -.038 -.627 (31) -.029

4b 11.3 (.2) -.031  .913 (10)  .006 -.020 -.405 (69) -.010

5 14.6 (.1)  .876 (5)  .000  .004 -.483 (15)  .005 -.005

6 18.7 (.1) -.006 -.071  .828 (30) -.006  .011 -.555 (41)

NC

1 3.08 (.5) -.004  .510 (9)  .005 -.007  .860 (3)  .004

2 3.85 (.7)  .448 (3) -.004  .027  .892 (1)  .002  .049

3 5.51 (.6) -.120  .010  .470 (12) -.276 -.032  .829 (8)

4a 8.90 (.4)  .012  .825 (5)  .000  .004 -.565 (10) -.017

4b 10.7 (.1)  .020  .927 (7)  .011  .022 -.372 (23) -.020

5 12.9 (.3)  .868 (0) -.081  .084 -.475 (58)  .027 -.082

6 17.6 (.0) -.247 -.011  .806 (8)  .196  .021 -.501 (10)

SC

1 2.85 (.5) -.004  .505 (6) -.001 -.004  .863 (3)  .005

2 3.57 (.6)  .447 (4) -.002 -.001  .894 (1)  .007 -.001

3 5.11 (.1) -.005  .012  .495 (39)  .019 -.015  .868 (18)

4a 8.43 (.4)  .003  .840 (5)  .002 -.004 -.542 (9) -.012

4b 10.5 (.1) -.001  .944 (8)  .001 -.006 -.329 (65) -.011

5 12.4 (.2)  .880 (7) -.005  .002 -.474 (24)  .002 -.004

6 16.2 (.1) -.016 -.062  .851 (12)  .022  .008 -.520 (24)
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Table 3 reports the mean values of the experimental natural frequencies and mode-shape

components, together with the corresponding normalized standard deviations (expressed in per-

thousands). The normalized standard deviation is very small for the natural frequencies (never larger

than 0.7‰) and quite small too for the main mode-shape components (ranging from less than 1‰

to 84‰). Not reported in Table 3 and out of the scope of the present paper, modal damping around

2-3‰ is obtained for all modes.

An interesting anomaly in Fig. 4 and Table 3, clearly incompatible with the assumed 6-DOF

model structure, is the occurrence, instead of the expected fourth mode, of two distinct experimental

modes, denoted as 4a and 4b, having similar modal shapes but well-separated modal frequencies. In

the BC configuration, modes 1, 4a and 4b are flexural modes in the transverse direction, modes 2

and 5 are flexural modes in the longitudinal direction, modes 3 and 6 are torsional modes. More

specifically, modes 1, 2 and 3 are in-phase modes, whilst modes 4a, 4b, 5 and 6 are counter-phase

modes. In the NC configuration, due to the eccentricity of the additional masses along the

transverse direction, a weak lateral-torsional coupling arises between the flexural modes in the

longitudinal direction and the torsional modes, so that rotational components appear in modes 2 and

5, and flexural components in modes 3 and 6. Also, due to the increased mass, the natural

frequencies systematically decrease. In the SC configuration, lateral-torsional coupling vanishes

because of the recovered double symmetry, and natural frequencies become even smaller because of

the further mass increment. 

In order to explain the origin of modes 4a and 4b, the question first arises if they are real modes,

reflecting the true dynamic signature of the structural system, or spurious modes, caused by testing

or identification inaccuracies. An example of spurious frequency is the peak at 7.8 Hz visible in the

FDD plots and TFIE plots in Fig. 4, which can be easily attributed to frequency components

inherent in the external input, i.e., the ground acceleration. In fact, several circumstances proclaim

modes 4a and 4b as real modes. They are confirmed by all identification sessions, independently of

the data fragment, the identification method, the mass configuration, and the vibration intensity.

They undergo the same trend of frequency reduction recognizable in any other mode as the

structural mass increases (the spurious peak at 7.8 Hz is instead unaffected by mass variations).

They are not the effect of abnormal frequency components in the external input, as confirmed by

the acceleration auto-spectra at the base level (see Fig. 5 next). In conclusion, modes 4a and 4b can

be confidently classified as real structural modes. But what’s their origin then?

To answer, let us consider Fig. 5, which plots the auto-spectral densities of the acceleration signals

Fig. 5 Auto-spectral densities in the along-y direction for, respectively, the BC (left), NC (centre) and SC
(right) configurations
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recorded along the transverse direction at, respectively, the ground level, the base level, the first and

second floor levels and the gusset plate atop one of the lower V-inverted braces (i.e., those attached

to the base level).

Firstly, a confirmation is obtained of the real nature of modes 4a and 4b: the two respective peaks,

migrating leftwards as the structural mass increases, are prominent in the spectra corresponding to

the two storey levels whilst are nearly absent from the spectra corresponding to the ground level

and to the base level, in contrast with the small peak around 7.8 Hz (already classified as a spurious

frequency), which appears almost identical for all spectra and independent of the mass

configuration.

Besides, Fig. 5 draws attention to the so far neglected influence of the V-inverted braces. These

can be classified as secondary structural elements. Their mass is small, their connection to the main

frame is uncertain, their transverse (out-of-plane) dynamics is of scarce interest in the final

(controlled) structural configuration. Accordingly, their dynamics was omitted in the formulation of

the simplified 6-DOF model structure. Fig. 5 shows that this omission is questionable. Firstly,

coupling is observed between the spectrum corresponding to the brace and the spectra

corresponding to the first and second storeys: modes 4a and 4b produce high peaks in the brace

spectrum, and on its turn the brace causes small but distinct perturbations in the structural spectra.

Such interaction is even more remarkable in that it regards one of the lower braces (the only

instrumented one, unfortunately), which are attached to the base level. Secondarily, the natural

frequency of the out-of-phase local mode of the instrumented lower brace is shown to be close to

modes 4a and 4b, and approximately equal to 9 Hz. 

These findings allow a nice physical interpretation of modes 4a and 4b, based on the well-known

concept of tuned mass dampers (TMDs). A TMD is a passive absorber working as an SDOF

appendage of the main system (Den Hartog 1956). Setting the frequency ratio rb (defined as the

frequency of the TMD divided by the frequency of the structural “target mode”) close to one

ensures an energy transfer from the target mode to the absorber as a consequence of a phenomenon

of dynamic interaction or modal tuning. Consequently, instead of the single target frequency of the

original (uncontrolled) system, the controlled system possesses two natural frequencies, resulting in

two spectral peaks, one right below and one right above the original peak. The smaller rb, the

higher the second peak with respect to the first peak, and vice versa. Also, the smaller the absorber

damping ratio, the sharper the two peaks. 

Fig. 6 V-inverted braces working as tuned appendages: (a) location of the V-inverted braces crowned with
gusset plates; (b) schematics of the mechanical model in the y direction including braces dynamics; (c)
typical FRF for an SDOF system with and w/o an under-damped tuned appendage
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All ingredients being set, the explanation of modes 4a and 4b is straightforward and schematized

in Fig. 6. The two modes result from the dynamic interaction between the fourth mode of the main

frame and the out-of-plane mode of the upper braces (those attached to the first floor, unfortunately

not instrumented), by chance working as a couple of under-damped TMDs roughly tuned to the

benchmark structure. The total mass of the two TMDs, including the two gusset plates atop and

approximately half the mass of the braces, is around 140 kg. This value, apparently small if

compared with the total mass of the building (approximately 6600 kg), is indeed large enough if

compared with the modal mass of the fourth mode (approximately 500 kg according to the

subsequent calibration), thus justifying the strong modal coupling. An interesting confirmation

comes from the spectra of the first and second storeys in Fig. 5. As the mass increases from the BC

to the NC and further to the SC configurations, the frame structural frequencies obviously decrease

whilst the frequency of the couple of (unobserved) TMDs remains unchanged. This is equivalent to

increasing the frequency ratio rb and consequently, as sketched in Fig. 6(c), to making the left

spectral peak prevail over the right one. This very effect is experimentally recognizable in Fig. 5,

where the left spectral peak (mode 4a) tends to increasingly prevail over the right spectral peak

(mode 4b) while moving from the BC to the SC configuration. A further, decisive confirmation, not

available at the time when the model updating was first performed, was obtained later on, when an

accelerometer placed on one of the upper braces revealed an out-of-plane frequency close to 10 Hz,

right in the middle between the natural frequencies of modes 4a and 4b.

In conclusion, the experimental modal identification of the benchmark prototype reveals the

insurgence of two unexpected resonant modes (4a and 4b) as the consequence of the interaction

between the main structure and the upper V-inverted braces. Such explanation has required a

considerable deal of physical insight because the resonant braces were not instrumented during

testing. To the authors’ knowledge, this is the first time that such accidental modal tuning is

observed between a frame building structure and secondary structural elements. Obviously the two

resonant modes can not be captured by the simplified 6-DOF analytical model, which in fact

renounces simulating brace dynamics. In order to face such an error in the model structure, two

main options are available. The first one, left for future work, is the removal of the modelling error,

i.e., the inclusion of the braces into the model. The second one, pursued in this work, is an

experimental model reduction (contrary to the classical analytical model reduction) consisting in the

removal of the resonant modes from the experimental data. In this way, the FE model is calibrated

relying exclusively on matching the five modes which do not feel the effect of modal tuning. This

approach, which obviously can not be regarded as a general methodology to deal with modelling

errors, appears nonetheless one viable strategy whenever the effects of unmodelled structural

elements are known to be confined to a circumscribed region of the experimental data, and this

region does not need to be accurately replicated by the model. 

5. FE model-updating: errors in the model parameters

5.1 Multi-model parameterization 

The key to success in model calibration is the choice of the updating parameters. Any choice of

the updating set will implicitly introduce some modelling errors in regions of the model which are

excluded from updating (Sanayei et al. 2001). Clearly, from the point of view of conditioning, it
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would be best to select a small number of parameters for updating, and to use large volumes of

measured data. On the contrary, if data were rich enough, and errors in measurement and processing

as well as errors in the model structure were ideally absent, then it would be more convenient to

enlarge as much as possible the updating set in order to correct erroneous assumptions. In general,

updating parameters should be chosen so that the measured data are sensitive to them, but also there

should be clear indication that there might be modelling errors in the corresponding regions of the

model. This typically requires the application of a great deal of physical insight, and the use of any

a priori knowledge available about the actual system.

However, a priori knowledge alone is often insufficient to directly identify the optimal updating

set, and more typically ends up with suggesting a whole family of candidate options. In such cases,

multi-model reasoning may prove a useful strategy to explore and compare potential candidates

(Robert-Nicoud et al. 2005, Raphael and Smith 2003, Zarate and Caicedo 2008). 

In this paper, a multi-model parameterization approach is proposed consisting in the generation

and solution of a multitude of models, characterized by the same model structure but by different

updating sets.

More specifically, supposing an adequate model structure has already been chosen, the procedure

develops through the following steps:

• Step 1: a meaningful objective (or error) function fob is selected, quantifying the discrepancy

between the experimental and the analytical models (residual);

• Step 2: a robust optimization algorithm is chosen, capable to reliably minimize the objective

function;

• Step 3: the total set p  of the potential updating parameters is identified, based on the

evaluation of the sensitivity of the objective function to changes in model parameters (sensitivity

analysis) and/or on the a priori estimation of their respective uncertainties; in the case of large FE

models, the total set p may be profitably identified through applying parameterization techniques

based on sub-structuring (Kim and Park 2008, Perera and Ruiz 2008, Adhikari and Friswell

2010);

• Step 4: the total set p is partitioned into two subsets: the set of updating parameters, denoted as

pu , and its complementary set of constrained parameters, denoted as pc ; while pu

contains the independent optimization variables, pc = F(pu) contains the parameters which are

excluded from updating, equalled either to their respective nominal value or, more generally, to

any possible function F of pu; such partition will be called a model, and denoted as Mi (Nu);

• Step 5: the model defined at Step 4 is optimally updated, i.e., pu is found which minimizes fob;

• Step 6: Steps 4 and 5 are iterated, each time selecting a different updating set (i.e., a different

model), e.g., enlarging previous sets by progressively including new parameters until reaching

under-determinacy; 

• Step 7: the multiple models are compared and the one(s) which sound(s) more reliable according

to the engineering experience is(are) selected to represent the real structure.

This approach has contact points with existing strategies of direct-search multi-model updating,

especially the one developed at EPFL (Saitta et al. 2005, Raphael and Smith 2003). The main

common feature is the idea of generating alternative solutions to increase identification robustness.

But there are also significant differences. The EPFL method identifies a set of “good” models (i.e.,

sub-optimal models, encountered while searching for optimality, whose residuals lie below a

specified threshold) and then automatically classify them into multiple clusters, each representing a

candidate solution. Implicit is the assumption that errors in measurements and in model structure are
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relatively large with respect to errors in model parameters, so that the analytical global optimum

retain little physical significance; provided that the analyst can estimate the extent of measurement

and modelling errors and evaluate a proper threshold for the admissible residual, all models

respecting that threshold are regarded as equally admissible candidates. The present approach,

instead, identifies distinct global optima, one for each updating set, and tracks their evolution as the

updating set enlarges towards non-uniqueness. Implicit is the assumption that errors in

measurements and in model structure are either acceptably small with respect to errors in model

parameters (as plausibly happens in the present case study because of the simple structural

configuration and the redundancy/controllability of measured data) or anyway so unpredictable that

no reliable estimation of the threshold error is possible. 

5.2 Application to the case study

In this paragraph, the 7-step procedure outlined above is applied to the benchmark case study. 

5.2.1 Step 1

The objective function is introduced as the following normalized modal residual

(1) 

where the summations extend to all modes but the fourth one and to all mass configurations; fi and

fei are respectively the analytical and the experimental natural frequencies; MACii is the Modal

Assurance Criterion between the analytical mode-shape φi and the corresponding experimental

mode-shape φei; the term  accounts for the frequency residual, while the term 

accounts for the mode-shape residual, geometrically representing the Euclidean distance between

vectors φi and φei (normalized so as to have unit Euclidean length); λ = 0.1 is a relative weight

assigned to the mode-shapes residuals, roughly accounting for the different reliability of mode-shape

information with respect to frequency information. Eq. (1) is so conceived that when all residuals

equal a certain value, then fob equals the same value. In this sense, fob is the weighted error of the

analytical modal model with respect to the experimental modal model.

5.2.2 Step 2

Optimization is performed through a hybrid direct-search algorithm, consisting of a genetic

algorithm (GA) followed by a nonlinear least-square solver (a subspace trust region method based

on the interior-reflective Newton method) (Jung and Kim 2009). The GA ensures robustness of the

solution (i.e., its closeness to the global optimum), the least-square solver locally improves its

accuracy. 

5.2.3 Step 3

The total set p of potential updating parameters is easily identified in the present case. Given the

simplified structure of the FE model and admitting a substantial in-plan symmetry of the bare

frame, 8 stiffness parameters and 4 mass parameters completely characterize the model (the

rotational stiffness of columns and beams has negligible effects on modal response). Normalized to

fob
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their respective nominal values, the Np = 12 parameters are described in Fig. 7 and include: 4

parameters, p1 to p4, representing column bending inertias (Icx1, Icy1, Icx2, Icy2); 4 parameters, p5 to p8,

representing beam bending inertias (Ibx1, Iby1, Ibx2, Iby2); and 4 parameters, p9 to p12, representing slab

masses and polar inertias (m1, m2, Jo1, Jo2). 

5.2.4 Steps 4 to 7

Alternative subsets of the 12 parameters, i.e., alternative models, are considered and separately

solved. The number Nu of the updating parameters is varied from a minimum of 2 to a maximum of

12. The case Nu = 0 is also included for comparison, corresponding to the nominal model. 

Depending on Nu, two qualitatively different situations are met, corresponding to, respectively, a

determinate and an under-determinate inverse problem. 

In what follows, nine different models are first considered having Nu ≤ 10, each admitting a

unique solution (determinate case). Then, the problem is demonstrated to be under-determinate for

Nu > 10 and some of the ∞2 solutions corresponding to Nu = 12 are presented. 

Table 4 The updating parameters for the nine candidate models

Model Nu

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

(Icx1) (Icy1) (Icx2) (Icy2) (Ibx1) (Iby1) (Ibx2) (Iby2) (m1) (m2) (Jo1) (Jo2)

M0(0) 0 1 1 1 1 1 1 1 1 1 1 1 1

M1(2) 2 pu1 pu1 1 1 1 1 1 1 pu2 pu2 pu2 pu2

M2(3) 3 pu1 pu2 1 1 1 1 1 1 pu3 pu3 pu3 pu3

M3(3) 3 pu1 pu1 1 1 1 1 1 1 pu2 pu3 pu2 pu3

M4(4) 4 pu1 pu2 1 1 1 1 1 1 pu3 pu4 pu3 pu4

M5(6) 6 pu1 pu2 1 1 1 1 1 1 pu3 pu4 pu5 pu6

M6(8) 8 pu1 pu2 pu3 pu4 1 1 1 1 pu5 pu6 pu7 pu8

M7(8) 8 pu1 pu2 1 1 pu3 pu4 pu3 pu4 pu5 pu6 pu7 pu8

M8(10) 10 pu1 pu2 pu3 pu4 pu5 pu6 pu5 pu6 pu7 pu8 pu9 pu10

Fig. 7 The FE model with the 12 potential updating parameters
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The determined case: Nu ≤ 10

Nine different models are explored, summarized in Table 4:

• M 0(0) is the nominal model;

• M 1(2) depends on 2 parameters, i.e., the stiffness of lower columns and the mass properties of

the floors; note: (i) two is the minimum number of parameters to simultaneously update stiffness

and mass of the model; (ii) stiffness uncertainty is attributed entirely to the lower columns

because the main modelling uncertainty is recognized in the assumption of perfect clamping at the

base of the columns; 

• M 2(3) depends on 3 parameters, i.e., the stiffness of lower columns, respectively in the longitudinal

and transverse directions, and the mass properties of the floors; note: (i) with respect to M 1(2), the

degree of clamping at the base of the columns is differentiated along the two directions;

• M 3(3) still depends on 3 parameters, i.e., the stiffness of lower columns and the mass properties

of the first and the second floors; note: (i) with respect to M 1(2), the two floors are allowed

different masses;

• M 4(4) depends on 4 parameters, obtained as the union of the sets corresponding to M 2(3) and M 3(3); 

• M 5(6) depends on 6 parameters, obtained from M 4(4) by further making slab polar inertias

independent of slab masses; note: (i) M 5(6) independently allows for the contributions of,

respectively, the uniform slab thickness and the additional sagging deflection; (ii) from here on,

the four mass parameters will be systematically included in any new updating set, i.e., the mass

matrix M will depend on all four mass parameters; (iii) the stiffness matrix K still depends on the

stiffness of lower columns only;

• M 6(8) depends on 8 parameters, obtained from M 5(6) by further including the stiffness of upper

columns in both directions; note: (i) K now depends on all column stiffness parameters; (ii) beam

stiffness is still taken as nominal;

• M 7(8) still depends on 8 parameters, obtained from M 5(6) by further including beam stiffness in

both directions; note: (i) K now depends on the stiffness of lower columns and on beam stiffness,

the latter being assumed independent of the storey level (p7 = p5 and p8 = p6);

• M 8(10) depends on 10 parameters, obtained as the union of the sets corresponding to M 6(8) and

M 7(8); note: (i) all potential parameters in p are taken as independent variables, except the beam

bending inertias, constrained by the equalities p7 = p5 and p8 = p6.

Table 5 The solutions obtained with the multiple models 

Model
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 fob

(Icx1) (Icy1) (Icx2) (Icy2) (Ibx1) (Iby1) (Ibx2) (Iby2) (m1) (m2) (Jo1) (Jo2) (%)

M0(0) 1 1 1 1 1 1 1 1 1 1 1 1 4.26

M1(2) .751 .751 1 1 1 1 1 1 .770 .770 .770 .770 2.48

M2(3) .623 .731 1 1 1 1 1 1 .710 .710 .710 .710 1.90

M3(3) .830 .830 1 1 1 1 1 1 .932 .742 .932 .742 1.08

M4(4) .755 .795 1 1 1 1 1 1 .878 .716 .878 .716 1.01

M5(6) .756 .792 1 1 1 1 1 1 .887 .716 .830 .694 .856

M6(8) .782 .778 1.07 .915 1 1 1 1 .862 .726 .834 .707 .843

M7(8) .629 .755 1 1 1.25 1.19 1.25 1.19 .816 .777 .790 .740 .780

M8(10) .620 .739 .956 .964 1.28 1.28 1.28 1.28 .794 .783 .757 .749 .775
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For all nine models above except M 0(0) optimization is run several times in order to avert the risk

of non-uniqueness of the solution. Excellent reproducibility is observed in all cases. Results are

reported in Table 5. 

Table 6 evaluates the mutual distance among the nine models in the search domain, where the

distance dij between any two models i and j is defined as the Euclidean distance between the

corresponding vectors pi and pj, further divided by the square root of Np. Fig. 8 compares the 9

models in terms of, respectively, the objective function (on the left) and the distance from model

M 8(10) in the search space (on the right). 

Results in Tables 5 and 6 and in Fig. 8 suggest the following comments:

• Expectedly, increasing Nu improves fitting the experimental data. The nominal model, M 0(0), has

the worst fitting capability (fob = 4.26%) while the ten parameters model, M 8(10), has the best one

(fob = 0.775%). Recalling that fob is the average error in replicating the experimental modal

response, these values appear quite low for a civil application (Zarate and Caicedo 2008),

plausibly because of the simplicity of the structural configuration and the controllability of test

conditions. The decreasing trend of fob is pronounced for small values of Nu but tends to vanish as

Nu increases. If considered in absolute terms, the objective function improvement from M 5(6) to

M 8(10) is seemingly unsubstantial; to be properly appreciated, it must be considered in relative

Table 6 Mutual distances dij in the search space (%) 

M0(0) M1(2) M2(3) M3(3) M4(4) M5(6) M6(8) M7(8) M8(10)

M0(0) 0 16.7 21.4 12.9 15.6 16.3 16.2 22.3 24.8

M1(2) 0 5.10 7.44 5.07 4.80 5.21 13.6 16.7

M2(3) 0 11.3 8.04 7.48 8.09 13.7 16.6

M3(3) 0 3.42 4.32 5.28 15.4 18.7

M4(4) 0 1.54 3.63 14.0 17.4

M5(6)
(Symmetric)

0 3.45 13.9 17.3

M6(8) 0 14.3 17.6

M7(8) 0 4.18

M8(10) 0

Fig. 8 Comparison among the multiple models: (a) objective function; (b) distance from M8(10) in the search
space 
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terms (fob reduces 1.10 times from M 5(6) to M 8(10)). 

• In order to genuinely capture the improvement of the model, however, the search space must

be examined too and the multiple solutions must be compared in terms not only of their fitting

capability but also of the plausibility of the underlying parametric description. A reduced

objective function does not necessarily mean approaching the “true” model in the search space.

This clearly appears from Fig. 8: moving from M 0(0) to M 8(10), fob monotonically decreases whilst

the average distance of each model from M 8(10) shows an irregular trend, keeping nearly constant

(or even slightly increasing) from M 1(2) to M 6(8), and significantly diminishing only at M 7(8).

Supposing M 8(10) were the “true” model (this point will be reconsidered later), model M 6(8) would

result as distant from “truth” as model M 1(2). Such distance, which represents the average

parameter error, is conspicuous for all models (larger than 16%) except model M 7(8) (about 4%),

implying that remarkably different models exist providing similar objective functions (ill-

conditioning). 

• Two strategies may be devised to deal with such multiple candidates. The first strategy assumes

that all models whose objective function is below a determined threshold (e.g., M 5(6), M 6(8), M 7(8)

and M 8(10)) are equally admissible representations of the physical system (Saitta et al. 2005,

Raphael and Smith 2003). The second strategy relies on engineering insight to state the

plausibility of each candidate and isolate the most likely one(s). For example, model M 3(3), despite

its lower objective function, can be recognized as an involution of model M 2(3): starting from the

unlikely assumption that the effects of imperfect clamp at the column base are the same along the

two in-plan directions (p1 = p2), M 3(3) provides a solution which, through unrealistically increasing

the first floor mass (p9 = 0.932) while decreasing the second floor mass (p10 = 0.742), is clearly

incompatible with visual inspections; as a confirmation of such involution, model M 3(3) is the most

distant from M 8(10) among all updated models. 

• Applied to the four models which best fit experiments, i.e., M 5(6), M 6(8), M 7(8) and M 8(10), the

second strategy allows explaining their differences and rejecting improbable models. So M 5(6)

(fob = 0.856%) makes the stiffness matrix depend only on the stiffness of lower columns,

achieving poor approximation. M 6(8) (fob = 0.843%) slightly improves fitting by including two

additional variables, i.e., the stiffness of upper columns, but the improvement is more seeming

than real because upper and lower columns are in fact a unique structural element and the

stiffness of upper columns is expected to negligibly deviate from its nominal value. M 7(8) (fob =

0.780%) is considerably superior to both M 5(6) and M 6(8), because in this case the two additional

variables, representing the beam stiffness, possess a larger degree of uncertainty than that related

to the upper columns. In the updated M 7(8) model, the stiffness of lower columns is less than

nominal because of the imperfect clamp at the base while the beam stiffness is larger than

nominal because of the partial collaboration of the floor slabs. Finally M 8(10) (fob = 0.775%), which

enlarges the updating set to both the upper columns stiffness and the beams stiffness, obviously

improves all previous models in terms of the objective function. From a physical viewpoint, M 8(10)

is characterized by a very convincing set of updated parameters, with a substantial uniformity in

both beam stiffness and mass properties, and with the stiffness of upper columns only slightly

reduced with respect to their nominal value. In conclusion, the updated M 8(10) model possesses

enough fitting capabilities and sufficiently sound physical meaning to be accepted as a reliable

representation of the benchmark structure. Table 7 and 8 report, respectively, its modal properties

and its residuals.

The under-determined case: Nu > 10
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For Nu > 10 the updating problem no longer admits a unique solution. As long as all four mass

parameters are included in the updating set, ∞1 optimal solutions exist for Nu = 11 and ∞2 for

Nu = 12. 

In fact, if more than six stiffness parameters are simultaneously updated the inverse problem

becomes under-determined. This can be analytically explained by looking at the structure of the

stiffness matrix K (Fig. 9). The latter is formed by assembling the 2 × 2 sub-matrices Kx and Ky of

the planar frames along the x and y directions. Because of symmetry, these matrices consist of only

three independent coefficients each. Therefore, once the optimal Kx and Ky are found which make

fob minimum (the inverse problems Kx = gx2
−1(fob) and Ky = gy2

−1(fob) are redundant and well

conditioned), ∞1 combinations of the 4 stiffness parameters in the x direction exist which exactly

Table 7 Analytical modal properties of the updated M8(10) model

Conf. Mode fi (Hz) φi1 φi2 φi3 φi4 φi5 φi6

BC

1 3.38 .000 .510 .000  .000  .860  .000

2 4.24 .463 .000 .000  .886  .000  .000

3 5.87 .000 .000 .486  .000  .000  .874

4 10.1 .000 .853 .000  .000 -.522  .000

5 14.5 .880 .000 .000 -.475  .000  .000

6 18.6 .000 .000 .862  .000  .000 -.508

NC

1 3.08 .000 .510 .000  .000  .860  .000

2 3.84 .462 .000 .032  .885  .000  .058

3 5.52 -.140 .000 .463 -.269  .000  .833

4 9.24 .000 .854 .000  .000 -.520  .000

5 13.2 .878 .000 .076 -.470  .000 -.046

6 17.6 -.303 .000 .809  .171  .000 -.473

SC

1 2.84 .000 .510 .000  .000  .860  .000

2 3.57 .463 .000 .000  .887  .000  .000

3 5.13 .000 .000 .485  .000  .000  .874

4 8.55 .000 .855 .000  .000 -.518  .000

5 12.3 .882 .000 .000 -.471  .000  .000

6 16.3 .000 .000 .865  .000  .000 -.502

Table 8 Residuals for the updated M8(10) model 

Mode
BC configuration NC configuration SC configuration

∆fi/fei (%) MACii fob,i
 (%) ∆fi/fei (%) MACii fob,i (%) ∆fi/fei (%) MACii fob,i (%)

1  0.21 1.000 0.24 -0.03 1.000 0.10 -0.22 1.000 0.24

2  0.21 1.000 0.29 -0.24 1.000 0.30 -0.01 1.000 0.19

3 -0.26 0.991 0.99  0.24 0.998 0.47  0.36 0.999 0.47

5 -0.74 1.000 0.75  1.65 0.991 1.89 -0.90 1.000 0.90

6 -0.55 0.991 1.08 -0.27 0.995 0.76  0.61 0.995 0.94
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reproduce Kx, and the same holds for Ky in the y direction (the inverse problems gx1
−1(Kx) and gy1

−1

(Ky) are once under-determined). As a consequence, six stiffness parameters (three along x and three

along y) uniquely determine K and consequently fob.

Obviously, the ∞2 optimal solutions corresponding to assuming Nu = 12 (pu = p) or, equivalently,

to removing all constraints from the potential updating parameters (pc = 0) are indistinguishable in

terms of the objective function but might be very distant in the search space. One sample from such

infinity is model M 8(10) itself, whose mass properties, modal properties and objective function are

identical to those of any other of the ∞2 solutions.

Table 9 reports a small further sample from that infinity, obtained by imposing two arbitrary

constraints (one in each direction) to the eight stiffness parameters included in p. Each line

corresponds to a different pair of constraints (i.e., to a further model of the multi-model

parameterization approach) obtained varying the ratio of the stiffness of upper beams to the stiffness

of lower beams from 1/100 to 100. Columns referring to mass parameters and to the objective

function are omitted, since identical to those obtained for model M 8(10). Once again, the last column

represents the distance from M 8(10) in the search space. 

Table 9 reveals the relationship existing, within the subspace of the ∞2 optimal solutions, among

the four stiffness parameters in each direction. As the beam stiffness ratio decreases, the stiffness of

lower beams increases whereas that of upper beams very rapidly decreases; to compensate such

variations (in order for K to keep unchanged), the stiffness of upper columns increases whereas that

Fig. 9 Non-uniqueness of the solution when four stiffness parameters are assumed as updating variables in
the same (e.g., x) direction 

Table 9 A sample of the ∞2 solutions obtained varying the constraints on the 12 parameters 

p7 / p5 = p8 / p6 p1 p2 p3 p4 p5 p6 p7 p8 d

(constraints) (Icx1) (Icy1) (Icx2) (Icy2) (Ibx1) (Iby1) (Ibx2) (Iby2) (%)

1/100 .539 .690 3.44 3.55 2.69 2.51 .027 .025 122

1/10 .549 .704 2.73 2.30 2.29 1.92 .229 .192 47.2

1/5 .560 .715 2.20 1.70 1.99 1.63 .399 .327 26.5

1/2 .589 .731 1.41 1.15 1.54 1.37 .771 .685 35.0

2 .646 .743 .728 .862 1.14 1.23 2.28 2.46 71.7

5 .665 .746 .600 .809 1.06 1.21 5.32 6.03 135

10 .672 .747 .562 .792 1.04 1.20 10.4 12.0 226

100 .679 .748 .529 .776 1.02 1.19 102 119 4064
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of lower columns very slowly decreases. As the beam stiffness ratio increases, reversed trends are

observed. The extent to which each parameter varies in Table 9 is an (inverse) measure of the

sensitivity of the solution to that parameter or, equivalently, of the robustness of its calibration. So,

maximum confidence should be attributed to the updated stiffness of lower columns, minimum

confidence to the updated stiffness of upper beams. Therefore, the most reasonable way to impose

the a priori constraint necessary to avoid under-determinacy seems the assumption, in agreement

with visual inspection and design drawings, of a unitary beam stiffness ratio. This is the very

assumption at the base of model M 8(10), which can finally be regarded as the most plausible of the

∞2 optimal solutions of the inverse problem. 

5.3 Discussion of the results

Applied to the model updating of the benchmark case study, the multi-model approach has

highlighted important features of the inverse problem, which can be summarized as follows.

The FE model structure depends on a total of Np = 12 parameters, four governing M and eight

governing K. Once the objective function is defined according to Eq. (1), data collected through a

perturbed boundary condition testing are sufficient (and even redundant) to estimate the four mass

parameters and six out of eight stiffness parameters. Two stiffness parameters remain indeterminate. 

In under-determined problems, the unique solution at a minimum distance from the initial

parameters of the baseline model (“minimum norm solution”) is sometimes desired, and obtained by

means of regularization techniques. In the present case a multi-model parameterization is applied

instead, where alternative solutions are presented to the analyst for an a posteriori plausibility

verdict. 

Models characterized by few updating parameters, although better conditioned, are likely to

contain larger errors. Through enlarging the updating set, errors tend to be increasingly corrected

and the objective function is progressively reduced. The multi-model approach tracks this trend,

comparing alternative parameterizations and rejecting unreliable ones. In the present case study, a

single-model approach, whatever the parameterization adopted, because of the small values taken by

the objective function in nearly all cases, would have given the false impression of having achieved

a successful calibration. 

In this multi-model search for the best parameterization, the objective function gets its minimum

for any of the ∞2 optimal solutions obtained through arbitrarily assigning two out of eight stiffness

parameters. Interestingly this minimum, although very small, is larger than zero, as the combined

effect of data redundancy and presence of error in the measurement/processing chain and in the

model structure. The ∞2 optimal solutions are indistinguishable in terms of the objective function

but may significantly deviate from each other in the search domain. A careful examination of few

samples indicates that parameters governing beam stiffness are less reliable than parameters

governing column stiffness. Based on engineering insight, the most plausible solution among the

infinite potential candidates is finally identified as the one which makes the two less sensible

parameters, i.e., the stiffness of respectively upper and lower beams, equal to each other. A unique

solution is thus obtained, by chance coinciding with model M 8(10).

Model M 8(10) appears therefore the most plausible of the ∞2 10-parameters models. It could be

argued that this model, due to the large number of updating parameters, may suffer from poor

conditioning if compared to smaller updating sets. With this in mind, if the whole population of

multiple models is re-examined it will be found that model M 7(8) too seems an excellent candidate,
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only a little inferior to M 8(10) in terms of the objective function but comparable or even preferable

for its physical significance, because it anchors the stiffness of the upper columns to its nominal

value. Actually, it can be concluded that both models M 7(8) and M 8(10), close to each other in the

parameter domain, posses a sound physical meaning and are very reasonable candidates for

modelling the benchmark structure.

Two interesting confirmations of these conclusions deserve mentioning. 

The first one is the compatibility of both models with the explained phenomenon of braces

dynamic interaction. The fourth natural frequency of the model without braces is located in the

middle between the two identified frequencies of modes 4a and 4b, and the small modal mass of the

fourth mode in the updated model justifies the significance of such interaction. 

The second one is the consistent floor sagging estimation achievable using the two best candidate

models. To this purpose, the thickness of the concrete slab at the i-th floor level may be intended

not as a constant value but as a 4th order polynomial function of the in-plan coordinates x and y

(2) 

where Lx and Ly are the slab in-plan dimensions, toi is the uniform slab thickness, si is the mid-span

slab deflection due to the sagging effect occurred during concrete casting. Accordingly, the slab

mass mi and the slab polar inertia Joi are obtained respectively as

(3) 

(4) 

Taking mi and Joi as provided, for instance, by M7(8), and inverting Eqs. (3) and (4), the uniform

thickness and the sagging deflection of the two concrete slabs turn out to be: to1 = 6.3 cm, to2 =

6.8 cm, s1 = 4.2 cm, s2 = 3.7 cm. These values sound very reasonable and in good agreement with

visual inspection.

6. Conclusions

The paper presents an application of ambient-vibration-based model updating to a benchmark

building structure, useful to show the significance of modelling errors in structural identification as

well as to exemplify some possible countermeasures.

A unique phenomenon of accidental dynamic interaction between main frame and secondary

structural elements is first illustrated as an example of errors in the model structure. An

experimental model reduction is proposed which might be profitably applicable whenever the effects

of unmodelled structural elements are known to be confined to a circumscribed region of the

experimental data, and this region does not need to be accurately replicated by the model.

A multi-model approach is then presented to deal with errors in model parameters, consisting in

the generation and solution of a multitude of models, all sharing the same model structure but

differing from each other in terms of the updating set. By enlarging the updating set until reaching

non-uniqueness of the solution, an entire population of candidate models is derived which improves

ti x y,( ) toi si 1 2x/Lx( )
2

–( ) 1 2y/Ly( )
2

–( )+=

mi ρcti x y,( ) Ad
A
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2
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the general understanding of the inverse problem and allows, with the support of engineering

insight, an a posteriori selection of the most plausible solution(s).

Main conclusions from this study can be summarized as follows:

• Even in the case of seemingly simple systems model-updating is not an easy task and may be

biased by errors in the model structure as well as by an improper choice of the updating

parameters;

• Unaccounted secondary structural elements may act as a severe misleading factor in system

identification; their lightness is not a sufficient condition to neglect them whenever a dynamic

interaction with the main structure can not be excluded;

• Spanning alternative modelling assumptions (multi-model parameterization) is an effective

strategy to depict to which extent results depend on the arbitrary choice of the updating set, and

ultimately to increase calibration robustness; 

• Small absolute values of the error function are not a reliable index of successful updating; since

small improvements in the error function may correspond to large variations in the domain of

physical parameters, every care must be taken to minimize all possible errors inherent in

measurement, processing, modelling and optimization;

• Whenever the updating parameters are too many to avoid ill-conditioning or under-determinacy,

physical insight is needed; models can only be accepted if sound physical explanation is found;

when physical justifications cannot be found models should be rejected; if it is not possible to

obtain a unique identification, alternative plausible candidates are identified for subsequent use.

The results of this work have been successfully used in the subsequent phases of the DPC-

ReLUIS 2005-08 Project to simulate the response of the benchmark structure in its controlled

configuration.
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