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Abstract. This study presents dynamic analysis of laminated beams traversed by moving loads using a
multilayered beam element based on the first-order shear deformation theory. The present element consists
of N layers with different thickness and material property, and has (3N + 7) degrees of freedom
corresponding three axial, four transversal, and 3N rotational displacements. Delamination and interfacial
slip are not allowed. Comparisons with analytical and/or numerical results available in literature for some
illustrative examples are made. Numerical results for natural frequencies, deflections and stresses of
laminated beams are given to explain the effect of load speed, lamina layup, and boundary conditions. 
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1. Introduction

 

Use of fiber-reinforced polymer composites in bridge engineering is tremendously increased since

they can be alternative to conventional bridge construction materials due to their merits, such as low

density, high strength, long-term durability, and good corrosion and fatigue resistance. 

Bridges are designed to carry moving traffic loads in addition to their self-weight. It is well

known moving loads cause greater deflections and stresses than those due to static loads. Thus,

dynamic nature of moving loads must be considered in bridge design and analysis. Extensive

experimental and theoretical research on dynamic response of bridges modeled as an isotropic beam

or a plate structure has been carried out (Hino et al. 1984, Frýba 1999, Au et al. 2000, Yang et al.

2004, Abu-Hilal and Mohsen 2006, Kocatürk and im ek 2006, im ek and Kocatürk 2009,

Cantero et al. 2010). 

Response of laminated composite and sandwich structures to moving loads has been, however,

rarely studied. Chonan (1987) studied steady state response of thick sandwich strip plate to moving

line load of constant magnitude. The problem was studied on the basis of a thick plate theory and

the solution is obtained by applying the method of the complex Fourier transform. Based on the

higher-order shear deformation theory, Kadivar and Mohebpour (1998) derived a laminated beam

element including Poisson effect and bend-stretch, shear-stretch, and bend-twist couplings to analyze

moving load-induced vibrations of unsymmetric laminated composite beams. Stochastic vibrations
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of laminated composite coated beams traversed by a moving random load were studied by Zibdeh

and Abu-Hilal (2003). They assumed the load moving with accelerating, decelerating and constant

velocity types of motion. Kiral et al. (2004) investigated dynamic behavior of laminated composite

beams under moving loads using a three-dimensional finite element model based on classical

lamination theory. Lee et al. (2004) examined the dynamic behavior of single and two-span

continuous composite plates subjected to multi-moving loads. Their finite element formulation was

based on the third-order shear deformation theory and considered the rotary inertia. Kavipurapu

(2005) studied the dynamic response of simply supported glass/epoxy composite beams subjected to

moving loads in a hygrothermal environment. Malekzadeh et al. (2009) presented a solution

procedure based on three-dimensional elasticity theory to determine the dynamic response of cross-

ply laminated thick plates under moving loads. Ghafoori and Asghari (2010) investigated dynamic

response of angle-ply laminated composite plates traversed by a moving mass or a moving force.

Based on the first-order shear deformation theory, they derived a rectangular plate element using

adaptive finite element method. Kahya and Mosallam (2011) considered the moving mass problem

of composite sandwich beams to study effects of vehicle mass, vehicle speed, fiber orientation and

lamina thickness on the beam response and the contact force at the mass-beam interface. An

algorithm based on the finite element method was developed by Mohebpour et al. (2011a, b) to

study the dynamic response of laminated composites subjected to moving oscillators. Recently,

Kahya (2012) studied laminated composite beams under moving loads using a multilayered beam

element developed by Yuan and Miller (1989) based on the first-order shear deformation theory. 

This study extends the author’s previous work (Kahya 2012) to present comprehensive results for

dynamic response of laminated beams to moving loads. The present beam element includes separate

rotational degrees of freedom for each lamina without any additional axial and transversal degrees

of freedom beyond those necessary for a single lamina. Formulation is based on the first-order shear

deformation theory. The shape functions are selected to ensure compatibility between the laminae.

Interfacial slip and delamination are not allowed. 

2. Governing equations

As shown in Fig. 1, a point load P moves on a laminated beam with a constant speed c. The

beam consists of N-stacked laminae. Each lamina may have its own thickness and material

properties. Governing differential equations for this problem can be written as

 (1)

where , and  denote axial, transversal and rotational displacements, respectively.

m is mass per unit length, E is Young’s modulus, G is shear modulus, A is cross-sectional area, I is

second moment of area, ρ is mass density of the beam, and K is shear correction factor which is

taken as 5/6 for a rectangular cross-section. Prime and over dot denote the derivatives with respect

to x and t, respectively. For a concentrated load moving on the beam, the load function  can

be defined as

EAu″ mu··– 0=

KGA v″ φ′–( ) mv··– p x t,( )+ 0=

EIφ″ KGA v′ φ–( ) ρIφ
··

–+ 0=

u x t,( ) v x t,( ), φ x t,( )

p x t,( )
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 (2)

where P and c denote magnitude and speed of the moving load, respectively.  is Dirac delta

function.

3. Finite element formulation

3.1 Single lamina element

The single lamina element for constitution of multilayered beam element has five nodes as shown

in Fig. 2. It includes 10-degrees of freedom that are three axial, four transversal and three rotational

displacements, respectively. All nodal displacements are measured at midplane of the lamina. 

 Solutions to , and  can be assumed as

 , , (3)

where  and  are shape functions, and  and  are generalized nodal

displacements. Quadratic polynomials for  and , and a cubic polynomial for  are

selected for consistency as explained in Yuan and Miller (1989) and Kahya (2012).

Using Galerkin-weighted residual approach, and following the usual procedure of the finite

element method (Zienkiewicz and Taylor 2000), equation of motion of the single lamina element

can be written as 

p x t,( ) Pδ x ct–( )=

δ ·( )

u x t,( ) v x t,( ), φ x t,( )

u x t,( ) ϕi x( )ui t( )
i 1=

3

∑= v x t,( ) ψi x( )vi t( )
i 1=

4

∑= φ x t,( ) θi x( )φi t( )
i 1=

3

∑=

φi x( ) ψi x( ), θi x( ) ui t( ) vi t( ), φi t( )

ϕi x( ) θi t( ) ψi x( )

Fig. 2 10-degrees of freedom single lamina element

Fig. 1 Geometry and dimensions of a laminated beam traversed by a moving point load
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 (4)

where m, k, f and u denote element mass matrix, element stiffness matrix, nodal load vector and

nodal displacements vector, respectively, and are defined as

 

, , (5)

where

 

,

, (6)

where Le is the element length. m and k matrices are given in Kahya (2012) explicitly.

3.2. Multilayered beam element

Multilayered beam element consists of N-stacked laminae as shown in Fig. 3. When constituting

multiple laminae, only rotational degrees of freedom are added to the system. No additional axial

and transversal degrees of freedom are necessary. Consequently, for N-layer beam element, total

number of degrees of freedom is (3N + 7). To constitute the mass and stiffness matrices of

multilayered beam element, the following procedure is employed (Yuan and Miller 1989). 

According to Eq. (4), the load-displacement relations for each lamina can be written as

(7)

where  denotes the nodal force vector, and  is a column vector including the local variables

of ith lamina as well as the rotational variables of the other laminae between i and N, and has

dimension . 

The local displacement vector  for each lamina can be converted to  by using (Yuan and

Miller 1989)
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 (8)

where R(i) is a  matrix defined as

All except  (9)

X(i) vector can be converted to  by the following relations (Yuan and Miller 1989).

 (10)

where T(i) is a  matrix defined as 

All except ,

 (11)

In order to transform the local load vectors given by Eq. (7) to the global ones, the followings can

be used (Yuan and Miller 1989).
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Fig. 3 Multilayered beam element
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 (12)

Combining Eqs. (7) to (12) together gives the final expressions for the stiffness and mass matrices

of the multilayered beam element as follows (Bassiouni et al. 1999, Kahya 2012).

 

(13)

 (14)

The equation of motion of the laminated beam in terms of Xs can thus be written as follows

 (15)

where M and K are the system mass and stiffness matrices, and F is the nodal force vector,

respectively. After imposing the boundary conditions, the system equations given by Eq. (15) will 

be solved numerically by using the Newmark’s method. Note that the nodal force vector contains

zeroes for all degrees of freedom except those corresponding to the transverse displacements in the

element on which the moving load acts. 

3.3 Stresses in laminated beams

Finite element stress locations are shown in Fig. 4 for a single lamina. The normal and shear

stresses will be calculated according to the Hooke’s law, i.e.,  and , where

 and  are the axial and shear strains, respectively. With the degrees

of freedom provided by the present element, the normal stress  has a linear variation through

thickness while the shear stress  is constant. 

Substituting Eq. (3) into the strain expressions, after some manipulations, the following matrix

equation can be obtained for stresses. 

 

σ = HX (16)

where H is a 6 × 10 matrix given in the Appendix, X contains the local variables of the single

lamina, and σ is given by
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For an N-layer beam element, the equations for stresses in each lamina can be obtained by

combining Eqs. (16), (8) and (10) as in the following.

(18)

where  has dimension .

 

4. Numerical results

4.1 Verification of the present model

Some numerical examples are first given to verify the present model. Based on the approach

described above, a FORTRAN program is developed for numerical computations. The results

obtained are compared with the analytical and/or numerical results available in literature for most

cases. In all analyses, eight elements are used in finite element discretization along the beam length.

Since the present element does not consider bending-stretching coupling, only cross-ply laminates

and isotropic beams are taken into consideration.

Example 1 As a first example, an isotropic simply supported beam under center point load with

magnitude P is considered since its analytical solution can be easily obtained. Material properties

are E = 206.8 GPa, ν = 0.3, and ρ = 10686.9 kg/m3. Table 1 shows the normalized maximum static

deflections  and fundamental frequencies  for , 10 and 100. The followings are used

for normalization
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Fig. 4 Finite element stress locations for a single lamina
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natural frequencies. As expected, shear deformation is important especially for thicker beams.

Increase in the number of layers (NL) through the thickness does not cause any significant change

on the results. Even only one layer is used, the present model gives good results for deflections and

natural frequencies of isotropic beams. 

Figs. 5 and 6 show the maximum normal and shear stress distributions through the thickness of

the beam. To avoid the effect of shear, very slender beam (L/h = 100) is considered. Eight layers

Table 1 Maximum static deflections  and fundamental frequencies  for a simply supported isotropic beam

 L/h  NL  Model  

 5

 1

 Present  28.1200  2.6772

 EBT(1)  25.0000  2.8491

 TBT  28.1200  2.6772

 3

 Present  28.4129  2.5631

 EBT  25.0075  2.8487

 TBT  28.1278  2.6768

 5

 Present  28.5889  2.5100

 EBT  25.0000  2.8491

 TBT  28.1200  2.6772

 10

 1

 Present  25.7800  2.8024

 EBT  25.0000  2.8491

 TBT  25.7800  2.8023

 3

 Present  25.8612  2.7691

 EBT  25.0075  2.8487

 TBT  25.7876  2.8019

 5

 Present  25.9005  2.7543

 EBT  25.0000  2.8491

 TBT  25.7800  2.8023

 100

 1

 Present  25.0078  2.8487

 EBT  25.0000  2.8491

 TBT  25.0078  2.8486

 3

 Present  25.0161  2.8480

 EBT  25.0075  2.8487

 TBT  25.0153  2.8482

 5

 Present  25.0090  2.8482

 EBT  25.0000  2.8491

 TBT  25.0078  2.8486

(1)EBT – Euler-Bernoulli beam theory, TBT – Timoshenko beam theory

v ω

v ω
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Fig. 5 Maximum normal stress distribution through
the thickness of a simply supported isotropic
beam (L/h = 100)

Fig. 6 Maximum shear stress distribution through
the thickness of a simply supported isotropic
beam (L/h = 100) 

Table 2 Normalized natural frequencies  of a simply supported isotropic beam

 n
 L/h = 10  L/h = 20  L/h = 100

 Modes  Present  Exact(1)  Modes  Present  Exact  Modes  Present  Exact

 1  f(1)(2)  2.8024  2.8023  f(1)  2.8372  2.8371  f(1)  2.8487  2.8486

 2  f(2)  10.7113  10.7087  f(2)  11.2121  11.2092  f(2)  11.3917  11.3887

 3  e(1)  15.7080  -  f(3)  24.7586  24.7285  f(3)  25.6359  25.6030

 4  f(3)  22.5854  22.5613  e(1)  31.4160  -  f(4)  45.6415  45.4628

 5  f(4)  37.2520  37.1427  f(4)  42.9891  42.8350  f(5)  71.5818  70.9284

 6  e(2)  47.1278  -  f(5)  65.4128  64.8882  f(6)  103.7953  101.9494

 7  f(5)  53.8282  53.4968  f(6)  91.6148  90.2453  f(7)  142.7248  138.4650

 8  f(6)  71.7441  70.9657  e(2)  94.2555  -  e(1)  157.0798  -

 9  e(3)  78.5881  f(7)  121.2267  118.3125  f(8)  199.8832  180.4049

 10  f(7)  90.6359  89.1205  f(8)  157.1762  148.5707  f(9)  248.1434  227.6894

 11  f(8)  110.2042  107.6867  e(3)  160.4676  -  f(10)  315.4145  280.2307

 12  e(4)  113.1898  -  f(9)  192.0240  180.5824  -  -  -

 13  f(9)  131.4003  126.4893  f(10)  220.4084  213.9871  -  -  -

 14  f(10)  142.1973  145.4163  -  -  -  -  -  -

(1)Analytical solution based on Timoshenko beam theory 
(2)“f” and “e” indicate flexural and extensional modes, respectively.

ω
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through the thickness are used for stress distributions. The followings are employed for

normalization 

 , (20)

Fig. 5 compares the normal stresses obtained by the present model and the analytical method

based on the first-order shear theory. As seen in the figure, the present model is very successful to

capture accurate normal stresses. Since the present model assumes the shear stress through the

thickness is constant, more layers in vertical direction, i.e., y-direction, should be used to obtain

better results. As seen in Fig. 6, the present model gives greater shear stress than that of the

analytical solution. 

Table 2 gives some lower natural frequencies of the isotropic simple beam for different L/h. Since

the governing differential equations given by Eq. (1) include u and v variables, the present model

yields both extensional and flexural vibration modes. For flexural vibration, results for natural

frequencies of the present model are in good agreement with those of the exact solution.

σ
σAh

PL
----------= τ

τA

P
------=

Table 3 Normalized maximum deflections  for laminated composite beams under center point load

 Laminate  L/h  Model
 Boundary conditions(1)

 H-H  C-C  C-F

 0

 10
 Present  1.696  0.932  18.814

 Analytical(2)  1.600  0.850  18.400

 20
 Present  1.176  0.424  16.707

 Analytical  1.150  0.400  16.600

 100
 Present  1.007  0.257  16.028

 Analytical  1.001  0.256  16.024

 90

 10
 Present  25.707  6.952  402.83

 Analytical  26.500  7.750  406.00

 20
 Present  25.177  6.426  400.71

 Analytical  25.375  6.625  401.50

 100
 Present  25.007  6.257  400.03

 Analytical  25.015  6.265  400.00

 (0/90/90/0)

 10
 Present  1.809  0.949  20.890

 Analytical  1.991  1.141  21.578

 20
 Present  1.306  0.452  18.861

 Analytical  1.348  0.498  19.006

 100
 Present  1.143  0.291  18.209

 Analytical  1.143  0.292  18.184

(1)H – Hinged, C – Clamped, F – Free
(2)Analytical solution based on the first-order shear deformation theory (Reddy 1997)

v
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Example 2 In the second example, laminated composite beams with different lamina lay-up under

center point load are considered. Material properties are selected as ,  =

,  and  (Reddy 1997). Table 3 shows normalized maximum

deflections for different L/h and boundary conditions. As can be seen in the table, results of the

present model agree well with the analytical solution based on the first-order shear theory by Reddy

(1997). 

In Figs. 7 and 8, the maximum normal and shear stress distributions through the thickness of a

symmetrically laminated (0/90/90/0) composite beam with simple supports are given. Here, eight

layers are used along the thickness for stress calculations. Similar to the isotropic beam, the present

model has a good accuracy for normal stresses while giving greater shear stresses than the

analytical solution based on the first-order shear theory. 

Example 3 For further verification of the present multilayered beam element, natural frequencies

of some laminated beams of which geometrical and material properties given in Table 4 are

investigated. In Table 5, a comparison of the first nine natural frequencies for flexural vibration

obtained by the present model with that of two-dimensional (2D) elasticity solution by Chen et al.

(2003) is given. As can be seen, the present model is quite efficient to determine natural frequencies

even for higher modes. 

4.2 Moving load analysis results

Hereafter, results for dynamic response of some laminated composite beams on which a

concentrated load P moves with a constant speed c are given. In the following figures, subscripts

“d” and “0” indicate dynamic response and the maximum static response, respectively.

Example 4 Response of an isotropic simple beam to a moving load is first considered. Material

E1/E2 25= G12 G13=

0.5E2 G23 0.2E2= ν12 0.25=

Fig. 7 Normal stresses through the thickness of a
simply supported (0/90/90/0) laminated beam
(L/h = 100)

Fig. 8 Shear stresses through the thickness of a
simply supported (0/90/90/0) laminated beam
(L/h = 100) 
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Table 4 Geometrical and material properties for Example 3 (Chen et al. 2003)

Description Data

Beam-1
Three-layer sandwich beam

(face/core/face)

L = 914.4 mm, b = 25.4 mm, h = 13.614 mm
Face layer: 
hf = 0.4572 mm, Ef = 68.97 GPa, νf = 0.3, ρf = 2683 kg/m3

Core layer:
hc = 12.7 mm, Gc = 82.764 GPa, νc = 0.3, ρc = 32.8381 kg/m3

Beam-2
Five-layer sandwich beam 
(face/core/face/core/face)

L = 508 mm, b = 25.4 mm, h = 21.844 mm
Face layer: 
hf = 0.508 mm, Ef = 68.97 GPa, νf = 0.3, ρf = 1.0691 × 107 kg/m3

Core layer:
hc = 10.16 mm, Gc = 34.485 GPa, νc = 0.3, ρc = 2.6726 × 106 kg/m3

Beam-3
(0/90/90/0) laminated 

composite beam

L = 381 mm, b = 25.4 mm, h = 25.4 mm
E1 = 145 GPa, E2 = 9.6 GPa, G12 = 4.1 GPa
ν12 = 0.3, ρ = 1570 kg/m3

Beam-4
(0/0/90/90/0/0) laminated 

composite beam

L = 762 mm, b = 25.4 mm, h = 152.4 mm
E1 = 525 GPa, E2 = 21 GPa, G12 = 10.51 GPa
ν12 = 0.3, ρ = 800 kg/m3

Table 5 Natural frequencies of laminated beams with different end conditions for the first nine flexural modes

n 1 2 3 4 5 6 7 8 9

Beam-1 (H-H(1), f : Hz)

Present 57.3049 218.1627 456.6918 745.1673 1057.4112 1422.6782 1762.2835 2152.8223 2481.4142

2D(2) 57.4837 220.7156 467.0315 770.4177 1108.9263 1467.2388 1827.5263 2256.9333 2617.5000

Beam-1 (C-F(3), f : Hz)

Present 33.8998 197.8568 504.1749 884.6975 1306.7644 1683.0682 1749.1343 2200.5757 2648.4590

2D 33.958 199.857 513.561 907.979 1348.827 1682.761 1813.963 2320.409 2781.882

Beam-2 (H-H, ωm: rad/sec)

Present 10.5999 30.1984 50.3954 70.1759 90.6946 128.8924 149.1888 168.3866 188.8004

2D 10.9138 32.0618 54.2787 76.1316 97.6311 118.9123 139.6127 163.9236 176.0183

Beam-3 (C-C,  )

Present 4.5910 10.3121 17.0435 24.2115 31.5990 - - - -

2D 4.7120 10.7066 17.7965 25.3746 33.1948 - - - -

Beam-3 (C-F, )

Present 0.9215 4.8856 11.4463 17.1779 18.7495 26.3536 - - -

2D 0.9149 4.8820 11.3898 17.0673 18.4218 25.9372 - - -

Beam-4 (H-H, )

Present 1.5556 3.8496 5.7396 7.8032 9.8686 11.9358 16.1612 18.2083 19.7571

2D 1.6591 3.9000 6.1342 8.3569 10.5728 12.7663 14.9832 17.2059 19.2723

(1)H - Hinged, C - Clamped, F - Free
(2)Semi-analytical solution based on 2D elasticity (Chen et al. 2003)
(3)For this cantilever beam, L = 711.2 mm is taken as in Chen et al. (2003).

ω
n

ω
n

L
2

/h( ) ρ/E1=

ωn

ωn
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properties were given in Example 1. Analytical solutions are obtained by the assumed mode method

for 100 modes. In Fig. 9, dynamic deflections at midpoint, which are normalized by the maximum

static deflection, are given when the load moves along the beam length with speeds of 5 m/s and

25 m/s. The critical speed for this beam is calculated as . As seen in the

figure, the present model shows perfect agreement with the analytical solution.

Figs. 10 and 11 show the normal stress at y = −h/2 (bottom) and the shear stress at y = 0 (center)

at midspan of the beam when the load moves on the beam. Both normal and shear stresses are

normalized by the maximum stresses occurring in the beam for static loading. As seen in the

figures, the results of the present model agree well with those of the analytical solution.

Example 5 In this example, dynamic behavior of laminated composite beams under a moving

point load is considered. A comparison between the steel and laminated composite beams is made

through Figs. 12 to 14 in terms of the dynamic magnification factors (DMF) of deflections, normal

and shear stresses. DMF is defined as the ratio of maximum dynamic response at midspan to the

ccr ω1L/π 39.88 m/s= =

Fig. 9 Normalized maximum deflections of a simple isotropic beam when the load moves on the beam (L/h =
100)

Fig. 11 Shear stress distribution for a simple
isotropic beam when the load moves on the
beam (L/h = 100)

Fig. 10 Normal stress distribution for a simple
isotropic beam when the load moves on the
beam (L/h = 100)
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maximum static response. Material properties are selected as given in Example 1 for steel and as

Beam-3 in Table 4 for graphite-epoxy composite. While beam length L = 381 mm and width b =

25.4 mm are kept constant, beam height is changed to have same static deflection at midpoint under

Fig. 13 Comparison of dynamic magnification factors
of normal stress for steel and graphite-epoxy
composite beams 

Fig. 12 Comparison of dynamic magnification factors
of deflection for steel and graphite-epoxy
composite beams 

Fig. 14 Comparison of dynamic magnification factors of shear stress for steel and graphite-epoxy composite
beams  
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center point load for the beams considered. According to static analysis results, h = 25.4 mm for

steel beam, h = 48.26 mm for graphite-epoxy (0/90) beam, and h = 31.75 mm for graphite-epoxy

(0/90/90/0) beam yield approximately same midpoint deflection. (0/90/0/90) laminated beam is

selected to study the effect of lamina stacking on the beam response. 

According to Fig. 12, laminated composites generally show better deflection behavior than the

steel beam especially for higher load speeds. The unsymmetrical (0/90) and (0/90/0/90) laminates

give approximately same deflections but thickness of (0/90/0/90) laminate is 35% less than that of

(0/90) laminate. The (0/90/90/0) laminate has the best behavior in terms of the dynamic deflections

compared to the others. Similar results are also obtained for normal stresses as seen in Fig. 13. In

Fig. 14, one can observe the unsymmetrical (0/90) and (0/90/0/90) laminated beams show better

dynamic behavior regarding shear stresses. Fig. 14 also show the (0/90/90/0) laminate has better

shear stress behavior than the steel beam. Regarding to the effect of lamina stacking on the

response, symmetrical laminated beams are better than unsymmetrical ones as seen in Figs. 12 to

14. 

5. Conclusions

A multilayered beam element for static and dynamic analyses of laminated beams based on the

first-order shear deformation theory is presented. While this element allows separate rotational

degrees of freedom for each lamina, it does not require any additional axial and transversal degrees

of freedom beyond those necessary for a single lamina. Comparisons with the results available in

literature demonstrate the accuracy of present element in terms of deflections, stresses and natural

frequencies of laminated beams. Regarding moving load-induced dynamic response, composite

laminates are better than the steel beam especially for high-speeds. Results also show that

unsymmetrical laminates give smaller dynamic shear stresses. According to results of this study, use

of composite laminates in structural applications allows us to achieve more effective systems in

terms of weight and strength.
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Appendix

Elements of H matrix are given in the following. 

(A1)

where Le is the element length.

 




