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Abstract. This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and
active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators
and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a
piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and
numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural
system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy
dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed
compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed
by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on
a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical non-
linearity is suppressed, which is less complex in computation and can be practically implemented. 

Keywords: geometrical nonlinearity; piezoelectric flexible plate; T-S fuzzy model; output feedback
control; LMI

1. Introduction 

The lightweight and flexible structures are extensively used in aerospace engineering, civil and

mechanical engineering, such as large space structures, flexible manipulators, tall buildings and so

on. The flexible structure is less stiff and therefore more susceptible to the vibration which may last

for a long time. Since piezoelectric materials can be well integrated into lightweight flexible

structures and efficiently transform mechanical energy into electrical energy and vice versa , one

approach to control the undesired vibrations is to employ a control system with piezoelectric sensors

and actuators which have good characteristics of lightweight, electromechanical coupling effects and

broad bandwidth. In literatures (Gao and Chen 2003, Narayanan Balamurugan 2003, Kusculuoglu

and Fallahi 2004, Song and Sethi 2006, Hu and Ma 2004, Samuel and Vicente 2006, Qiu and Wu

2009), active vibration control of flexible structures with piezoelectric effect has been studied. 

However, most of works has been devoted to the linear dynamics and vibration control of flexible

structures, and investigations on the control of large-amplitude nonlinearity vibration due to the
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structural flexibility are limited in number. Nonlinear systems can exhibit extremely complex

behaviors which linear systems can not, such as jumps, bifurcations, saturation, subharmonic,

superharmonic and internal resonances, resonance captures, limit cycles, modal interactions and

chaos. So the vibration analysis and control design work of nonlinear flexible structures become

harder and prominent in the research of flexible structures (Zhou and Wang 2004, Belouettar and

Azrar 2008, Dash and Singh 2009). 

Since control design of nonlinear systems is a difficult process and many nonlinear control

methods for nonlinear systems are so complicated that they are not suitable for practical application,

linear control methods are still employed in the active control of nonlinear plate structure. Zhou and

Wang (2004) have suggested a control law of negative feedback of the identified deflection and

velocity, which are obtained by using a wavelet-based approach, for piezoelectric beam-type plates

with geometrically nonlinear deformation. Panda and Ray (2009) have developed a static velocity

feed back control based on a finite element nonlinear dynamics of the functionally graded laminated

composite plates by using the first-order shear deformation theory. According to the previous

studies, the robustness and stability of controlled system using linear control method based on the

traditional nonlinear model can not be strictly guaranteed. In addition, it is worth to mention that

most of the available works focus on the state feedback controller or observer-based feedback

controllers of structural systems (Zhou and Wang 2004, Belouettar and Azrar 2008, Panda and Ray

2009). In practice, the measurement of the modal displacement and velocity is not practical for

vibration control of engineering structure and an observer-based controller may require a significant

amount of online computational effort. 

The research of fuzzy logic control systems has drawn a great deal of attention because of the

universal approximation ability of fuzzy logic systems in nonlinear problems. As a knowledge-based

approach, the fuzzy logic control systems usually depend on linguistics-based reasoning in design.

Due to the complexity and nonlinearity of the fuzzy rules, it was extremely difficult to develop a

general stability analysis and design theory for the fuzzy control when Takagi and Sugeno (1985)

proposed their fuzzy inference system, now known as the Takagi-Sugeno (T-S) fuzzy model. In this

type of fuzzy model, the dynamics of nonlinear system can be approximately by a set of fuzzy

models ,which are locally linear time-invariant models interconnected by IF-THEN rules with

nonlinear fuzzy membership functions. For the reason that it employs linear model in the

consequent part, the conventional linear system theory can be applied to the stability analysis and

control synthesis of nonlinear system accordingly. The T-S fuzzy models are becoming powerful

engineering tools for modeling and control of complex nonlinear dynamic systems (Zheng and Sun

2004, Chen 2006, FaruqueAli and Ramaswamy 2009, Liu and Wang 2010), but few application to

active vibration control of nonlinear flexible structures have been realized.

In this paper, our aim is to design a T-S fuzzy robust dynamical output feedback vibration control

law for the geometrically nonlinear piezoelectric flexible plate structure by LMI method, in which

stability analysis and control design work can be reduced to a few standard convex optimization

problems involving the LMIs (Lu and Tsai 2003, Chen and Guo 2005, Samuel and Vicente 2006,

Xu and Chen 2008). The remainder of this paper is organized as follows. First, the dynamic

vibration equation for piezoelectric flexible plate with geometric non-linearity subjected to external

disturbance is constructed by using generalized Fourier series and numerical integral, and the

obtained nonlinear model is approximated by the T-S fuzzy model, which combines the fuzzy

inference rule and the local linear state model. Then, the dynamic T-S fuzzy output feedback control

design is carried out on the basis of the fuzzy model via the parallel-distributed-compensation
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(PDC) technique, and stability analysis and disturbance rejection problems is guaranteed by the

linear convex optimization using LMI method. Finally, Simulation results are given to demonstrate

the effectiveness of the presented method.

2. Modeling of nonlinear piezoelectric flexible plate 

Consider the transverse vibration of a rectangular flexible plate with K discretely distributed

piezoelectric actuator patches bonded to it. The plate material is assumed to be homogeneous and

isotropic, and has the dimensions of . Cartesian x, y and z coordinates are used to specify

the geometry of the plate. The x-y plane is coincident with the middle plane of the plate, and the

origin is at the center of the middle plane as shown in the Fig. 1. In pure transverse bending cases,

the mid-plane experiences no longitudinal strain or stress. As a consequent, it can be conveniently

used as the reference plane for stress-strain calculation purposes. The displacements of an arbitrary

point of coordinates (x, y) on the middle surface of the plate are denoted by  and w in the x, y

and z directions. The jth ( ) rectangular actuating patch has the dimensions of

 located at  and  as shown in the Fig. 1. The influence of the

piezoelectric materials on the plate structural dynamics will be ignored.

According to the classical thin plate theory, the Green strain components  at an arbitrary

point of the plate are related to the middle surface strains  and to the changes in the

curvature and torsion of the middle surface  by the following three relationships 

, , (1)

where z is the distance of the arbitrary point of the plate from the middle surface. The middle surface

strain-displacement relationships and changes in the curvature and torsion are given as follows
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Fig. 1 Schematic diagram of a piezoelectric rectangular flexible plate
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From Hooke’s law, the Kirchhoff stress components  at an arbitrary point of the plate

related to the strain  for homogeneous and isotropic material by 

(3)

Where E is Young’s modulus of elasticity, ν is Poisson ratio of the plate Material and G is the

shear modulus which can be related to E and ν as described above.

The stress components  at an arbitrary point of the plate are related to the middle

surface stress  and the transverse displacements by the following three relationships

 (4)

So the mid-surface membrane forces  and the bending and twisting moments

 can be calculated by integrating the stress couples through the plate thickness respectively 

(5)

(6)

where  is the flexural rigidity of the plate.

The elastic strain energy U of the plate, neglecting  under Kirchhoff’s hypotheses, is

given by

(7)

where h is the plate thickness, a and b are the in-plane dimensions in x and y directions,

respectively. The first term is the membrane energy and the second one is the bending energy.

The kinetic energy T for the transverse vibration of a rectangular plate (neglecting longitudinal

inertia and rotary inertia), is given by

(8)
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Where  is out-of-plane distributed external disturbance load of intensity  on the

plate.  are the bending moments coming from the jth ( ) piezoelectric

actuator patches which can be obtained by Fuller et al. (1996) 

(10)

Where  is the Heaviside step function. Here,  ( ) is zero for  and one

for , and  ( ) is zero for  and one for ,  are the

location of the ends of the jth actuating patch respectively. vaj is the applied voltage to the jth

actuator.  depend on the performance and dimensions of plate and piezoelectric actuator

patches which can be obtained by

(11)

Where  and  are the piezoelectric charge constants along x and y respectively. Eaj and υaj

are the Young’s modulus and Poisson ratio of piezoelectric material respectively. Hence, we have 

(12)

Where  is Kronecker delta function.

Using the principle of Hamilton
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Where w denotes the mid-plane transverse displacement response of point  either on the

plate or on the piezoelectric patches. 

Introducing the stress function φ which is defined by 

(16)

With Eq. (6), Eq. (15) and Eq. (16), the transverse vibration governing equation in terms of stress

function can be represented as

,  (17)

According to the stress-strain relationship (3), equilibrium Eq. (14) and definition (16), the stress

function can be chosen by satisfying the following compatibility 

, (18)

The transverse displacement and the stress function can be expanded in a generalized double

Fourier series satisfying the boundary conditions and compatibility condition

(19)

Where  is the generalized coordinates that are unknown functions of t. ,

 satisfy the orthogonality as follows 
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Substituting Eq. (19) into Eq. (17) and Eq. (18), multiplying the two equations by 

and  respectively and integrating as follows 
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(22)

The dynamic equations of plates with cubic non-linearity can be further rearranged as follows

 

(23)

3. T-S fuzzy modeling of structural system 

Using a finite subset of the infinite set which is needed to represent  in the Eq. (23) and

defining  as state variables, the state space

model of the piezoelectric flexible plate structure with geometrical non-linearity can be written as

 

 

w φ,
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(24)

With the displacement coming from a point  along the plate as the performance

displacement, we have

(25)

By decomposing the whole nonlinear state space into several linear subspaces interconnected by

IF-THEN inference rules with nonlinear fuzzy membership functions, structural system Eq. (24) can

be approximated by T-S fuzzy model. The ith model rule is given by the following IF-THEN fuzzy

rules

IF  is  and … and  is  and … and   is  THEN

(26)

Where  is the fuzzy set, r is the rule number of

model rules, xo is the state vector,  are the premise variables,  is the local

system matrix. B,  are the same as that in the Eq. (24).

The final dynamic fuzzy model for the system Eq. (24) can be inferred as follows 

(27)

Where  is the grade of membership of

 in the fuzzy set , r is the rule number. Since

(28)
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(29)

 is the measured output voltage of the piezoelectric sensor patches, and

the output matrix  can be obtained by
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(30)

 depend on the performance and dimensions of plate and lth piezoelectric sensor patches,

which can be obtained by

(31)

Where hsl is the thickness, csl is the piezoelectric capacitance.  are the voltage constants in

x and y directions respectively.  are the electromechanical coupling factors in x and y

directions respectively.  are the location of the ends of the lth sensing patch

respectively.

4. Fuzzy dynamic output feedback control law 

In order to design a global controller for the T-S fuzzy model, the parallel distributed

compensation (PDC) technique is adopted in this section. In the PDC technique, each control rule is

designed from the corresponding rule of the T-S fuzzy model, and the designed fuzzy controller

shares the same fuzzy sets with the fuzzy model in the premise parts.

For the fuzzy model Eq. (27), we construct the following fuzzy controller via the PDC. The th

rule of the fuzzy logic controller is defined as follows

IF  is  and … and  is  and … and   is  THEN

(32)

Where  is the state variable vector of the controller,  are unknown

parameters of the local controller,  means that the control law is strictly real.

The overall model-based fuzzy dynamic output feedback law is analytically represented by

(33)

With controller Eq. (33) and structure Eq. (27), the state space realization of the overall closed-

loop fuzzy system can be obtained 
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(34)

Our aim is to design the fuzzy dynamic output controller Eq. (33) to suppress the geometrically

nonlinear vibration of the plate structure due to any unknown external disturbance with finite

energy, which can be implemented by minimize a measure of energy transfer from the external

disturbance  entering the flexible structure at the known fixed locations  to vibration

output  of the closed-loop system Eq. (34). Because of the robustness consideration, the 

norm is chosen as the performance index, which relates to the maximum magnitude of the

frequency response for system and the worst situation taking place in the vibration such as the

resonance excited by the external disturbance whose frequency equals to the fundamental frequency

of system. In the following, we will reformulate the  fuzzy controller design problem into

solving an LMI problem based on Lyapunov direct method. As a result, the stability analysis and

disturbance rejection control design problems can be reduced to linear matrix inequality problems.

Robust stability and disturbance rejection (an upper bound γ on the  norm from the

disturbance  to the output ) of the T-S fuzzy system Eq. (34) can be guaranteed (Chen and

Guo 2005, Samuel and Vicente 2006, Xu and Chen 2008) if there exists  and Lyapunov

function  is taken such that

(35)

Substituting Eq. (34) into Eq. (35) and applying S-procedure, Eq. (35) will hold if there exits

, such that (Assawinchaichote et al. 2008)

(36)

Hence, the stability and disturbance rejection of the T-S fuzzy model Eq. (34) are achieved by

finding a common symmetric positive definite matrix P for r subsystems Eq. (36). The matrix

inequalities Eq. (36) are nonlinear in the unknown parameters P, . Partitioning P as

 and P−1 as , we can change Eq. (36) into the linear matrix

inequalities as follows (Tanaka and Wang 2001) 
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(37)

Where

(38)

The fuzzy vibration controller design problem of the piezoelectric flexible plate structure with

geometrical non-linearity can be converted into a linear convex optimization problem as follows

(39)

With the solution  to Eq. (39), the parameters of the fuzzy controller Eq.

(33) can be obtained by

(40)

5. Simulation results

Here consider the transverse vibration control of a simply supported thin plate with collocated

piezoelectric actuator/sensor patches bonded to it. The plate has the dimension of length a = 0.7 m,

width b = 0.7 m and thickness . The properties of plate material are E = 7.0 × 1010 N/

m2, , . Two identical piezoelectric patches are used as an actuator and a

sensor respectively, which are located at  on either side of the flexible plate, and

have the thickness of . The piezoelectric actuator/sensor pair has similar properties in x

and y directions, i.e., , , ,

, . The performance displacement output is the displacement

coming from a center point of the plate. The damping of the structure is ignored.

 

 

min γ
2

s.t.         Eq. 37( )

p̂
1
p1 AMi CMi BMi DMi, , , , ,

 

h 3 10
3–
m×=

ρh 2500 kg/m
2

= υ 0.3=

0 0.1a→ 0 0.1b→,
2 10

4–× m

d31 d32 3.2 10
10–
m/V×= = g31 g32 9.5 10

3–
Vm/N×= = Cp 4.5 10

7–
F×=

k31 k32 0.44= = Ea 6.2 10
10
N/m

2×=
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For the simply supported plate, the following boundary condition is introduced as 

 

(41)

In order to simplify the calculation, the middle surface transverse displacements w is

approximated by using the following functions with one-term fundamental mode satisfying

geometric boundary conditions

(42)

Substituting Eq. (42) into Eq. (18) gives

(43)

For the simply supported plate with boundary conditions Eq. (41), the stress function is

determined as follows

 (44)

Where

 (45)

The maximum transverse displacement wmax is taken as the order of the thickness of plate, and

. Since the number of rules for the overall control system is basically the

combination of the model rules and control rules, and the number of model rules is directly related

to complexity of analysis and design LMI conditions, we attempt to construct a two-rule fuzzy

model by local approximation in the fuzzy partition spaces. M1 is the fuzzy set for small amplitude

and M2 is the fuzzy set for large amplitude . The grades of membership for M1 and M2 are chosen

w
∂2w

∂x2
---------

∂2
φ

∂y2
--------

∂2φ
∂x∂y
------------ 0, x ±

a

2
---= = = = =

w
∂2w
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∂2
φ
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∂2φ
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2
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ϕ
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4
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2
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Fig. 2 Grades of membership of fuzzy sets M1 and M2
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Fig. 3 Displacement responses for linear system under different forcing amplitudes

Fig. 4 Displacement responses for nonlinear system under different forcing amplitudes 

Fig. 5 Displacement responses for uncontrolled and controlled nonlinear systems
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as shown in Fig. 2. The time interval is taken as 0.005 to obtain reasonably accurate results. 

The displacement responses for the uncontrolled linear and nonlinear system with different forcing

amplitudes (q and 5q) are shown in the Fig. 3 and Fig. 4 respectively, which show the typical

dynamical feature of nonlinear systems that is the highly amplitude dependence of nonlinear

frequency. From the Fig. 3 and Fig. 4, It is also shown that the smaller amplitude occurs in the

nonlinear system compared to linear system. The displacement responses for the uncontrolled and

controlled nonlinear system are shown in Fig. 5, and the control input voltage for the actuator of

controlled system is shown in Fig. 6. It is shown that the fuzzy controller based on the two-rule

fuzzy model, which is only an approximation to the original structure, performs well when applied

to the original nonlinear plate structures, and the vibration of plate structures with geometrical non-

linearity is suppressed.

6. Conclusions

The T-S fuzzy model-based control approach and the LMI approach are combined to obtain a

robust vibration control scheme for piezoelectric flexible thin rectangular plate with geometrical

non-linearity. The T-S fuzzy model is developed to approximate the large-amplitude vibration

dynamic characteristics of structure which is obtained by using generalized Fourier series and

numerical integral. Based on the T-S fuzzy model, a global fuzzy dynamic output feedback control

law is designed to suppress the vibration due to the external disturbance by using the PDC

technique. Each fuzzy control rule is designed from the corresponding rule of the T-S fuzzy model,

and the designed fuzzy controller shares the same fuzzy sets with the T-S fuzzy model in the

premise parts. The stability analysis and disturbance rejection control design problems are converted

into a linear convex optimization problem by using linear matrix inequalities. The numerical results

show that the designed fuzzy controller of a simply supported piezoelectric flexible rectangular plate

based on the two-rule fuzzy model, which is only an approximation to the original plate structure,

performs well when applied to the original nonlinear plate structure. Moreover, the control law is

less complex in computation and can be practically implemented.

Fig. 6 Control input voltage for actuator of controlled nonlinear system
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