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Abstract. Structural reanalysis is frequently used to reduce the computational cost during the process of
design or optimization. The supports can be regarded as the design variables in various types of structural
optimization problems. The location, number, and type of supports may be varied in order to yield a more
effective design. The paper is focused on structural static reanalysis problem with added supports where
some node displacements along axes of the global coordinate system are specified. A new approach is
proposed and exact solutions can be provided by the approach. Thus, it belongs to the direct reanalysis
methods. The information from the initial analysis has been fully exploited. Numerical examples show
that the exact results can be achieved and the computational time can be significantly reduced by the
proposed method.
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1. Introduction

The design or optimization of a structure is usually an iterative process, and some of the design

variables are varied during each iterative step. Each variation of the design variables requires a fresh

analysis for stresses and displacements. Thus, repeated and tremendous calculations may be

involved. To reduce the high computational cost, structural static reanalysis problem has been

proposed. The purpose of static reanalysis is to evaluate accurately structural responses under a

given static load of the structure after modifications by using the original information which has

already been known from the initial analysis as much as possible so that the computational cost can

be greatly reduced (Abu Kasim and Topping 1987). Static reanalysis techniques are significant for

large structures, especially for finite element analysis (FEA) where only a small part of the structure

is progressively modified (Hassan et al. 2010, Terdalkar and Rencis 2006).

So far, many static reanalysis methods have been proposed. Generally speaking, the various

methods can be classified into the following two categories: direct reanalysis methods and

approximate reanalysis methods. Direct methods provide exact closed-form solutions and are
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efficient for the modifications where the changes in design variables are large in magnitude, yet

only affect a relative small part of the structure. Most of these methods are based on Sherman-

Morrison-Woodbury formulae (Sherman and Morrison 1949, Woodbury 1950). Various improvements

were developed and the readers are referred to Akgün et al. (2001). Approximate reanalysis

methods are suitable for the minor modifications to a large part or the whole of the structure, these

methods give the approximate solutions of the response of the modified structure by using the

information which has already been obtained during the full analysis of the original structure. In

these methods, the accuracy of the approximate solution and the rate of the convergence are

extremely important. Approximate reanalysis methods can be divided into the following four

classes: local approximations, global approximations, combined approximations (CA), and

preconditioned conjugate gradient (PCG) approximations. For the detailed derivation of the above

four methods, we refer the readers to Kirsch (2008), Li et al. (2007).

In general, the design variables used in structural design or optimization can be categorized as

follows (Olhoff and Taylor 1983): cross-sectional design variables, material design variables,

geometrical design variables, topological design variables, shape design variables, and support

design variables. For the detailed meaning of these design variables, we refer the readers to Olhoff

and Taylor (1983). The structural modifications corresponding to the variation of the above design

variables are called cross-sectional modifications, geometrical modifications, topological modifications,

layout modifications and supporting modifications, respectively. In recent years, the reanalysis of the

first four modifications have been extensively studied, and some progress has been made (Li and

Wu 2007, Kirsch 2008). However, structural supports as the optimization variables have been

widely used (Akesson and Olhoff 1988, Wang and Chen 1996, Takezawa et al. 2006, Tanskanen

2006, Zhu and Zhang 2010), especially in the field of building construction, aircraft structures and

printed circuit boards (Wang et al. 2004). In addition, elastic contact problems, such as normal,

tangential, and rolling contacts, can be transformed into multiple point constraints for nodal

displacements in the FEA method (Liu et al. 2010). The reanalysis studies on supporting

modifications are relatively few. Thus, it is eager to study the reanalysis method for such a

modification. The supporting modifications include the variations of the location, the number, and

the type of the structural support (Olhoff and Taylor 1983). A small change in support can influence

the structural performance significantly, especially in the displacements of the nodes under a given

load and the natural frequency. At the same time, these modifications often result in the variations

of the number of the degrees of freedom (DOFs). Therefore, the reanalysis on the supporting

modifications are challenging problems in the field of structural reanalysis.

This paper investigates the static reanalysis problem with added supports where some node

displacements along axes of the global coordinate system are specified. A new approach is

proposed. The algorithm preserves the ease of implementation and can be used with a general finite

element system. The remainder of the paper is organized as follows. The problem is formulated in

Section 2 and the algorithm is presented in Section 3. Numerical examples are given to validate the

effectiveness of the proposed method in Section 4. Conclusions are drawn in Section 5.

2. Problem formulation

The static reanalysis problem for addition of support constraints, where some node displacements

along axes of the global coordinate system are specified, can be stated as follows. 
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Given an initial design and the corresponding stiffness matrix , the displacements

vector  can be calculated by the following equilibrium equations

 (1)

where R0 denotes the load vector. The stiffness matrix K0 is symmetric and positive definite (SPD).

From the initial analysis, the Cholesky factorization of K0 has already been known

 (2)

where L0 is a lower triangular matrix,  represents the transpose of L0.

Suppose that the structure is modified by addition of some support constraints where k node

displacements along axes of the global coordinate system are specified. The structures of truss

shown in Fig. 1 are used to illustrate the capability of the proposed method. Case of adding support

constraint like Fig. 1(b) is considered in this paper, while case of adding skew support constraint

like Fig. 1(c) is not dealt with in this paper. 

Compared with the number of the original DOFs, the number of the added support constraints is

usually very small, i.e., k << m. The equilibrium equation of the modified structure is

 (3)

where  is the stiffness matrix of the modified structure and is also SPD, x denotes

K0 R
m m×

∈

x0

K0x0 R0=

K0 L0L0

T
=

L0

T

Kx R=

K R
m k–( ) m k–( )×

∈

Fig. 1 Structures of truss. (a) initial design, (b) modified design with one added support along vertical axis of
the global coordinate system, (c) modified design with one added skew support 
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the displacements vector and R represents the load vector of the modified structure. The purpose of

static reanalysis is to calculate the displacements vector x by using the information of the initial

analysis so that the computational cost can be significantly reduced. Once the displacements are

obtained, the stresses can be readily determined by utilizing explicit stress-displacement relations.

To illustrate our approach, the relationship between K0 and K is given as follows. Suppose

 (4)

K can be obtained by deleting some rows and columns of K0. Assume the  rows and

the  columns are deleted, where  are determined by the numbers of the nodes

on which the support constraints are added. Thus

(5)

3. The algorithm of adding rows and columns

Based on the structures of K0 and K in Eqs. (4) and (5), respectively, it can be shown (Sun and

Yuan 2006)

 

i1th … ikth, ,

i1th … ikth, , i1 … ik, ,
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 (6)

where  is obtained by deleting the  row of L0. The equilibrium Eq. (2) of

the modified structure, however, can not be calculated by solving the following two equations

 (7)

(8)

since the coefficient matrices of Eqs. (7) and (8) are not square. 

The proposed method in this paper can be described as follows. The column partition of  can

be written as

 (9)

where  denotes the ith column of , thus

 (10)

Let

 (11)

that is to say, the  components of  are all 0, the remaining components are the same

as the components of R and the order is also kept unchanged. Using the definition of  in

Eqs. (11) and (7), we have

(12)

Let 

K L̃L̃
T

=

L̃ R
m k–( ) m×

∈ i1th … ikth, ,

L̃y R=

L̃
T
x y=

L0

T

L0

T
L1  L2 … Lm[ ]=

Li R
m

∈ L0

T

 

R R1 … Ri
1

1– 0 Ri
1
… Ri

k
1– 0 Ri

k
… Rm k–, , , , , , , , , ,( )

T
R

m
∈=

i1th … ikth, , R

R
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 (13)

where the ijth component of  is 1 and zero entries elsewhere. Then Eq. (12) can

be rewritten as

 (14)

Pre-multiplying the equation above by  on both sides yields

 (15)

Let 

 (16)

i.e., the  components of  are all 0, the remaining components are the same as the

components of x and the order is also kept unchanged. Using the definition of  in Eq. (16), the

following relation can be readily verified

 (17)

By Eqs. (8), (15) and (17), we obtain the relation

 (18)

Pre-multiplying the two sides of Eq. (18) by  yields

 (19)

Let

,   (20)

Eq. (19) can then be written as

 (21)

Comparing the  components on both sides of Eq. (21) and noting that the

 components of  are all 0, we get the following linear system
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 (22)

where 

and uij denotes the jth component  of vector . Eq. (22) is a

system of linear equations with k unknowns, where k is the number of the added support

constraints. We will prove that the coefficient matrix of Eq. (22) is nonsingular, thus Eq. (22) has a

unique solution. Once  have been calculated, substitution of them into Eq. (21)

yields . Then the solution x of the equilibrium Eq. (3) can be easily obtained by utilizing the

relationship between x and  in Eq. (16).

Theorem The coefficient matrix A of Eq. (22) is nonsingular.

Proof From Eq. (2), we obtain

(23)

Use of Eq. (20) yields

 (24)

By the definition of bi  in Eq. (13), we know that  are the 

columns of , respectively. Recall that uij denote the jth component  of vector ui

, thus the matrix A is a k - by - k principal submatrix of . Note that K0 is a SPD

matrix, thus  is also a SPD matrix, any principal submatrix of  is also a SPD matrix.

Therefore, A is a SPD matrix, and it is nonsingular.

Based on the derivation above, the following algorithm, which we call the algorithm of adding

rows and columns, is presented as follows.

The algorithm of adding rows and columns

1. Determine the location of the nodes on which the support constraints are added, i.e., .

2. Solve the  linear systems , where  are

defined by Eqs. (11) and (13), respectively.

3. Form and solve the following system of linear equations
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4. Calculate  by .

5. Delete the 0 elements at the  components, and move forward the remaining

elements to obtain the displacements vector x of the modified structure.

A number of remarks should be made about the algorithm above. The main computational cost of

the algorithm is spent in step 2, where k + 1 linear systems need to be solved. The Cholesky

factorization of the common coefficient matrix has already been known from the initial analysis,

these linear systems can thus be easily solved by utilizing the forward and backward substitutions.

In step 3, only one low-dimension linear system need to be solved, the computational cost of

implementing this step is thus inexpensive.

The computational cost of our proposed algorithm can be quantified by the number of floating

point operations (flops). Suppose the number of DOFs of the original structure is m, and k is the

number of the added support constraints. Assume the half-band widths of the initial stiffness matrix

and the modified stiffness matrix are the same, and let b denote the half-band width. The case of

b << m is considered. Solving one linear system of order m with half-band width b by utilizing the

forward and backward substitutions requires  flops (Golub and Van Loan 1996).

Thus, the total computational cost of the proposed algorithm is  flops

since the computational cost of step 3 is negligible. Direct analysis method costs 

flops (Golub and Van Loan 1996) since the Cholesky factorization of the modified stiffness matrix

is required. The theoretical speed up St is defined as the ratio of the flops using the Cholesky

method to that using the proposed method (Leu and Tsou 2000), that is

 (25)

Eq. (25) can be approximated by

(26)

From Eq. (26), it can be seen that the smaller k is, the larger St is. Using Eq. (27) and noting that

b << m yield , if

 (27)

i.e., when the number of the added support constraints k satisfies the inequality (27), the

computational cost of the proposed method is equal to or less than that of the direct analysis

method.

4. Numerical examples

In this section, two examples are presented to demonstrate the effectiveness of the proposed

method. All the computations are completed on a PC: Pentium 4, quad-core CPU with 2.66 GHz,

2 GB RAM. Compaq Visual Fortran 6.5 is used.
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Example 1

Consider the ceiling structure of a building shown in Fig. 2. The length and the width of the

ceiling are 32 m and 24 m, respectively. The ceiling is discretized into a finite element model with

3128 elements and 825 nodes. Every node has 6 DOFs except the 32 supporting nodes (shown in

Fig. 3), the top view of the ceiling structure, where ○ denotes the supporting nodes) and the

number of DOFs of the structure is 4758. It includes two types of elements: 768 plate elements and

3990 beam elements. The material modulus of elasticity and the Poisson’s ratio for the plate are

 and . The thickness of the plate is . The size of each plate

element is . The modulus of elasticity and the Poisson’s ratio for the beam are =

 and , respectively. The cross-section of the beam is .

Fig. 4 shows the beams below the plate. Every node of the ceiling is subjected to a vertical load

. In order to reinforce the ceiling (modification), two unconstrained nodes are

supported, and 12 new support constraints are added, as shown in Fig. 3 (□ represents the added

supporting nodes). Thus, the number of DOFs of the modified structure is 4746.

Table 1 gives the maximum vertical displacements (two nodes denoted by △, as shown in Fig. 3,

have the maximum vertical displacements) of the modified structure calculated by the proposed

algorithm and the direct analysis. It can be observed that, for the eight-digit accuracy, the results of

the two methods are identical. The computational time for the ceiling structure is presented in Table 2.

E1 7 10
10

Pa×= υ1 0.3= 3 10
3–
m×

1 m 1 m× E2

2.07 10
11

Pa× υ2 0.31= 0.045 m 0.045 m×

P 1000 N=

Fig. 2 A ceiling structure

Fig. 3 The top view of the ceiling structure 
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It is obvious from Table 2 that the computational time of the proposed algorithm is much less than

that of the direct analysis.

Example 2

Consider a space truss structure shown in Fig. 5. The member cross-sectional areas are equal to

, and the material modulus of elasticity is E = . The spherical radius

of the structure, height and span are 20 m, 10 m and 34.642 m, respectively. The structure has 3750

space truss elements and 1291 nodes. Every node has 3 DOFs except the 45 supporting nodes that

locate at the lowest circumference (as shown in Fig. 6, the top view of the structure, ○ denotes the

supporting nodes), and the total number of DOFs is 3738. Every node of the structure is subjected

to a vertical load P = 3000 N. To reinforce the structure (modification), five unconstrained nodes are

supported, they also locate at the lowest circumference, as shown in Fig. 6 (□ represents the newly

added support constraints). Thus, the modified structure has 3723 DOFs.

Table 3 presents the maximum vertical displacements (the highest node of the structure) of the

modified structure calculated by the proposed algorithm and the direct analysis. The computational

times for the modified structure are given in Table 4. From Table 3, it can be seen that the results of

the two methods are the same for the eight-digit accuracy. It is obvious from Table 4 that the

computational time of our proposed algorithm is much less compared with the direct analysis.

1.3823 10
3–

m
2

× 2.07 10
11

Pa×

Table 1 The maximum vertical displacements calculated by the proposed algorithm and the direct analysis for
the modified ceiling structure

Proposed algorithm Direct analysis

The maximum vertical displacements -0.21343876 m -0.21343876 m

Table 2 The computational times for the modified ceiling structure

Proposed algorithm Direct analysis

The computational times 0.273438 s 1.853125 s

Fig. 4 The beams below the plate
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Fig. 5 A space truss structure

Fig. 6 The top view of the space truss structure

Table 3 The maximum vertical displacements calculated by the proposed algorithm and the direct analysis for
the modified space truss structure

Proposed algorithm Direct analysis

The maximum vertical displacements 0.01457823 m 0.01457823 m

Table 4 The computational times for the modified space truss structure

Proposed algorithm Direct analysis

The computational times 0.903125 s 17.818750 s
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5. Conclusions

The study in this paper has been focused on the static reanalysis problem with added support

constraints whose orientations are the same as the orientations of some axes of the global coordinate

system. A new approach for such modifications has been proposed. It provides exact solutions, thus

the method belongs to the direct reanalysis methods. The new proposed algorithm is easy to

implement and the computational time can be significantly reduced. Numerical examples have

demonstrated the advantages of the proposed approach. However, the proposed method can only

deal with a special case of support modifications. Future work is to study the static reanalysis

problem for the general supports modifications (addition or deletion of some support constraints,

and the orientations of the added or deleted support constraints are arbitrary).
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